Tool Support for the Navigation in Graphical Models

Tobias Reinhard, Silvio Meier, Reinhard Stoiber, Christina Cramer, Martin Glinz
Department of Informatics
University of Zurich, Switzerland
{reinhard | smeier | stoiber | cramer | glinz} @ifi.uzh.ch

ABSTRACT

Graphical models are omnipresent in the software engineer-
ing field, but most current graphical modeling languages do
not scale with the increasing size and complexity of today’s
systems. The navigation in the diagrams becomes a ma-
jor problem especially if different aspects of the system are
scattered over multiple, only loosely coupled diagrams.

In this paper we present the hierarchical navigation capa-
bilities of the ADORA modeling tool. The user of this tool
can freely control the level of detail in different parts of the
model to reduce the size and complexity of the diagrams be-
ing displayed. Our fisheye visualization technique makes it
possible to integrate all modeling aspects (structure, data,
behavior, etc.) in one coherent model while keeping the size
and complexity of the diagrams within reasonable limits.

Categories and Subject Descriptors: D.2.2 [Software
Engineering]: Design Tools and Techniques; H.5.2 [Informa-
tion Interfaces and Presentation]: Interaction styles

General Terms: Algorithms, Languages

Keywords: fisheye view, focus+context, graphical model,
graphical user interface, hierarchical network, information
visualization, navigation

1. INTRODUCTION

The graphical models that are used to describe current
software systems grow in size and complexity with the sys-
tems they represent. Given the size and resolution of current
display screens, only parts of large models can be shown at
a time. Scaling down the whole model makes it possible to
see the whole model at the expense of losing the details: the
model elements, in particular the labels, become unreadable.
The fact that a model diagram doesn’t fit on the screen com-
plicates the task of finding specific nodes or links because the
user has to scale or pan frequently to see the elements that
lie outside the currently visible area [6, 8]. The navigation
problem is aggravated by the fact that navigation in graph-
ical model is inherently difficult: in contrast to the straight
sequential reading style of text, there is no common reading
style for diagrams. So the reader has to develop his/her own
inspection strategies [10].

Copyright is held by the author/owner(s).
ICSE’08, May 10-18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

823

One way to cope with the size and complexity is using
hierarchical and aspectual decompositions of the model into
manageable and understandable parts (in a way that follows
the basic software engineering principles of information hid-
ing and separation of concerns). Any such decomposition
technique, whether based on the hierarchy or different as-
pects, can fully play to its strength only if it is integrated
into the visualization and navigation capabilities of a tool.

However, most tools still rely on flat or practically flat
models (i.e. they show all elements in one view) and sup-
port only panning and scaling for navigation. Tools that
support navigation in hierarchical models visualize only one
level of the hierarchy at a time (i.e. the composites and
their parts are shown as separate diagrams). This “explosive
zooming” [2] leads to frequent “context switches” by the user
because each zoom step results in a completely new view.

Given this state of tools, it is not surprising that most
modeling languages, including UML [9], rely on the princi-
ple of loosely coupled multi-diagram models as the primary
means for separating concerns and decomposing large mod-
els into manageable parts. Only recently, hierarchical fea-
tures have been added to UML in version 2.0. The main
problem with this segregation is that it puts the intellectu-
ally demanding burden of integrating the different diagrams
in one coherent model entirely on the user’s shoulders [3].
The reader of the model has to switch back and forth be-
tween different diagrams which makes the already hard nav-
igation task even harder. These switches occur frequently
because the analysis and design process involves a constant
interplay between different aspects of a system.

The basic idea of our approach is to solve this problem by
reversing the underlying principles: we use an integrated, in-
herently hierarchical model instead of a loose collection of di-
agrams and a tool that generates abstractions and diagrams
of manageable complexity by exploiting the hierarchy and
filtering model elements. We have developed ADORA®, which
is comprised of (i) an integrated hierarchical modeling lan-
guage [7] with hierarchical decomposition and views (struc-
ture, behavior, user interaction, etc.) and (ii) a tool that
allows a user to navigate through the hierarchy and show or
hide model elements according to the selected view(s).

In this paper, we present the current state of the ADORA
tool. While we have previously published concepts for this
tool [2, 14], we now can present the first full implementa-
tion, including new features such as a new algorithm for
hierarchical zooming [11] and smart line routing [12].

'ADORA is an acronym for Analysis and Description Of
Requirements and Architecture

800 ADORA - SingleCabil Jser.adora - Eclipse SDK = enn ADORA - SingleCabi User.adora - Eclipse SDK =
| 5+ & = | Hides all Actors %+ | Qu~ | 47 |2+ | @ | =y [[ADORA &’ Java 1037 & = | Hides all Actors %r | Qur | 47 (2~ | @ | Tt R i BRADORA &’Java
12 100% T @ | BEIFREE S] 100% & | BISINE R
e e v o SRR - Fi o e o =
v »
J&! g ElevatorSystem
3 k]
o i
T] ﬂ Floor
ElevatorSystem Engine
Direction
Indicator.
Engine
GontrolPanel
Floor...
Elevator Cabin... Elevator Cabin...
Controller. Controller...
Door

o |

E

|

Figure 1: a. The screenshot on the left shows an abstract view of an elevator system. b. The situation after
successively zooming-in Floor and then ControlPanel is shown in the right screenshot.

2. FISHEYE VIEWS

Our visualization concept is based on fisheye views [6]
which show local detail and global context together in a
single view and therefore release the user from the task of
mentally integrating detail and context.

The use of fisheye views for the visualization of graphi-
cal models has two advantages: Showing only an abstract
view of the model parts which are not in the user’s current
focus of interest reduces the amount and complexity of the
information displayed while still showing all the details in
the current focus of interest. On the other hand, the inte-
gration of a fisheye visualization in a modeling tool avoids
the frequent context switches that occur with an explosive
zoom, because the surrounding context is always shown.

Fig. 1 shows the basic idea of our fisheye zoom approach:
The figure on the left shows an abstract view of a hierar-
chical model of an elevator system: only the top level com-
ponents Floor, Engine, ElevatorController and Cabin are
visible. The ellipsis after the name of a component indi-
cates that the component has an inner structure that is cur-
rently hidden. By successively zooming-in the components
Floor and then ControlPanel, we get the figure on the right,
which shows all the details in the focal point (the Control-
Panel component) together with the global structure of the
model. Conversely, by zooming-out the components we
get a more abstract view of the system.

Switching between abstract and detailed representations
of a node also has implications on the links between the
nodes. The three links between FElevatorController and one
of the internal components of Floor in Fig. 1b are repre-
sented by a single abstract link, visualized as a bold line,
between ElevatorController and Floor in the more abstract
view shown in Fig. la. Thus, the user can easily construct
an abstract overview of every component’s parts and their
relationships.

The concept of abstract links and the layout changes that
occur with every zoom operation result in the need to adjust
the links accordingly. We have previously developed a line
routing algorithm [12] that automatically re-routes the lines
in the diagram after a layout change.

824

2.1 Fisheye Zoom Algorithm

The layout of a diagram has to be adapted accordingly
if a node is zoomed-in or zoomed-out. This is the task of
the zoom algorithm which rearranges the layout by moving
and resizing nodes. The biggest challenge for the zoom al-
gorithm lies in adjusting the diagram layout but preserving
the original layout as far as possible: after zooming, the
user should still recognize the diagram. This is important
because the user builds a mental map [8] for the navigation
in the model. Additionally, a lot of the value of a graphical
model is encoded in the so called secondary notation [10]
(i-e., the layout and other perceptual clues like adjacency of
nodes, clustering, and the use of white space) that should
be preserved by the zoom algorithm.

From the literature on fisheye visualization and especially
from previous experience with the ADORA tool [2] we have
learned that the stability of the layout is of special impor-
tance: A sequence of zoom operations followed by a sequence
of inverse zoom operations should result in the original lay-
out. Additionally, the zoom algorithm should have the fol-
lowing properties: no overlapping of nodes, having multiple
points of interest zoomed-in at the same time, permitting
model editing, and running in real-time.

We have developed a zoom algorithm that builds upon
the basic ideas of the Continuous Zoom approach [1]: we
construct an interval structure for the diagram by projecting
the node boundaries on the X- and Y-axes and apply interval
scaling to that structure. Fig. 2 shows the visualization of
the interval structure in our ADORA tool.

The length of the intervals that are projections of a zoomed
node are scaled up or down to adjust the whole structure and
subsequently the positions of the nodes. Zooming-in a node
increases the size of the intervals and therefore moves the
other nodes further away, while zooming-out decreases the
size of the intervals and moves the remaining nodes closer
together. Our zoom algorithm guarantees the stability of
the layout in all situations (i.e., the layout of a specific view
of the hierarchy is always exactly the same irrespective of
the sequence of zoom operations that led to it). A detailed
description of our zoom algorithm can be found in [11].

800 =

| £4% [) | Hides all Actors B+ | Qur | 47 | (2 |

| <2 100% €@ BRI ES T

[SingleCabinElevatorUser adora £1 =ie
»
” ElevatorSystem

Palette

Fngina

Cabin

|
ElevatorController

ControlPanel

FloorSelection
Button

RequzstManager Cabin ||

| | Controller

Floor...

Request

FloorDisplay CabinDoor

g I

Figure 2: The interval structure after Floor has been
zoomed out

2.2 Layout Adjustments

A major advantage of our algorithm is that it can not
only be used for the fisheye zooming operations, but also for
adjustments of the layout in general. The capability of the
zoom algorithm to adjust the layout of a diagram is useful
in the following situations [11]:

1. Navigation in the hierarchy: The zoom algorithm
can, as just described, be used to browse the hierarchy
by zooming-in nodes to see the details and zooming-
out to get a more abstract view.

2. Smart editing: Editing graphical models is often a
tedious task. Adding and deleting nodes requires a lot
of manual work: existing nodes must be moved to pro-
vide the required space or to remove the empty space
resulting from deletions [14]. Our zoom algorithm can
be used to automatically expand a diagram when space
is required for the insertion of a node and to contract
the layout when empty space becomes available.

If there isn’t enough empty space to insert a new node,
the node is inserted with the maximum size it can oc-
cupy without moving any existing node. The zoom
algorithm is then used to expand the node to its in-
tended size, thus creating the required space automat-
ically. Removing a node is done the other way round:
the zoom algorithm is used to shrink the node to be
removed to the size of a point.

3. Filtering nodes: Apart from zooming-out nodes, the
presented algorithm offers the possibility to hide indi-
vidual nodes to reduce the size and complexity of a
diagram. Nodes are filtered by applying the technique
to remove nodes described above, but without actually
removing the nodes from the model.

3. TOWARDS A SINGLE INTEGRATED

MODEL

The technique to hide individual nodes can be used to gen-
erate different views (that show model elements of certain
types only) from a single, integrated model of a system [14],
instead of forcing modelers to create views themselves by
drawing a multitude of diagrams of different types, as re-
quired in UML, for example.

825

The combination of fisheye zoom with the view generation
mechanism described above in the ADORA tool makes the
use of a comprehensive integrated modeling language such
as ADORA [7] feasible.

The basic modeling elements in the ADORA language are
abstract, prototypical objects that are used instead of classes.
These objects are recursively decomposed into other objects,
thus leading to a systematic hierarchical decomposition in a
straightforward, easily understandable way. The visual no-
tation of nested shapes is used to represent compositions,
which makes their semantics intuitively clear. An ADORA
model integrates all modeling facets (structure, data, be-
havior and user interaction) in a single, coherent model.

Using the ADORA tool, the modeler can edit and/or gen-
erate diagrams of reasonable content and size by zooming
and filtering: by zooming s/he chooses the desired foci and
by filtering s/he creates the view(s) that s/he is currently
interested in. Fig. 3 shows an example. The modeler has
set two foci, Floor and Cabin, by successively zooming in
these objects and their components. In the screenshot on
the left side of Fig. 3, the modeler has selected three views
in combination: structure (the rectangles), user interaction
(the ovals) and external actors (the hexagon), thus showing
how the actor User interacts with the elevator system. In
the screenshot on the right side of the figure, the modeler
has decided that s/he just wants a structural overview where
user interaction is hidden. The modeler can easily generate
such views in the tool by clicking buttons in the symbol bar
at the top of the window that hide or show the model ele-
ments of the corresponding type(s). The size and the layout
of the diagram are automatically adjusted when the modeler
selects another view.

4. IMPLEMENTATION

The ADORA tool is implemented as a set of plugins for
the Eclipse Framework [4] and uses the Graphical Editing
Framework (GEF) [5]. The zoom algorithm has been imple-
mented as a separate pure Java plugin and can therefore be
used by any other Java based graphical modeling tool. The
ADORA tool is available under an open source license from
http://www.ifi.uzh.ch/rerg/research/projects/adora,.

5. RELATED WORK

Furnas implemented the Fisheye Lens [6] concept in com-
puter graphics by the means of a semantic zoom which shows
or hides a point in the structure depending on its “degree of
interest”. The original Fisheye Lens formulation has no ex-
plicit control over the layout and can therefore not be used
directly for graphical models. The Graphical Fisheye Views
by Sarkar and Brown [13] use geometric transformations to
graphically distort the layout. Graphical Fisheye Views are
not particularly suitable for graphical models because the
distortion reduces the readability (especially of text labels).

The logical fisheye concepts SHriMP of Storey and Miiller
[15] and Continuous Zoom by Bartram et al. [1] rely on a
fixed screen size and are therefore inherently global (i.e. the
zooming of one node changes the size of all nodes in the
model). However, the concept of scaling all nodes down so
that the model always fits on the screen cannot be used
for large graphical models because the scaled down nodes
become too small. An earlier approach of a fisheye visual-
ization technique in our research group [2] uses translation

800 ADORA - SingleC: dora - Eclipse SDK

o
| £9+ @ o | Hides all Actors B+ | Qur | 47 [(v | @ | 1+ v ko v v | 100% ¢ € BIPIES D o
(A SingleCabinElevatorUser adora o1 —
2|
| ElevatorSystem
£l
2l Floor
g
I Directionindicator Engine Cabin

ControlPanel

UpLight

DownLight

Check direction

FloorSelection
Button

Cabin
Controller

i

3
Select floor

Floor | | GabinDoor
Display
3
Board cabin

ControlPanel
Elevator

Controller...

UpButton

Down

Button Dot

Call cabin

(D]

Use

|

I I

800 ADORA - SingleC: - Eclipse SDK. o

109~ @ o | Hides all Actors Bge | Qur | 47 |3+ | @] 0 v v o o r 100 ¢ @ BIDRE3 »

[SingleCabinElevatorUser adora &2 =#
ElevatorSystem

= Palette— ~

Floor

Directionindicator

Cabin

ControlPanel
UpLight DownLight

I Cabin
Controller

Floor 1| CabinDoor
Display

FloorSelection
Button

ControlPanel

Down
Button

Elevator
Controller...

Figure 3: The left hand side shows the scenarios (ovals) embedded into the hierarchical structure. The right
hand side shows the same model with this user view hidden.

vectors to move the nodes in a similar way as SHriMP does,
but does not globally scale all nodes. However, this approach
cannot guarantee the stability of the layout in all situations.

6. CONCLUSIONS

We have presented the capabilities of the ADORA tool for
navigating and visualizing integrated hierarchical models.
The user can use a fisheye zoom to navigate in the hierarchy
and to reduce the complexity of the diagrams by hiding cur-
rently irrelevant details. A view generation mechanism that
shows different aspects of the system in one diagram offers
an additional dimension to reduce the complexity.

A problem that remains is the fact that even with our
fisheye view concept the models frequently grow beyond the
size of the screen. Therefore we provide additionally scroll
bars and a separate operation for linear view scaling when
a model grows beyond the size of the available display area.

We have shown our concepts in the context of the ADORA
language because the filtering mechanism plays to its strength
with an integrated model only. In principle, however, the
presented concepts can be used for any graphical modeling
language that supports a hierarchical decomposition, e.g.
hierarchical UML diagrams such as component diagrams.

7. REFERENCES

[1] L. Bartram, A. Ho, J. Dill, and F. Henigman. The
Continuous Zoom: A Constrained Fisheye Technique
for Viewing and Navigating Large Information Spaces.
In UIST ’95: Proceedings of the 8th Annual ACM
Symposium on User Interface and Software
Technology, pages 207-215, 1995.

S. Berner, S. Joos, M. Glinz, and M. Arnold. A
Visualization Concept for Hierarchical Object Models.
In Proceedings of the 13th IEEE International
Conference on Automated Software Engineering
(ASE’98), pages 225-228, 1998.

D. Dori. Why Significant UML Change Is Unlikely.
Comm. of the ACM, 45(11):82-85, November 2002.

826

[4] Eclipse. http://www.eclipse.org.

[5] Eclipse Graphical Editing Framework (GEF).
http://www.eclipse.org/gef.

G. W. Furnas. Generalized Fisheye Views. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 16-23, 1986.
M. Glinz, S. Berner, and S. Joos. Object-oriented
modeling with ADORA. Information Systems,
27(6):425-444, 2002.

K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout
Adjustment and the Mental Map. Journal of Visual
Languages and Computing, 6(2):183-210, 1995.
OMG. Unified Modeling Language: Superstructure,
version 2.1.1. OMG document formal/2007-02-05,
2007.

M. Petre. Why Looking Isn’t Always Seeing:
Readership Skills and Graphical Programming.
Comm. of the ACM, 38(6):33-44, June 1995.

T. Reinhard, S. Meier, and M. Glinz. An Improved
Fisheye Zoom Algorithm for Visualizing and Editing
Hierarchical Models. In Proceedings of the Second
International Workshop on Requirements Engineering
Visualization (REV’07), 2007.

T. Reinhard, C. Seybold, S. Meier, M. Glinz, and

N. Merlo-Schett. Human-Friendly Line Routing for
Hierarchical Diagrams. In Proceedings of the 21st
IEEE International Conference on Automated
Software Engineering (ASE’06), pages 273-276, 2006.
M. Sarkar and M. H. Brown. Graphical Fisheye Views.
Comm. of the ACM, 37(2):73-83, December 1994.

C. Seybold, M. Glinz, S. Meier, and N. Merlo-Schett.
An Effective Layout Adaptation Technique for a
Graphical Modeling Tool. In Proceedings of the 25th
International Conference on Software Engineering
(ICSE’03), pages 826 — 827, 2003.

M.-A. D. Storey and H. A. Miiller. Graph Layout
Adjustment Strategies. In GD ’95: Proceedings of the
Symposium on Graph Drawing, pages 487-499, 1996.

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

