
An Effective Layout Adaptation Technique for a Graphical Modeling Tool

Christian Seybold, Martin Glinz, Silvio Meier, Nancy Merlo-Schett
Institut für Informatik

Universität Zürich
CH-8057 Zurich, Switzerland

{seybold| glinz | smeier| schett}@ifi.unizh.ch

Abstract

Editing graphic models always entails layout problems.
Inserting and deleting items requires tedious manual work
for shifting existing items and rearranging the diagram lay-
out. Hence, techniques that automatically expand a dia-
gram when space is required for insertion and contract it
when free space becomes avaliable are highly desirable.

Existing layout generation algorithms are no good so-
lution for that problem: they may completely rearrange a
diagram after an editing operation, while users want to pre-
serve the overall visual appearance of a diagram.

We have developed a technique which automatically ex-
pands or contracts a diagram layout when items are in-
serted or removed while preserving its overall shape, i.e.
the positions of the items relative to each other. Our tech-
nique has been implemented in a prototype tool. We are
using it not just for simplifying editing, but primarily for
implementing an aspect-oriented visualization concept.

1. Introduction

With conventional graphical modeling tools, editing a di-
agram always entails layout problems. When inserting an
element into an existing diagram, the space required for the
new element has to be created manually by shifting existing
elements of the diagram apart. On the other hand, removing
elements from a diagram yields empty space. Compacting
the resulting diagram again has to be done manually.

Alternatively, automatic layout generation algorithms
could be employed. However, applying such algorithms
can result in a complete rearrangement of the diagram lay-
out, thus destroying the so-called secondary notation, i.e.
the positioning of the diagram elements relative to each
other. As the secondary notation bears important clues
for remembering and comprehending the meaning of a dia-
gram, users typically want to preserve the secondary nota-
tion when modifying a diagram.

We have developed a layout adaptation technique which
automatically expands or contracts a diagram layout when
elements are inserted or removed while preserving the sec-
ondary notation.

Such a technique is not only convenient for inserting or
deleting elements. It is a key prerequisite for implement-
ing aspect-oriented visualization techniques. Assume a dia-
gram that visualizes some basic elements of a model. When
we want to display a particular aspect, the elements repre-
senting this aspect have to bewoven(i.e. inserted) into the
diagram. On the other hand, when hiding an aspect from
a diagram, all elements belonging to this aspect have to be
removed and the resulting diagram has to be compacted.

We use this adaptation technique in a tool for visualizing
models written in ADORA [1]. A DORA is a modeling lan-
guage which—in contrast to UML—integrates all modeling
aspects (structure, behavior...) into one coherent model. To
prevent the user being drowned in a flood of information,
ADORA employs an aspect-oriented visualization concept:
starting from a base view displaying a hierarchy of objects
only, a structure aspect, a behavior aspect, etc. can be wo-
ven into the base view, resulting in a structure view, a be-
havior view, etc. Any combinations of aspects are possible.

2. An example

As an example, we describe the process of hiding as-
pects from an ADORA model of a heating control system.
Fig. 1 shows a base view combined with the structure, be-
havior and user aspects. In Fig. 2, the latter two aspects have
been hidden. Hiding these aspects means that the scenario
Manage Local Room Temperature (represented as an oval)
and all states and state transitions (represented as rectan-
gles with rounded corners and as arrows, respectively) have
to be removed from the diagram. Please note how the tool
has automatically compacted the resulting diagram while
preserving the secondary notation, i.e. the positions of the
remaining objects relative to each other.

Proceedings of the 2003 International Conference on Software Engineering, Portland. 826-827.

Figure 1. Base view woven with structure,
user interaction and behavior aspects.

3. Layout adaptation algorithm

In this section we sketch our algorithm. The details may
be found in [4]. Below we describe the algorithm for com-
pacting a diagram after removing items.

For simplicity, we consider removing a single object X
and assume that all diagram items are rectangles. As we
support a hierarchical modeling language, X is always em-
bedded in a parent object P (root is of no interest here).
Graphically spoken, P is a container for all its child objects,
including X. Now let Z be the smallest bounding box con-
taining all child objects of P before—and Z’ after—X was
removed. The idea is to keep the four horizontal and verti-
cal distances from Z and Z’ to the corresponding sides of P
invariant. The algorithm works in four basic steps:
1. Shrink object X concentrically to a rectangle of zero size.
2. Shift all objects within P radially towards the center about
half the size X was. Stop shifting objects when a minimum
distance between them is reached (thus we avoid touching
or overlapping objects). Their new positions define Z’.
3. Adjust the shape of P to the difference between Z and Z’.
4. Recursively apply the first three steps as long as P
changes and in turn is contained in another parent object.

For expanding a diagram prior to inserting an item into
it, we apply these steps in the same order, but in the reverse
way (expanding instead of shrinking). Obviously, we can
generalize this algorithm such that it handles removing or
inserting a set of items with arbitrary convex shapes.

4. Conclusions

Achievements. We have developed an algorithmic tech-
nique that automatically adapts the layout of a diagram

Figure 2. Contracted diagram after hiding
the user interaction and behavior aspects.

when elements are inserted or removed while preserving the
secondary notation of the diagram (i.e. the relative positions
of the elements). Our technique makes diagram editing con-
siderably more comfortable for the user. Furthermore, it
makes aspect-oriented visualization feasible for interactive
tools. We consider this to be our main achievement.

Related work. We are not aware of any other modeling
tool using similar techniques. Work has been done by oth-
ers on automatic layout generation under constraints, where
constraints can be used to specify structure-preserving lay-
out adaptation [2], or on preserving a generated structure
when solving overlappings [3].

State of work. The work reported here is part of a more
general effort for developing a novel visualization concept
for hierarchically structured models. Previously, we have
developed context-preserving zooming algorithms for such
models. All algorithms have been implemented and tested
in our prototype tool for ADORA. We plan to fine-tune the
algorithms and to conduct a validation study.

References

[1] M. Glinz, S. Berner, and S. Joos. Object-oriented modeling
with ADORA. Information Systems, 27(6):425–444, 2002.

[2] W. H. Graf and S. Neurohr. Constraint-based layout in vi-
sual program design. InProceedings of the 11th International
IEEE Symposium on Visual Languages (VL’95), 1995.

[3] W. Lai and P. Eades. Removing edge-node intersections in
drawings of graphs.Information Processing Letters, 81:105–
110, 2002.

[4] M. Marty. Analyse und Erweiterung von Algorithmen zur
logischen Navigation in ADORA-Modellen[Analysis and ex-
tension of algorithms for logical navigation in ADORA mod-
els (in German)]. Diploma Thesis, University of Zurich, 2002.

