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REDUCTION THEOREMS FOR NETWORKS WITH GENERAL SEQUENCING RELATIONS*
by
M. GLINZ AND R, MOHRING

INTRODUCTION

Networks with general sequencing relations are generalizations of
the well known CPM and MPM networks, achieved by the introduction
of four different types of sequencing relations between the starting
and finishing times of two different activites.

The main topics investigated in this paper are the existence
and characterization of two-step procedures, (i.e. evaluating the
subnetworks of a decomposition of a given network and of the con-
densed network assigned to the decomposition) for computing the
shortest overall duration and the floats of a given network N inde-
pendent of the durationsof N. It is shown that if sequences are
allowed maximum durations, in this general approach only trivial
solutions are obtained which are of no use for practical applica-
tion. The restriction to minimum durations gives better results,
but compared with CPM networks (cf [8]) they are still rather 1li-
mited. It must therefore be said that, compared with CPM networks,
generalization of the network structure must be paid for with a

considerable limitation of the available reduction possibilities.

1. DESCRIPTION OF THE MODEL

A network for project scheduling is characterized by

a) a finite set A with elements o,8,..., called activities of the
project

b) activity durations x(a) for each o € A or, in the stochastic
case, non-negative real random variables Xa, their realizations
being possible durations of o

c) a project structure: this may be deterministic (fixed sequenc-
ing relations between each pair of activities) or stochastic
(e.g. if there are alternative procedures for accomplishing a

given aim).

This work was supported by the Minister fir Wissenschaft und Forschung des
Landes Nordrhein-wWestfalen.
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In the simplest case the durations x(a), o€ A are fixed real num-
bers and the project structure is given by a relation R in A de-
fined by

(a,B) ER :em o must be finished before B can be started.

This network model forms the basis of the classical critical path
method (CPM) and of the network theory developed in [2]. In the
latter case it leads to very profound and far-reaching results, but
it has, of course, the disadvantage of a rather inflexible project
structure.

In the general case of a deterministic project structure all
four possible sequencing relations between the starting and finish-
ing times of two different activities are admitted (ST (a) repre-
senting the starting time and FT(a) the finishing time of o).

sequences (seq.)

sort term symbol diagram h

ST (a) < ST(R) begin seq. BS | (a,B) € R

*

FT(a) < FT(B) end seq. ES | (a,8) €R lﬂ

FT(a) < ST(R) normal seq. NS | (a,R) € R

|

ST < FT j .
(a) (8) jump seq.  JS | (a,8) €R, g:]

Furthermore, a minimum and a maximum duration can be assigned to
each sequence. This is accomplished by two functions

di: Ri - Ri (minimum duration) _
-1 d, <d, , i=b,e,n,j
d.: R, » R,

i i (maximum duration) . t

and the definition

1) Each activity a is represented by a rectangle [:] , its left (right) side
denoting the begin (end) of a. The sequences are represented by the arrows

between the corresponding sides of the rectangle.
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(o, B) €Rb :

Jo? ]

ST(a) + db(a,B) = ST(B) < ST(a) + b(a.e)
e (ul B)

<
FT(a) + d_(0a,8) < ST(B) < FT(a) + En(a,s)
<

<1}

(a,B) € R, FT(a) + d_(a,B) FT(B) < FT (o) +

(1.2)
(06,6) ERH H

[ O

(a/B) ER, STW)+dﬂaﬁ) FTm)<STm)+aﬂa&)

As is well known, the maximum duration t of a sequence (a,B) € R,
can be interpreted as the negative minimum duration -t of the se-

quence (B,a) € R 2), where k is given by the table

e n 3

b
k | b e 3 n

This becomes clear (for i = b) because of

_ (1.2)
d (a,B) =t = ST(B) < ST(a) + t
(1.2)
= ST(B) - t € ST(a) = db(B,a) = -t

Sequence durations can thus be described by a single function

di: Ri - Rl. This leads to the following definition.

DEFINITION 1: A nefwork with general sequences (shortened in the
following to simply network) is a tuple N = (A'X'(Ri'di)
I={b,e,n,j}, where

ieI)'

- A is a finite set of elements a,8,..., called activities

- Xx: A~ Ri is the activity duration function; x(a) is called the
duration of o

- R, cAxA for each i€ I. (a,B) € R, is called sequence of sont L,
i.e. begdn seq. if i = b, end seq. if i = e, noamal seq. if i = n,
jump seq. if i = 3

- d,: R, » R' for each i€TI. d,(a,B) is called the duration of the
sequence (a,B) € R, .

B is called a successor [predecessor] of o if (a,B) € R, [(B,a) € R,
for some i€ I.

2) If (a,B)E€ Rk is already given, then the minimum duration dk(B,a) must be

formally replaced by max (dk(B,a),-t). These cases make no sense, however,

and do not occur in practice.
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The relational system #:= (A'(Ri)iel) is called the structunre of
N. (x,d) := (X'(di)iel) is called the duration 4function of N. N is
also denoted by N = (#,x,d). If BcA, we call #|B := (B’(RilB)ieI)'
RilB := R, N BxB, the sub-system of R generated by B,

N|B := (#|B,x,d) := (B,x|B,(Ri|B,&iTB)i€I) is called the sub-net-
work of N genenated by B.

We shall apply this network model to projects, which fulfil
the following procedural conditions.

.

(1) All activities start at fixed times
i.e. 8T(a) = O VvV a €A

(ii) A started activity proceeds without interruption
and is finished after x(g) time units
i.e. FT(a) = ST(a) + x(a)

(1.3) { (iii) For each (a,B) € U R, we have
ier 1
ST (a) + db(a,B) < ST(RB) if i =Db
FT(a) + de(a,B) < FT(B) if i = e
FT(a) + dn(a,S) < ST(B) if i = n
ST(a) + dj(a,B) < FT(B) if i = 3
(iv) The project is finished when all activities are

| finished, i.e. at the time max FT(q).
G€EA

These conditions are combined in the definition of a schedule.

DEFINITION 2: Let N = (#,x,d) be a network.

a) T: A o Ri is called a schedufe for N 3) if for all BeA
4
max [T (a) + d_(a,8)]
(a,B)ERy,
max [T(a) + x(a) + d (a,B) - x(B)]
(a,B)eR, ©
T(8) = max [T(o) + x(a) + 4 (a,B)]
(a,B)eR, "
max [T(a) + 4. (a,B) = x(B)]
(a,B)eR, J

3) It should be noted that this notion of a schedule is only made possible
by condition (1.3) (ii), which therefore cannot be replaced by the weaker

condition FT(a) > ST(a) + x(a).

4) The maximum over the void set is defined as zero.
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b) A duration function (x,d) on & is called compatible 3)

(with
respect to the given structure®) if there exists a schedule for

(R,x,d4). In this case, (%,x,d) is called practicable.
c) Let T be a schedule for N = (4,x,d). Then

Aé(x,d) := max [T(a) + x(a)]'is called the overall duration of
aEA

N with negand o the schedule T

Ag(x,d) := inf {x;(x,d) | T is a schedule for N} is called the
shontest ovenall dunation of N,

d) The shortest overall duration of a sub-network N|B of N is de~

noted by )\Ql B (x,d)

This concept of a network contains those of the classical CPM
(only normal sequences of zero duration), the MPM (only begin se-
quences) and other related methods as special cases, cf. THUMB [13]

for further information.

2. SHORTEST OVERALL DURATION, FLOATS

As there may not exist a schedule for a given network, the problem
arises of finding criteria for the existence of a schedule, i.e.
for the practicability of a network. A second task is the computa-
tion of the shortest overall duration.

These problems are solved by the same method as ROY [10] intro-
duced for networks with begin sequences only (Metra-Potential Me-
thod) .

To a given network N = (#,x,d) we assign a digraph GN = (&)
with edge values y(e), e€ &, as follows (cf. SCHWARZE, [111]).

§) It can be easily shown that incompatible duration functions can occur {f

the network structure contains a circuit,
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The set ¥ of the vertices of GN is formed by doubling the
activities a € A into ol (the initial vertex of o) and ol
(the terminal vertex of a).

The set &< ¥x ¥ of the edges of GN and their values are
given by

(2.1) { (&) Vo€a: (o",a") €€ A (0,07 €& A
y(at,a®) = ~y(aT,al) = x(a)

(1) ¥ (a/B) €R.: (o',87) €6 A y(a®,8T) = d (a,8)

v (a,B) €R_: (f, 8Ty €€ A y(aT,8") = d_(a,8)
V (0sB) €R : T, 8N ed A yaT,sh) = d_(a,8)
v (a/B) €R,: (al,8T) €€ A y(a®,8T) = a (as8)

G, is called the network graph of N.

A (directed) semi-path from v, €¥ to u;lEV”in Gy is a collection
of edges (vl,vi),...,(vn,v;) such that vi = Vit
We denote it by the symbol P(vl,v;). A semi-path P(vl,v;) is called
a path grom v, %o v; if all vertices Vir v; of P(vl,v;) are dis-~

tinct, and a circudt if v; = v

i=1,...,n=1,

1"
n

(y) == ] y(v,,v!) is called the Length of Plv ,v])
j=1

(with respect to the edge values y(v,v')).

(o)
P(vllvé)

(2.2) EXAMPLE: Consider N = (A,x,(Ri,di)ieI) with

a€a | 1 2 3 4 5 R, | (1,2)  (2,1)
x(@ |3 10 10 1 5 a, l 2 -4
R, | (1,2 (3,5) R | o s 3,0 R, | (2,4)
a_ | 5 5 a l 5 3 o a, | 15
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Diagham of N

Construct a digraph ¢* = o*,8) from G by adding two
(2.3) ) vertices a,b and all edges (a,v),(v,b), v€Y¥, with edge
values y(a,v) = y(v,b) = 0.

A real function T defined on the vertices of G* is called a poten-
tial on G* if
2 4
T(V2) > T(Vl) + y(vl,vz) for all (vl,vz)e &
We then obtain the following results

a) Let T be a potential on G*, then t(a¥) = t(at) + x(a)
for all a € A.

b) 1% ~» Ri is a potential on G* iff T: A - Ri, defined by

T(a) := 1(0%), a €A, is a schedule for N.

For potentials, we have (cf. NEUMANN [6], p. 240 ff.) the following
results.

(i) There exists a potential on G* iff G* contains no circuit of
positive length.

(ii) If there exists a potential on G* then 1,:¥™* o Rl, defined by
*

o if v=a
T, (V) =
max {op(a v)(y)l P(a,v) is a semi-path from a to v}
Applying known results for potentials 6 on GN we obtain the fol- if v+ a
lowing theorem. is a non-negative potential on c*
and for any other potential Tt on G* with t(a) = 0
t, <t holds. ")
THEOREM 1:
a) Fon a given network N there exists a schedule if§ the associ- The theorem is proved by reformulating (i) and (ii) by using (a)
ated network graph G contains no circuits of positive Length. and (b). In particular,
b) 14 thene exists a schedule for N, the shortest overnalf duration T, (B) = Aglx,d)
0f N is equal to the Length of the Longest path o4 G. = max {Up(a'b)(y)l P(a,b) is a semi-path from a to b}

= max {OP(a b)(y)l P(a,b) is a path from a to b},
. = = . 1 £ 1
Proof: Let N (A'x’(Ri'di)ieI) and Gy (#,8), with values of y as G* contains no circuit of positive length.
as defined in (2.1). J

7) This result assumes the existence of a singleton basis in the graph consid-

6) See NEUMANN (6] . 238 ff, or BERGE, (1] p. 89 ff for more detailed in-
¢ P ' ! P ered. In G', {a} is that basis.

formation.
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(2.4) REMARKS

a)

b)

c)

The schedule assigned to 1, by (b) is denoted by ES. ES(a) is
called the earliest start of a.

Using the same arguments as for (ii) it can be shown that

T, (b) if v=>
™(v) :=
T, (b) - max {o, b)(y)| P(v,b) is a path from v to b}
ifv+b
is a potential on G¢* such that t™ > t for all potentials T on
6* which fulfil t(b) = T, (b).

LF(a) := 1" (aT) is called the fatest g§inish of a.

(v

For later use, we define two related notions.

Let G* - (vl,vz) denote the graph constructed from G* by de-
leting the edge (vl,vz). Let 1, be the minimum potential (as
defined in the proof of Theorem 1) on G* - (aT,aI) and t* the
maximum potential (as defined in (2.4),b)) on G* - (a¥,a™).
Then ES®(q) := T*(aI) and LFT (¢) := t*(aT) are called the eax-
Liest start of the initial point of o and the Latest {inish of
the Zenminal point of o respectively.

Next we shall state Theorem 1 without using the notion of a net-
work graph.

DEFINITION 3: Let N = (#,x,d) be a network and R := |J R,.

a)

b)

ier *
P(a,B) := ({a, = GrOyreee,a = B},u) is called a path in & from
a to B if (aj_l,aj)e R for j 1,¢¢.,n and y: A><§ +1Iis a
mapping which assigns to each sequence (aj
u(aj_l,aj).
A path P(q,B) = ({ao,...,an},u) is called a cincudlt in R if
n> 1 and o = 8.

_l,aj) its sort

Each path P(a,B) = ({agse+.sa },u) corresponds to a semi-path
P(at,8T) from af to 8T in Gy that contains all edges of Gy

assigned to the sequences (aj_l,aj)E R = 1,...,n.

“(“j—l'“j)' J
= i th {duration)

op(a,e)(x’d) UP(aI,BT)(y) is called the feng { 4

of Pla,B) (with respect to the duration function (x,d) of N).
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c) Similarly, each circuit P(a,a) of # corresponds to a circuit P

in G. op(a'a)(x,d) := op(y) is called the fength (duration)
04 the cincudlt.

Let P(a,B) = ({ao,...,an},u) be a path. The corresponding semi-path

P of G, partitions the activities Ogres++s0 into the disjunct sets

pt = {aj| (a,aT) is contained in P}, the set of positively tra-

versed activities,

P := {ajl (aT,a’) is contained in P}, the set of negatively tra-
versed activities and
PC := {ao,...,an}\~(P+lJP~), the set of activities Zouched by P.

A sequence (a,,B,) is said to £ie on Pla,B) or to be traversed by
Pla,B) if the corresponding edge in GN is contained in the semi-
-path of GN corresponding to P(a,B). Then

(o) 0, )

n
o (x,) = ] x(a) = ] x(a) + ] @
P(a,B) y=1 u(aj,aj+1) jTUi+1

aept QEP™

and we get:s)

THEOREM 1':

a) For a given network N thenre exists a schedule if§ N contains
no circudlts of positive Length.

b) 14 thene exists a schedule fon N, then the shortest overall
duration of N is equal to the Length of a Longest path in N.

Each path P(a,8) of N, such that oP(a'B)(x,d) = Ap(x,d) is called

critical. Its length is called the caditical Length of N.

(2.5) EXAMPLE (CONTINUATION OF (2.2))

The only circuit of #is P(1,1) = ({1,2,1},u) with u(1,2) = e,
u(2,1) = b. It corresponds to the circuit (1%,1T), (17,27T), (27,2%),
(21,1I) of GN. Its length is therefore -6 which means that there
exists a schedule for N. T: A -» Ri, defined by

8) This follows immediately from the fact that to each circuit or longest path

P of Gy there is a circuit or semi-path P' in N which corresponds to it in
the sense of Definition 3.
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Then LIN(u) := max [Llé(a),LIE(a)] is called the Latest {indish
0f the (immediate) predecessorns of o.

o 1 2 3 4 5

T(a) | O 2 8 18 18 It denotes the earliest point of time at which o may start if

all predecessors B may end at their latest finish LF(R).

is a schedule and we have T(a) = ES(a). ES, LF, EI, LI are called characterdistic activity times.

The critical path is P(1,5) = ({1,3,5},u), u(1,3) = n, p(3,5) =e
with length 23. Thus N@(x,d) = 23.

From them, the most important floats are derived.

¢c) TF (a) := LF{a) - ES(a) - x(o) is called the total 4Loat of «

For the planning of a real project it is important to obtain (be- FF (o) := EI(a) - ES(a) - x(a) is called the {ree fLoat o4 o
sides the shortest overall duration) some information on whether an IF (o) := EI{a) - LI(a) - x(a) is called the independent §lLoat
activity can be extended or delayed as a whole without interfering 0f a. 11)

i i ear.
(under certain conditions) with the shortest overall duration. Their interpretations are clear

To this purpose, we introduce the three most frequently used These floats describe the possibilities open for displacing an ac-

float measures (without covering all possibilities). tivity in time, i.e. with its duration unchanged. If, for example,

the initial point of an activity o is touched by a critical path,
DEFINITION 4: Let N = (#,x,d) be a practicable network and € A. a must start at ES(a) and any delay would affect the shortest over-
all duration. Thus no information is obtained if, with the starting

9)
min  [ES(g) time ST(o) fixed at ES(a), the finishing time FT(a) may be delayed

db(a,B) + x(a)]

I - s {(a,B)ER
a) Let EI (g) := min b . . . .
. .. FT > + .
N min [ES(B) + x(B) - d.(0,8) + x(a)] (i.e. FT(a) ES(a) x(a), which means extending the duration of a)
(a,s)eRj J This information gap is bridged by introducing the concept of ex-
tension floats 12), which are defined using ESI, LFT (cf. (2.4))
min  [ES(g) + x(B) - d_(a,B)] and EI*, L1¥ (cf. Definition 4).
EIg(a) := min | (¢/B)ERg
min  [ES(B) - d (a,8)]
(a,B)ER n DEFINITION: Let N = (4,x,d) be a practicable network and o € A.

TE;(a) := ES(a) - ESI(a) is called the total extension fLoat at

EI (a) - := min [EI;(a),EIE(a)] is called the ecarliest start of
the initial point of o.

the {immediate) successons of a.
It denotes the latest point of time at which o may be finished TEE(a) i= LFT(a) - LF(a) is called the fotaf extension fLoat at
1f all successors 8 of o may begin at their earliest start the tenminal point of o.

ES(g) and rg(x,d) may not be enlarged. IE;(a) := LI(a) - LI'(a) is called the independent extension fLoat

10) P .
nax [LF(B) - x(B) + db(B:d)] at the initial point of o.
b) Let LIX(y) := max | (Br®)ERy IEX(a) := EIT(a) - EI(a) is called the independent extension Loal
N [LE(B) + d _(B,a)] N
max B) n(Bra) at the teaminal point of o.
(B,a)€Ry
max [LF(B) + de (B,a) - x(a)l 11) We have TF(a) > FF(a) > max (IF(a),0). IF(a) can be negative and can then
LIT(a) := max (B’a)eRe be interpreted as the time lacking to let all predecessors B of o end at
N max  [LF(B) - x(B) + 4, (B,a) - x(a)] :
(B,a)€ER i LF(B) and all successors B' of a begin at ES(B') simultaneously.
! ]

1 C ZE 12
9) The minimum over the void set is defined to be Agp(x,d). 2) cf SCHWARZE, (12]

10) The maximum over the void set is defined to be zero.
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It is now possible to specify the intervals of time from which
ST(a) and FT(a) may be chosen, with the restriction, of course, that
FT(a) » ST/{a) + x(a) and ﬁﬂ(x,d) may not be lengthened. We obtain:

a) ES(a) - TEX(a) < ST(a) < ES(a) + TF(a)

LF(a) - TF(a) < FT(a) < LF(a) + TF" (a)
in the case that the choice of ST(on) and FT(o) may affect the star-
ting and finishing times of other activities, and

b) LI(a) - IEYX(a) < ST(a) < EI'(a) - x(a)

L1T(a) + x(a) < FT(a) < EI(a) + IET (a)

if they may not.ly

(2.6) EXAMPLE:

Let N be given by the following diagram

i8

=20

f411/7l

13) If these inequalities are false, there is no such choice.
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(Extension) floats and characteristic times of N are given by the
following table:

a€A] x ES LF EI LI TF FF IF TE' TE' 1E' IET
1 |10 0O 10 1 o o0 o o o A7 o 47
2 2 2 10 4 2 6 o o o0 39 o0 o
3 |10 6 22 16 12 6 0o -6 o 33 0o 12
4 7 5 57 57 11 45 45 39 o o o o
5 1 19 20 20 19 0o O 0O 19 o 19 o
6 4 26 57 30 26 27 o o 5 o 5 27
7 2 28 57 57 55 27 27 o 12 o 33 o
8 2 35 37 37 35 0 O O O 5 0 5
9 3 11 20 20 17 6 6 o o o o o
10 9 44 53 53 44 o o o 5 0 5 0
11 7 50 57 57 5 O O O 6 o o o

3, THE GENERAL REDUCTION PROBLEM

In the following paragraphs we shall deal with the problem of wheth-
er the shortest overall duration (and, if possible, floats and ex~
tensions) of a given network N can be computed by a two-step pro-
cedure in the following way.

N is partitioned into suitably defined sub-networks which
correspond to exactly one activity in a smaller network, called the
image network of N. Activity and sequence durations of the image
network are derived from an evaluation of the corresponding sub-
-networks of N. Our question is, whether we can compute the desired
quantities of N by evaluating the image network and the sub-networks
only.

As a first approach to this problem we apply the results of a
reduction theory for a general class of functions (network func-
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tions, see [2] and [4] %)

For a given network N = (%,x,d), the paths from a to b in the
graph G* which is constructed from N according to (2.1) and (2.3)
form a profile P* on the edge set & of G*. By Theorem 1, )Q is a
network function on P*, i.e.

A (x,4) = rit,p*,max,+]1(y)

where y is the edge value function of G* derived from (x,d).

In general, however, there are only few reduction possibilities
for I', as too many edges are added in constructing G* from G. Con~
fining ourselves to the system p of all paths of GN we still have

)xg(x,d) =rl1,P,max,+1(y),

but p may not be a profile, since paths may be comparable under
(set theoretical) inclusion.

Further restriction to P°® := {P€P |V P'€EP: PcP' - P = P'}
yields no solution either, because c-maximal paths may not be the
longest ones. Nevertheless, PO is of some importance. As P° is a
profile, all its reduction possibilities can be characterized.
(This is done in [3], where the profile P°® plays a part in the
theory of flows in networks). Because of P°c P, all reduction pos-
sibilities of P° are contained in those of p.

The main disadvantage of this approach, however, is the fact
that it covers only the shortest overall duration, and not floats
and extensions. In order to include floats and extensions it is
necessary to have a network structure (and not only a profile) on
the image set. It should depend on the structure of N only, and not
on the duration function (x,d) of N, for in this way reduction can
be guaranteed in the stochastic case as well, i.e. for arbitrary
durations. (This is the main difference to decomposition procedures
described by PARIKH - JEWEL ([7]), LYTGEN ([5]), REGITZ ([9]) e.a.)

In view of these considerations, the following approach is ta-
ken, which, no longer interpreting Xy, as a network function, re-
sembles the poset-theory approach to the reduction problem for CPM
networks (see [8]).

14) See also [ 2) for the definition of I', profile etc.
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(3.1) CONSTRUCTION OF THE IMAGE NETWORK

Let% = (A, (R ) ) be a network structure. Given a partition
T = |j€J} ofA, let h: A » A' := {y | 3€J} defined by
h(oz) = vy, if a€ A denote the canonlcal mapping induced by 7.

IIu

Let #' = (A', (R:;.)ieI) be a network structure on A'. To each image
activity vy, € A' we assign a real function f£. > O with variables
x(a), o € A, and a, (a,B), (0,B) € R, i€I. similarly, a real func-
tion gj’k' w1th the same varlables as f is assigned to each
image sequence (v, ,yk) of sort i, i €T,

fj and g descrlbe the duratlons of Yy € A' and (v, ’Yk) € R'

:’Ikl
for given durations x(a), o €A, and dl(a,S)r (arB) € Rl, i€z, of N.

They are called transmitting rules.

Our aim is to characterize all partitions 7 and their associated
image structures #' and transmitting rules which satisfy

Ap(x,8) = g, (x',d') for all compatible duration vectors (x,d) of N

under appropriate and comparatively weak conditions.
This leads to

(3.2) THE GENERAL REDUCTION PROBLEM

Let 4 = (A, (Ri)ieI) be a network structure.

Characterize all partitions 7 = {A | j€J} of A, together with
their assigned image structures #' and transmitting rules according
to (3.1), which fulfil the following conditions:

R1 To each image sequence (y.,yk) € Ri, i€ I, there exist g€ Aj,
BeAk such that (a,B) € Ri'

CONSERVATION OF STRUCTURE
R2 For each jeJ, fJ depends only on the variables x(a), a€A_,

and d, (a,B)s (asB) €R, |A , 1€I; i.e. x'(y,) is a function of
the durations of the act1v1t1es and sequences in .@lAj.

For each j,k, 1 P gJ depends only on the variables
Pk 1o
di (o,B) (a,s) eR n ij i.e. d' (a,R) is a function of
the durations of the sequences of sort i, from A to A .
15)

LOCAL TRANSMISSION

15) This condition is essential for the implementation of a two~-step computa-

tion on computers because of the saved storage.
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R3 For each compatible duration function (x,d) on %, (x',d') is a

compatible duration function on %'

COMPATIBLE TRANSMISSION

R4 For each compatible duration function (x,d) on # we have
R‘@(X,d) = )\@, (Xl rd')

CONSERVATION OF THE SHORTEST OVERALL DURATION

We shall show that R1 - R4 yield very restrictive, but necessary,
conditions for partitions 71 (and the assigned image structure and
transmitting rules), which limit the possibilities of reduction
severely. The main reason for this limitation lies in the fact that

sequences can have negative duration.

(3.3) x =0, di < O on @]Aj - x'(Yj) =0

i.e. if all durations of the sub-network g?lAj are non-positive

then the corresponding image activity Yj is of duration zero.
d;(o,B) o,BEA

Proof: Put y(a) := 0 V a€A, li(ot,B) =

0 otherwise
Obviously, (y,l) is compatible with respect to # and
A (¥', 1Y) Ré Aply,1) = 0, as (y,1) < 0. Thus y' (yj) = 0. Because
of the fact that (y,1) = (x,d) on Q|Aj and R2 we have x' (Yj) =

Y'(Yj) = 0. A

(3.4) (Yj,Yk) ER;O A d (a,8) <O V¥ (a,B) ERinAj x A

- dio(vj;vk) <0
i.e. if the durations of all sequences on which an image sequence
depends are non-positive, the image sequence has non-positive du-
ration.

Proof: Let (Yj,Yk) €R; and di(a,B) € 0 for all (a,B) € RiﬂAj X Ay .

o]
di(d,B) if (a,B) €Rif'|Aj><Ak and 1 = i

Put x = 0, 1, (a,B) :=
o} otherwise

Then (y,1) R<4 0, is thus compatible, and we obtain

Ageo (¥'/1') = 2Agly,1) =0

From )\w,(y',l') > lio(Yj'Yk) it follows that

R2
o> 11°(Y3'Yk) - dio(vj,vk). 4
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(3.5) X'('Yj-) (x,4)

= A

R 8y
i.e. the duration of an image activity is equal to the shortest
overall duration of the gorresponding sub-network.

Proof: Given a compatible duration function (x,d), put

x(o) o€A, d, (a,B) if a,B€EA,
Y(OL) = J ’ d (QIB) = t J
o] otherwise t “A\p(x,d) otherwise

As any circuit containing activities not in A, must traverse a se-
quence of duration =-Agp(x,d), (y,1) is compatible, and is equal to
(x,d) on Aj and < O outside A . Therefore,

R4
A (x,4) = 7‘@|A.(y’l) = A@(y,l) = Ag (y', 1)

j j
R2
G BBy ) Extiy )

71BN

(3.6) Let (y,,y ) €R' . If there exists (a,B) € R, NA xA such
ik ig iy 3 k
that dio(a, g) > O, then dio(Yj’Yk) =max {d;_(a,8) | (0, B) €R; NAx AL}

Proof: Given a compatible duration function (x,d), put y = O and

d (o,B) if (a,B) €ER, NA xA
1 (a,g) = t ' io 37 Tk
i -c otherwise

where ¢ := max {dio(a,e)i (0./B) € RiJ]ij Ak} > O according to the
assumptions.

(v,1) is compatible, since each circuit traversing a sequence of
positive duration (< ¢) must contain a sequence of duration -c.
Hence,

¢ =max {d; (a,B) | (asB) €ER; NA xA }
o o I k
= max {lio(u,B)l (arB) € RiJ‘Aj)(Ak}

= )\@(y,l), as ¢ > O and any longest path consists of one se-
quence (o,B) €R, NA xA only
R4 1o 3 k
= LR = v
)‘92' (y',1") lio(yj,yk) becau?e <I3f (3.3),(3.4) and
A@, (y',1') >0

= dio(erYk). ]
(3.7) (a,B) €R; A ha) + h(g) = (h(a),h(p)) ER]

Proof: Let aoeAj, BoeAk, j # k, and (ao,so) €Ri°'

Assume (Yj,yk) (Rio . Let
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= .6 hich is i tradiction with R3.
1 if (a,B) = (0osBo) A i = io h(ai) h(az) and (3.6), which is in con

Xx = 0, di(OL,B) =
-2 otherwise

(x,d) is compatible, as (#,x,d) cannot contain a circuit of posi-
tive length. Because of (yj,yk)¢ R' and (3.3),(3.4) we obtain
(x',d') < 0O, a%g so

0 = N@,(x',d') = Nﬁ(x,d) > dio(ao,so) = 1, a contradiction. N

Combining (3.3) - (3.7), we obtain the following conditions for
(3.9) If there exists a begin sequence or a normal sequence

the image structure #' and the transmitting rules.
(al,az) from o, fAj to a, € Aj, then Aj is a singleton.

THEOREM 2: Llet 1 = {Aj| F€J} be a sotution of the general reduc-
tion problem (3.2). Then the assigned image structure and Zrans-
mitting rules must fulfil the follLowing conditions.

a) For all a,B€ A such that hia) 4 h(R), and all L€ 1, we have

(o, 8) € Ri = (h{a),h(B))E Ri Proof: Let (al,a2)€ R, + i€ {b,n}. Assume there exists
(o]
b} x'{y.) =1 | (x,d) fon all vy €A B1€‘Aj\{°‘2}’ Put o
3 RIB 3 1 if a = B, 1 if (a,B) = (a;,0,) A i=1ig
c) d;(Yj;Yk) = max {d, {a,8) | (a,B) €R, N Ay At fon all x(0) := . 4 (a,B) := , e
. . . . . . i - otherwise
(yj,yk)e R;, L €T forn which the maximum on the night side is ° otherwise
posditive.
These conditions can be considered natural, especially as they h
—_—
also result in a similar form of the reduction problem for CPM-
networks (see [81]).
The main restriction of the reduction possibilities derives
from the special form of the classes Ay of .
i i A a) =1 n ath traversing (a,,a,)
(3.8) Each path from a1€‘Aj to a2€ Aj, oy + &, is contained in Aj, (x,d) is compatible and Ag(x, ) ¢+ @s any i r o (x! g') 1772
i ti -2. For X we
i.e. meets or traverses no element o §A,. and 8, must contain a sequence of duration R !
J obtain 2, which contradicts R4. B

Proof: Assume there is a path P from o, to a, which contains
B°¢Aj. Put x = O
1 if (a,B) € Ri is traversed by P and h(a) F h(g)
dl(u,B) s = 0 if (a,B) € Ri is traversed by P and h(a) = h(B)
~¢ otherwise

Similarly, we obtain:

(3.10) If there exists an end sequence or a normal sequence
. is a singleton.
(a;,0,) from a, EAj to u2¢Aj, then Aj is g

where ¢ denotes the number of sequences (a,f) traversed by P such
that h{(a) # h(B). (x,d) is compatible, as any circuit which con-
tains a sequence of positive duration must contain a sequence of

duration -c as well. Thus we obtain x%(x,d) = op(x,d) = ¢ > Q.
In #' the image of P is a circuit of positive length bocause of
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(3.11) 1If there exists a begin sequence or a jump sequence (o, f)
from aEAj to B¢Aj, then o has no predecessors in A

Proof: Let (a,B) enio, i, € {b,j}. suppose that EeAj is a prede-
cessor of a, i.e. (o,a) €R; for some i €T. Let the duration of
(a,8) €R; and (a,0) €R; be 1,-2 for all other sequences and O

5

for all activities. Obviously, (x,d) is compatible and Ag(x,d) = 2.
In the image network, )‘g- (x',4'") = 1, as there is no path from h(g)
to h(a) because of (3.8). This is in contradiction with R4.

In the same way, we obtain the dual result.

(3.12) If there exists an end sequence or a jump sequence (q,B)
from a¢A_. to BEAJ_, then 8 has no successors in Aj.
J

A
3

(3.13) If there exists an end sequence or a jump seguence (0‘1’31)
from ay ¢Aj to 81 € Aj and a begin sequence or a jump sequence

(Bz,az) from 82€A to a2¢Aj, then Aj is a singleton.

3
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Proof: Assume that |Ajl > 2. Then the following two cases can occur.

a) B, = B,: Then there exists _B'eAj such that B # 8,
1 ifa=7
Put x(q) :=
0 otherwise
2 if (o,B) = (0‘1’61) A i€ {e,j}
di(OtIB) = or (GIB) = (Bzru-z) A 1€{b,j}

-5 otherwise

(x,d) is compatible and Aglx,d) = 4, as any path which contains
B must contain a sequence of duration -5 as well.
In #' we obtain Ag, (x',d'} = 3; a contradiction to R4.

2
h(a,)[o

Y4/1

<1 (2|

b) 81 * B,: Because of (3.11),(3.12) and (3.9) there is no path
from 81 to 52 nor from 82 to Bl. Put x = O,
1 if (a,B8) = (a,,B,) A i€ {e,3}
4, (a,B) := or (a,B) = (B,,a,) A i€ {b,3}

-3 otherwise
1

It follows that (x,d) is compatible, Ag(x,d) = 1, but
)\‘%, (x',d’) = 2, |

These results show that partitions which solve the general reduc-
tion problem (3.2) have to fulfil very strong conditions. It fol-
lows, for example, from (3.8) - (3.13) that

a) each class Aj traversed by a path is a singleton;

b) each sequence (a,B) leaving a non-singleton class Aj (i.e.
o EAj, B¢Aj) is a begin sequence or a jump sequence, and
has no predecessors in A.
(In the dual case that a¢Aj, BEA,, ]Aj| > 2 the dual state-

ment holds: (a,B8) is an end sequence or a jump sequence, and B
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has no successors in A.)

Up to now, we have no transmitting rules for image sequences
for which all re-image sequences have non-positive durations (see

(3.6)). This case may be developed easily:

(3.14) Let ¢ := max {d (a,B) | (a,B) ERinijAk} < 0.
di(Yj’Yk) may be chosen arbitrarily < 0 if a) or b) holds, or arbi-
trarily € ¢ if ¢) or d) holds.

) 1
a) (Yj,yk)e RbU Rj and yj has no predecessors
L} T
b) (Yj,Yk)E ReU Rj and yj has no successors
c) (Yj,Yk)E Réu R; and Yy is the only predecessor of Y5
4) (Yj,yk)e RélJRS and yj is the only successor of Yy
In all other cases, di(yj,vk) = C.
Because of the very restrictive form of the partitions 7 it follows
immediately that the conditions (3.4) - (3.14) are also sufficient
for the solution of (3.2).
THEOREM 3: The solutions of the general neduction problem (3.27)
are exactly given by all pantitions m which fulgil (3.8) - (3.13),

with the image structure and Zhe transmitting rules being as given
by (3.7) and (3.4),(3.6) and (3.14) nespectively.

(3.15) EXAMPLE: Let # be given by the following diagram

=
[ o
G ;[-«-HJH

'"1 - {{1}1{2}1{3}1{4}1{5}1{6171819110}r{11},{12},{13}} and

n, - {((1},{2},{3}),{4},(5},(6,7,8,9,10,13},{11},{12}}

are solutions of the general reduction problem, whereas

- 147 -

3
[

3 {{1,2,3,4,5},{6,7,8,9,10},{11},{12},{13}} is not, since

»
|

= {1,2,3,4,5} violates (3.10).

4, THE RESTRICTED REDUCTION PROBLEM

The solutions of the general reduction problem are, of course, un-
suited for practical application. As the limited form of solution
mainly depends on negative sequence durations being allowed, the
question narurally arises of whether the range of possibilities

can be increased by excluding negative durations and circuits.16)
(4.1) THE LIMITED REDUCTION PROBLEM
Let # = (A'(Ri)iel) be a network structure without circuits. Cha-

racterize all partitions 7 = {Aj| jJ€J} of A (together with their
assigned image structure Z' and transmitting rules according to
(3.1)) which fulfil the following conditions:

R1' = R1 CONSERVATION OF STRUCTURE
R2' = R2 LOCAL TRANSMISSION

R3' For each non-negative duration function (x,d) on %

(x',d") is non-negative and compatible on &'
COMPATIBLE AND NON-NEGATIVE TRANSMISSION

R4' For each non-negative duration function (x,d) on # we
have x@(x,d) = xg,(x',dﬂ

CONSERVATION OF THE SHORTEST OVERALL DURATION

From the considerations of §3, we obtain the following theorem.

16) Another approach involves weakening the local transmission condition R2
for sequences as follows.
Besides the variables di(a,B), (a,B) € Rir’Aj)(Ak' d;(yj,yk) may also de-
pend on the durations of the activities and sequences contained in AjLJAk.
This approach leads to complicated transmitting rules, however, which may
not even be unique. Furthermore, the classes Aj are no longer fully charac-
terized by the sequences entering or leaving them. For these reasons, this

approach will not be treated here any further.
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THEOREM 4: I4§ 7 = {A, | f€J} 48 a solution of the nestricted ne-
duction problem (4.1}, the assigned image Astructurne R' and the
transmitting rules must fulfil the folLowing conditions:

al For all o,B€ A such that hla) 4 h{B) and each {€ 1, we have
(a,B)ERi - (h(ot),h(B))ER;

b) R' contains no circuits

' = '
c) x (Yj) Ag[Aj(x,d) fon all vy €A
d) di(yj,vk) = max {d, (a,B) | (a,B) eRinijAk} fon all
'
(Yj,yk) €R;.

Proof: Statements (3.3),(3.4),(3.5) and (3.7) (but not (3.6)) re-

main true, this being shown in the same way as in §3. 17

This proves a) and c).

Now assume that C is a circuit in #' which traverses the sequence
1

(le'Yk) € Rio. Put

1 (0,B) ER; NA, XA A i =i/
X = 0, d (GIB) = 1o J k
. O otherwise

R4’
Then, 7\@, (x',d") = xg(x,d) 2 1 and, because of (3.3),(3.4) di = 0
L} ) -_ )
except for dio(yj,yk). Therefore Ag (x',d") = dio(Yj,Yk) =1,
which means that C is a circuit of positive length in (#',x',d').
This contradicts R3' and thus proves b).

In order to show d), we need an analogue of (3.8):

(4.2) Each path P from oy EAj to a, €A, o, # o, is contained in

1
A,, i.e. meets or traverses no element a¢Aj.

3

Proof: Assume that P contains a¢Aj. Because of a) the image of P
is a circuit in #', and this contradicts b).

Now the rest of Theorem 4 is proved as follows:

Let (x,d) » 0 and (Yj,yk) €R; . Put y = O and

o]
di(“’s) if (a,B) eRion Aj xA oAdl= 4

li(a.B) 1=
(o] otherwise
(4.2) implies that there is no path traversing more than one se-
quence (a,B) €R; NA_ xA . Therefore,
o J k

17) Of course, " < O " must be xeplaced by " = 0 ", etc.
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max {d; (o,B) | (a,B) €R; nAj x A}
[e] [o]

= max {1io(a,s) | (a,B) € RionAj x A}
(4.2) R4’ (3.3),(3.4),R2!
= x'@(y’ 1) = )‘92- (y,1) = dio(yj,yk) . |

For the classes Aj, (3.11),(3.12) and (3.13) remain valid, this
being proved with the same arguments as in §3.

The main (and essentiall) difference is caused by the fact that
(3.9) and (3.10) are replaced by weaker conditions.

THEOREM 5: Let w = {A, ] j€J} be a solution of the nestricted ne-
duction problem (4.1). For the classes Aj of w, the folLowing con-
ditions hold:

a) Each path {rom o, EAj o a, € Aj L8 contadined in Aj

b) 1§ there exisis a begin sequence on a noamal sequence from
a, ¢ Aj Zo a, €A, then a, 44 connected with each o€ Aj\{az}
by a path P(az,a) which travenses o positively.

c) 14 therne exists an end sequence o a noamal sequence (a1,a2)
from o €A, 2o o, A, then each a€A, ~{a,} 44 connected with
a, by a path P(a,al? which fravenses o positively.

d) 1§ Therne exists an end sequence or a jump sequence (ul,az)
from ay ¢ Aj Zo °‘2€Aj' then a, has no successons in Aj.

e) If thene exists a begin sequence or a jump dequence ‘0‘1’“2)
grom a, € Aj o a2¢Aj, then o, has no predecessons in Aj.

§) 1§ there exists an end sequence orn a fump sequence (“1’61)
g§rom a1¢A, %o B, €A, and a begin sequence on a jump sequence
(Byr0,) from szeAj to a2¢Aj, then Aj {8 a singleton.

Proof: a) is proved by (4.2)

Reformulation of the proofs of (3.11) -~ (3.13), replacing durations
" < 0 " by durations " = 0 " and use of the fact that # and #'
(Theorem 4) contain no circuits yields d), e) and f).

b) Let (a,,0,) €Ry , i € {b,n}. Assume that there exists B, €A
[o]
such that there is no path P(O‘z’Bz) which traverses 82.

3
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0 otherwise

1 if o = 82
Put x(a) :=

(0] otherwise

1 if (o,B) = (a,,a.) A i =1
d (0,B) := ‘ 1772 ©

Because of (4.2) there is no path from 62 to o, in#%, so

1
Aplx,d) = 1 # x@,(x',d') = 2, which contradicts R4'.

¢c) 1s proved in the same way.

DEFINITION: Let # = (A, (Ri)ieI) be a network structure without
circuits. A partition m of A is said to be xeducding if it fulfils
the conclusions of Theorem 5.

Theorem 5 states that solutions of the restricted reduction
problem must be reducing. The sufficiency of this condition is

shown by the following theorem.

THEOREM 6: The solutions of the nestricted neduction problem (4.1}
ane exactly given by all neducing parntitions of the given network
structune, the image structure and the transmitting rules beding
given by Theorem 4,a),c),d).

Proof: It remains to show that a partition for which the assump-
tions of Theorem 6 hold fulfils condition R4' of (4.1).

To show this, let N = (#4,x,d) be a network without circuits,

(x,d) » 0, and m be a reducing partition of A. Obviously, the one-
-step transition from # to the image network #' can be replaced by
a step-by-step transition, where only one non-singleton class Aj

of 7 is mapped onto its corresponding image activity yj and all
activities a¢Aj remain unchanged.

18) 1t IAjl > 2 my o= (Aj,(a.} { aeA\Aj} is a reducing partition of & and

“5 i (m \{AJ)) U(yj} is a reducing partition of the image structure of R
induced by .,
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We can therefore assume w.l.o.g. that m contains only one non-sin-
gleton class, i.e. m = {B,{a} | a €A~B}, |B| > 2.
a if a 4B
Let h(a) := be the canonical mapping assigned to 7.
Y otherwise
It follows from Theorem 5 that the set P' of all paths in the image
structure #' is equal to the set of all images of paths in %, i.e.

P' = {h(P) | PEP)} where P denotes the set of all paths in .

a) Let P, be a critical path in N, i.e. xgi,(x,d) = opo(x,d). If
P, traverses no activity from B positively, it contains at most
one activity from B, since 7 is reducing. Then:

Th.4
— — 1 1]
Ag(x,d) = opc(x,d) = Oh(Po) (x',d') < )‘,Q' (x',d4'), as h(p,) €P
If P, traverses an activity from B positively, the part P, NB of P,

which is contained in B, is critical in N|B, i.e. (x,4)

g
PonB

_ _ ot . .
= )‘9'2|B(x'd) = x'(y). Again we obtain

Th.4
Ag(x,d) = op (x,d) = (x',d') <2 ,d"), as h(P,) €P'.

1]
Th(Po) @ ¥

b) Let P' be critical in N'. Because of Theorem 4,c),d) and
P' = {h(P) | PEP} there exists a path P, in N such that
Op, (x/d) = 0p. (x',4")

[o]

Then: Xg,(x',d') =

(x',d"') = oPo(x,d) < )\g(x,d),

GP6
From a) and b) we obtain )\@, (x',d') = )\@(x,d) , which proves the
theorem. -

(4.3) EXAMPLE: Let N be given by following diagram

2/5 4/4 ‘.—m—.E/ZO | N = (#,x,4d)
10 24 3/10 2 AQ(x,d) = 60
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A, Aj3 Ay Ay Ag
T —— P —— ——————————— P ——r—— ————
LI {{5,6},{1,7,8},{2},{3},{4},{9,10,11,12},{13,14},{18,19},{15}, Step 2: reduction of A,
{16},(17},{20}}
- 1 2
n, = {{2,3,4,5,6},{1,7,8},{9,10,11,12,13,14}, {15}, {16}, {17}, {18}, 2/5 |—{4/4 =y, /20] v = (? ) px?,a?)
10 O
{19}, 1208 Agz(xz,dz) = 60
my o= {{2,3,4,5,6},{1,7,8},{9,10,11,12,13,14,15,16,17,18,19,20}} '1/10 8/20
(o]
are reducing partitions of N.
;
d {15,16,17,18 tcl £ duci titi 16 :
{2,4} and {15,16,17,18} are not classes of a reducing partition, /1 2/a 5 e 20/;]
as parts f) and c) of Theorem 5 are then violated. 4 5
The image network #' assigned to m, is given by the following 15/7 16/8 , 18/3 Fil—ﬁh9/5 2

diagram. 17710

X‘@l (X',d') = 60

Step 3: reduction of A

) Ix3ld3)

_ 3 3
N~ = ((A’(Ri)

i€T

11

20/1

Finally, we give a step-by-step transition from # to #' as used in

the proof of Theorem 6:

Step 4: reduction of A4

1 20 4 _ 4 4 4 4
N = ((a1,(R1)_ ),x1,d1) 2/5 l———-i|4/4 }——'lv,/zol NT = (AT, (R ep) rx,d0)
i’iel 10 S - . i 4
3/1 =
agi(x',ah) = 60 | o3/ T0}—— gxt,at) =60

/3

Step 1: reduction of A1

11 N

20N

13/ =14/ 20/1 |
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Step 5: reduction of A

5 _ 5 .5 5 .5,
N7 = (@7, (R]) j¢q) rx 447D

Ags(xs,ds) = 60

11

»20/1

In comparison with the general reduction problem (3.2), the situa-
tion has improved. The conditions for the partitions are weaker,
which of course, increases the possibilities of reduction. Further-
more, the classes of a reducing partition are fully characterized
by local properties, namely the behaviour of the sequences which
enter or leave them.

This fact of course facilitates the search for reducing parti-
tions enormously. (cf. Footnote 16)

In addition, the second aim of the reduction theory, reduced
computation of characteristic activity times and (extension) floats,
can be achieved. This will be shown in the last paragraph.

Comparison with the situation in CPM networks (cf. [8]), how-
ever, makes the reduction possibilities for the restricted reduc-
tion problem seem almost trivial and without great scope for prac-
tical application.

Summing up, it can be said that, compared with CPM networks,
the generalization of the network structure must be paid for with
a considerable limitation of reduction possibilities.

5. REDUCTION THEOREMS FOR CHARACTERISTIC ACTIVITY TIMES AND FLOATS

The solutions of the restricted reduction problem enable two-step
computation of the times ES, LF and ESI, LF'. From them, all char-
acteristic times and floats can be derived using Definition 4 and 5.
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Furthermore, for certain classes of activities we obtain reduc-
tion formulas for floats and characteristic times that are in sim~-
ple form, and which yield new information about the nature of some
floats.

The methods used to prove the statements of this paragraph are
similar to that used in the proof of Theorem 6.

We assume w.l.o.g. that the given reducing partition of N has
only one non-singleton class, and consider the set of paths which
defines the float or characteristic time at question in N and its
image N'. For this reason, the proofs shall be omitted here.

For the rest of this chapter, we make the following assump-
tions: Let N = (4,x,d) be a network with a network structure
R = (A'(Ri)iel) without circuits and a non-negative duration func-
tion (x,d). Let m be a reducing partition of A and, for o € A, let
Aa denote the class of 71 which contains a. Let h denote the cano-
nical mapping assigned to 7 and N' = (#',x',d') the image network.
For each a €A, let P'(a) := {Bea] (B,0) ER_UR_},

PT(a) := {Be€ A| (B,a) € R U Rj} and P(a) := PY(a) UPT(a) denote the
set of the predecessors of o at its initial point, at its terminal
point, and of all its predecessors, respectively. Dually, define
s™(a) := {B€A]| (a,B) €R_UR,D,

sT(a) := {B€Aa| (a,B) ER_UR ]}, S(a) := s™(a) UST(a).

@} is called the set of initial activ.ities of A.

T :=

1

I := {a€A|P(a)
{a€A]| S(a) @} is called the set of Leaminal activities of A,

Similarly,
I := {BeA |P(R)NA
o [+ 3 a

@1 is called the set of initial activi-
Xies of Aa.

@} is called the set of fteaminal activdi-
ties o4 Aa.

T := {BeA |S(B)NA
a o o

19)

THEOREM 7: REDUCTION-FORMULAS FOR ES AND LF:

al (4} ES {a) = ES, (k{a)) ifIA] =1

n

(ié) ESgla) ES;,(h(a)) + EsNIAm i4 PT(a)\Aa = 9

19) The cases (1) - (iv) do not exclude each other. They are chosen in order

to give as simple as possible expressions for ES and LF.
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Es;,(h(a)) + EleA (o) EI 1: «= S(a) = S(h(a)) =@ v [|a ] =14V BES(a): ‘Asl =11
o
max (S, (h(B)) + x' (h(8)) BI 2: o= S(a) # @A S) A, AV BES: PT(B) A =0
(é4d)  ES (a) = max ‘B'“’eReAB¢Aa +d_(B,a) = x{a)]) LI 1: = P(a) =P(h(a)) =@ v [|A,| =1 AV BEP(a): |AB| = 1]
max [ES,, (A(8)) + d (B,a) - x(a)] LI 2: e P(o) # @ APl)SA AV BER(: ST(B)NA = O
(B,a)eER, A B¢A N J
3 o
if PTla)~A +0 (5.1) EXAMPLE: Let N be given by the following diagram
(LV) ESN(OL) = ESN,(h(Ot)) - x{a) + X'(h(u)) 'Lé TOL = {a} 10 T 1 N e
v|2/20| /10
bl (&) LF la) = LF, (h{a)) A AL = a5 o 56—
., T > 8 7/3 ’
(L4) LEgla) = LF , (h{a)) - &@IAa(x’d) + LFNIAa(a) ; - i
if STa)~A. = @ 1/10 6/2 H 8/4 l__.[9/5
[+
LFT, (hla)) - Ay {x,d) + LF i (a) ; =D L
- + f
N o #| a X, N|Aa o 10/2 T2/5 13/2
min 2V LLF L (R(B)) - X' (h(8))

min (a,B)eR_ A Béa,

{£44) LFN(ot) - ds(a,B) + x{a)]
m = {{1},{2},{3},{4,5},{6,7,8,9},{10,11,12,13}} is a reducing par-
min [LFN,(h(B)) - dj(a,B) + x{a)]l tition. o = 1 fulfils the following conditions: ES 1, ES 2, LF 1
(a,B)ERy A BEA, and LI 1, o = 10 fulfils ES 2, LF 2 and EI 2.

if STla)~A, = @

(iv)  LFgla) = LR (hla)) + xla) - x'(hla))  if T = {a} THEOREM 8: SPECIAL REDUCTION FORMULAS
a) El (a) = EI , (hia)) 46 o fulfils EI 1
The following reduction theorems for the other characteristic acti- EI la) = ESé.(h(a)) + EINIA {a) if o fulfils ET 2
vities and floats cover only those activities for which a short LIN(a) . LIN,(h(a)) o 6 o gubgits LT 1
and significant reduction formula can be given. T
LIN(a) = LFN.(h(al) - x'"(h{a)) + LINIA {o) i o fulfils LT 2
First, we introduce the following abbreviations: °
b) TFN(ot) = TF (hia)) i§ o fulfils ES 1
ES 1: e=» P(a) = P(h(a)) =@ v |Aal =1 and LF 1
. T -
ES 2: = Pi(a)~A =0 TF la) = TF_, (hla)) + TEZ, (h(a)) + TEL, (h(a)) + TF (o
N N N N N{a,
LF 1: e+ S(a) =S(h(a)) = @ v |a,| = 1 if o fulfils ES 2 and LF 2
LF 2: « sT(a)~a =9 FF la) = FF_, (hla)) if o fukfils EI 1 and ES 1
FFN(G) = FFNlAa(a) ’ Lf o fulgils EI 2 and ES 2
20) The maximum over the void set is defined to be zero. IFN(a) = IF,, (hla)) if o fulfils LI 1 and EI 1

21) The minimum over the void set is defined to be Agix.d).
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= T I
IFyla) = IFN|Aa(a) - TRy thla)) = TEG, (hla)) = TEQ, (hia)) activity| x(a) Es LF EI LI TF FF 1F TET TE' 1ET I1ET
L4 o fulfils LI 2 and EI 2 o
. 1 o} o 4 (o}
¢) TEfla) = TEL,(h{a)) if o §ulfils ES I 1 1o 1o 10 o o0 © °
TERlal = TEL | (a) if o fulfils ES 2 2 20 10 3 30 10 o0 o o0 0 o0 0 0
[+3
TEgla) = TEy, (h(a)) i§ o §ulfils LF 1 3 0 40 50 50 40 0 0 0 o0 0 0 ©
. 2 2 5 4 0 o} (o} (o}
TET(a) = TED (ol 4§ o fuLfils LF 2 : > v 2o °© ©
[+3
. R R 5 6 24 34 2 28 4 2 =2 e} o o} o}
TEL(a) = TEL, (Rla)) i§ o fubdits LI 1 3
s 6 2 12 1 14 12 4 o o (o} 8 o} 8
TEX(a) = TEg|a, (o] if o fubfils LI 2 8
o
2 2 23 24 4 -4 o} o] 0 o
1€0(a) = IEZ, (hla)) if o fubfils EI 1 7 3 2 27 °
. . . 8 4 2 34 2 4 2 =2 8 o 8 0
TEgla) = IEL, . (a) if o fulfils EI 2 6 3230
@ 9 5 37 44 44 39 2 2 0 2 O O ©
Although reduction formulas have not been given for all o € A, we 10 2 8 12 10 8 2 o o o o o o
can derive significant properties with regard to the nature of
i1 10 15 27 25 17 2 o =2 o} 0 o} e}
several floats.
12 5 12 28 26 14 M 9 7 o o e} (o]
REMARK 13 2 30 34 32 32 2 o -2 o} o o} e}
a) TF and IF are globaf floats, i.e. to compute them we need in-
formation from the total network.
The image network N' = (%#',x') is given by the following diagram:

b) The FF and all extension floats are Local floats, i.e. to com-
pute them for o we require only information from the smallest

Y. corresponds to the class Aj
class Aj of a reducing partition which contains o such that

ES 2, LF 2, EI 2 and LI 2 hold.

of 1w, where

A1 = {1}, A2 = {2}, A3 = {3},
We conclude this paragraph with an example:

A4 = {415}1 AS = {6,7,8,9},
(5.2) EXAMPLE (CONTINUATION OF (5.1)) A = {10,11,12,13}.

Let N and m be given as in (5.1).

For N, we obtain the following times and floats: Times and floats of N' and the sub-networks NlAj, j = 5,6 are

given by the following tables:
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1. Times/floats of N' Examples of two-step computation:
activity|x(y) ES LF EI LI TF FF IF TE® TET IE' IET (1) For a = 6 ES 2 and LF 2 hold.
Y TF (6) = 4 , h(6) = y4
T I — —
Yy 1o o0 10 10 0 0 O O O 4 O O© TPy (rg) + TEg, (¥g) + TEy, (vg) + TF), (6) = 2+0+2+0 = 4
Y2 20 10 30 3 10 o o o o o o0 o (1) For a = 12 ES 2, LF 2, EI 2 and LI 2 hold. h(12) = v,
0 10 40 50 50 40 0 O O O O O o© FF,(12) = FFN|A6(12) =9, TIFN(12) = Z
IF (12) - [TF_,(y,) + TEL,(y,) + TEX (y.)] = 9- (2+0+0)
Ya 15 15 34 32 15 4 2 2 0 0 ©0 O N|ag N Ve N Ve ne (vl .
Y 28 14 44 44 16 2 2 o0 2 0 4 o0 o
5 (iii) For a« = 8 ES 2 holds, while EI 2 does not. h{(8) = P
YG 24 8 34 32 8 2 (o] (o] (o] (o] (o] (o] TE;(S) _ TEI 5(8)

N|A
FFN(B) =2 % 0 = FF 8) (EI 2 does not hold).

N|A5(
2. Times/floats of NlA5 (i.e. ESN[A5’ LFN[AS, etc.)

Finally, we give two-step computation of ESy (o), LFN(a), aE.Ae,
activity|x(a) ES LF EI LI TF FF IF TE' TE® IE' IET as developed in Theorem 7. -
o
P I T
6 2 0 2 2 fo} fo) o fo) o) 8 0 8 act1v1ty ESN ESN' ESNIAG LFN LFN' )\gl Ag (X,d) LFN|A6
7 3 8 11 11 8 0 O O O 0 O O 10 8 8 0 12 34 24 2
8 4 14 18 18 14 0 (0] 0 8 (o] 8 (o] 11 15 8 7 27 34 24 17
9 5 23 28 28 23 0O O O O O O O 12 12 8 4 28 34 24 18
13 30 8 22 34 34 24 24
3. Times/floats of N|A6 (i.e. ESN|A6' LFN|A6, etc.)
I
activity[x(a) ES LF EI LI TF FF IF TE® TE® IE® IET For all a €A  we have ES (a) = ES_, (y,) + ESN|A6 and
o T T
LF_(a) = LF., (y.) - (x,d) + LF (a) .
N N' 6 N
10 2 O 2 2 0 O 0O O 0 0 0 o |26 |26
" 10 717 17 7 o0 o0 O O O 0 O©° To compute ESE, and LFE, the formulas TEi,(yj) = ESN,(yj) - ESE,(Yj)
12 5 4 18 18 4 9 9 9 0o o0 0O O and TE£| (yj) = LFE. ('yj) - LF, (yj) can be used, cf. definition
13 2 22 24 24 22 0 O O O O O O of TE.
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