

Proceedings

GREW’07 – www.bth.se/grew07
Munich, Germany, August 27th, 2007

held in conjunction with the International Conference
on Global Software Engineering ICGSE 2007 –
www.icgse.org

Organizing Committee
Tony Gorschek, organizing chair (Blekinge Institute of
Technology, SE), Aybüke Aurum (University of New
South Wales, AU), Christof Ebert (Vector Consulting,
DE), Samuel Fricker (ABB, CH, and University of
Zurich, CH), Conny Johansson (Ericsson, SE), Claes
Wohlin (Blekinge Institute of Technology, SE)

Program Committee
Ayse Bener (Boğaziçi University, TR), Maya Daneva
(University of Twente, the NL), Alan M. Davis
(University of Colorado at Colorado Springs, USA),
Robert Feldt (Blekinge Institute of Technology, SE),
Samuel Fricker (ABB, CH and University of Zurich,
CH), Paul Grünbacher (Johannes Kepler Universität
(JKU) Linz, AT), Gerald Heller (Hewlett-Packard, DE),
Andrea Herrmann (University of Heidelberg, DE), Ann
M. Hickey (University of Colorado at Colorado Springs,
USA), Natalia Juristo (Universidad Politécnica de
Madrid, ES), Irwin Kwan (University of Victoria, CA),
Filippo Lanubile (University of Bari, IT), Marek Leszak
(Alcatel-Lucent, DE), Sabrina Marczak (University of
Victoria, CA), Michael Mattsson (Blekinge Institute of
Technology, SE), Audris Mockus (Avaya Labs
Research, USA), Michael Ochs (Fraunhofer IESE,
DE), Peter Sawyer (Lancaster University, UK), Darja
Smite (University of Latvia, Latvia), Giancarlo Succi
(Free University of Bolzano-Bozen, IT), Richard
Torkar (Blekinge Institute of Technology, SE)

Important Dates
Camera-ready papers due: July 27, 2007
Early Registration deadline: June 9, 2007
(www.icgse.org)
Workshop: August 27, 2007

Donors

Overview
Distributed multi-site software product development is increasingly becoming
commonplace as companies become global not only in terms of customer base, but
also with regards to large parts of the software product development that is spread
over continents and cultures. Distribution is driven by that it enables companies to
leverage their resources, and to draw on the advantage of proximity to customers
and markets during large-scale software development.
The potential opportunities, however, come with new challenges for the product
planning, management and development organizations of a company that affect
requirements engineering of software products. The threat of defect increase and
overruns in multi-site development has been documented in literature. According to
industry experience reports, some of the main problems are attributed to
heterogeneous understanding of requirements and substantial differences in domain
understanding and interpretation. This is compounded by the fact that multi-site
development usually is detrimental to informal communication between stakeholders
such as product managers, experts, and developers, as these roles are often
separated geographically.

The goals of this workshop is to identify, report, discuss, and address the challenges
associated with requirements engineering (RE) and product management (PM) from
two main perspectives:
(i) PM/RE for Global Software Development – assuring that the handling of

requirements and products are effective and efficient in relation to a
global/distributed development environment where development is conducted
over multiple sites, and

(ii) Distributed PM/RE – the activities associated with PM and/or RE are conducted
globally over multiple sites, and the development may be conducted in one
single site or distributed around any number of sites.

Program Overview
The workshop will feature three sessions with seven papers presented. The
workshop papers include submissions from both, industry and academia. There will
be ample space for discussions on the session topics and the papers presented.

The session Product Lines for Global Markets addresses the definition, use and
evolution of product lines in a multi-site distributed environment.

The session Globally Distributed Communication addresses requirements
engineering and release planning in a distributed organization and the effects of
factors like distance, communication mode and organizational structure on activities
like negotiations and maintaining awareness of requirements.

The session Challenges of Global Requirements Engineering: Consequences
for Research discusses challenges of distributed requirements engineering that
have been elicited from IT professionals to build a basis for shaping future research
in the global requirements engineering area.

Contact
For any further requests, please contact: tony.gorschek@bth.se

W
O

R
KS

H
O

P
PR

O
G

R
AM

 1st
 In

te
rn

at
io

na
l G

lo
ba

l R
eq

ui
re

m
en

ts
 E

ng
in

ee
rin

g
W

or
ks

ho
p

(G
R

EW
´0

7)
, M

un
ic

h,
 G

er
m

an
y,

 A
ug

us
t 2

7t
h,

 2
00

7.

 (H
el

d
in

 c
on

ju
nc

tio
n

w
ith

 th
e

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 G

lo
ba

l S
of

tw
ar

e
En

gi
ne

er
in

g
IC

G
SE

)
 Ti

m
e

an
d

P
la

ce
: M

on
da

y
A

ug
us

t 2
7th

 o
n

lo
ca

tio
n

at
 th

e
Te

ch
ni

ca
l U

ni
ve

rs
ity

 o
f M

un
ic

h
(T

U
M

) (
fo

r r
oo

m
 s

ee
 u

pd
at

e
on

 w
w

w
.b

th
.s

e/
gr

ew
07

)

 S
es

si
on

s
w

ill
 c

on
si

st
 o

f p
ap

er
 p

re
se

nt
at

io
ns

 (1
5

m
in

),
an

d
a

sh
or

t Q
/A

 (~
5

m
in

) f
or

 e
ac

h
pa

pe
r.

A
fte

r p
ap

er
 p

re
se

nt
at

io
ns

 th
e

Se
ss

io
n

C
ha

ir
ho

ld
s

a
sh

or
t (

~5

m
in

) o
ve

rv
ie

w
 o

f t
he

 s
es

si
on

 to
pi

c
ch

al
le

ng
es

 a
s

an
 in

tro
du

ct
io

n
to

 th
e

se
ss

io
n

di
sc

us
si

on
 (~

60
 m

in
/p

er
 s

es
si

on
).

Se
ss

io
n

Pa
pe

rs

Ti

m
e

W
or

ks
ho

p
op

en
in

g
W

el
co

m
e

an
d

In
tr

od
uc

tio
n

(T
on

y
G

or
sc

he
k,

 B
le

ki
ng

e
In

st
itu

te
 o

f T
ec

hn
ol

og
y)

09

.3
0-

09
.4

0

Se
ss

io
n:

 P
ro

du
ct

 li
ne

s
fo

r g
lo

ba
l

m
ar

ke
ts

P1

: R
eq

ui
re

m
en

t M
an

ag
em

en
t i

n
So

ftw
ar

e
Pr

od
uc

t L
in

es

(H
yu

n
C

ho
, S

am
su

ng
 E

le
ct

ro
ni

cs
 C

o.
 L

td
.)

09
.4

0-
10

.0
0

P2

: I
ss

ue
-b

as
ed

 V
ar

ia
bi

lit
y

M
od

el
in

g
(A

ni
l K

um
ar

 T
hu

rim
el

la
, S

ie
m

en
s

AG
, a

nd
 T

im
o

W
ol

f,
Te

ch
ni

ca
l U

ni
ve

rs
ity

 o
f M

un
ic

h)

10
.0

0-
10

.2
0

(S
es

si
on

 C
ha

ir)
 G

er
al

d
H

el
le

r
H

ew
le

tt-
P

ac
ka

rd
 G

m
bH

S

es
si

on
 T

op
ic

 C
ha

lle
ng

es
 (5

-1
0m

in
) a

nd
 O

pe
n

D
is

cu
ss

io
n

10
.2

0-
11

.0
0

C
O

FF
E

E
 B

R
E

A
K

11

.0
0-

11
.3

0
Se

ss
io

n:
 G

lo
ba

lly
 d

is
tr

ib
ut

ed

co
m

m
un

ic
at

io
n

(p
ar

t I
)

P4
: T

he
 E

ffe
ct

s
of

 C
om

m
un

ic
at

io
n

M
od

e
on

 D
is

tr
ib

ut
ed

 R
eq

ui
re

m
en

ts
 N

eg
ot

ia
tio

ns

(T
er

es
a

M
al

la
rd

o,
 F

ab
io

 C
al

ef
at

o
an

d
Fi

lip
po

 L
an

ub
ile

, U
ni

ve
rs

ity
 o

f B
ar

i,
an

d
D

an
ie

la
 D

am
ia

n,
 U

ni
ve

rs
ity

 o
f V

ic
to

ria
)

11
.3

0-
11

.5
0

P5

:
Th

e
Ef

fe
ct

s
of

 D
is

ta
nc

e,
 E

xp
er

ie
nc

e,
 a

nd
 C

om
m

un
ic

at
io

n
St

ru
ct

ur
e

on

R
eq

ui
re

m
en

ts
 A

w
ar

en
es

s
in

 T
w

o
D

is
tr

ib
ut

ed
 In

du
st

ria
l S

of
tw

ar
e

Pr
oj

ec
ts

(Ir

w
in

 K
w

an
, D

an
ie

la
 D

am
ia

n
an

d
S

ab
rin

a
M

ar
cz

ak
, U

ni
ve

rs
ity

 o
f V

ic
to

ria
)

11
.5

0-
12

.1
0

(S
es

si
on

 C
ha

ir)

D
an

ie
la

 D
am

ia
n

U
ni

ve
rs

ity
 o

f V
ic

to
ria

S

es
si

on
 T

op
ic

 C
ha

lle
ng

es
 (5

-1
0m

in
) a

nd
 O

pe
n

D
is

cu
ss

io
n

12
.1

0-
13

.0
0

LU
N

C
H

13

.0
0-

14
.0

0
Se

ss
io

n:
 G

lo
ba

lly
 d

is
tr

ib
ut

ed

co
m

m
un

ic
at

io
n

(p
ar

t I
I)

P3
: A

 M
od

el
 o

f R
eq

ui
re

m
en

ts
 E

ng
in

ee
rin

g
at

 O
rg

an
iz

at
io

na
l I

nt
er

fa
ce

s:

A
n

Em
pi

ric
al

 S
tu

dy
 o

n
D

is
tr

ib
ut

ed
 R

eq
ui

re
m

en
ts

 E
ng

in
ee

rin
g

(D
or

in
a-

C
. G

um
m

, U
ni

ve
rs

ity
 o

f H
am

bu
rg

)

14
.0

0-
14

.2
0

P6

:
R

el
ea

se
 P

la
nn

in
g

in
 D

is
tr

ib
ut

ed
 P

ro
je

ct
s

(K
or

bi
ni

an
 H

er
rm

an
n,

 T
ec

hn
is

ch
e

U
ni

ve
rs

itä
t M

ün
ch

en
)

14
.2

0-
14

.4
0

(S
es

si
on

 C
ha

ir)

Sa
m

ue
l F

ric
ke

r
A

B
B

 a
nd

 U
ni

ve
rs

ity
 o

f Z
ur

ic
h

S
es

si
on

 T
op

ic
 C

ha
lle

ng
es

 (5
-1

0m
in

) a
nd

 O
pe

n
D

is
cu

ss
io

n
14

.4
0-

16
.0

0

A
FT

E
R

N
O

O
N

 T
E

A

16
.0

0-
16

.2
0

Se
ss

io
n:

 C
ha

lle
ng

es
 o

f g
lo

ba
l

re
qu

ire
m

en
ts

 e
ng

in
ee

rin
g:

co

ns
eq

ue
nc

es
 fo

r r
es

ea
rc

h

P7
:

Th
e

C
ha

lle
ng

es
 o

f D
is

tr
ib

ut
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
an

d
R

eq
ui

re
m

en
ts

En

gi
ne

er
in

g:
 R

es
ul

ts
 o

f a
n

O
nl

in
e

Su
rv

ey

(T
im

ea
 Il

le
s-

S
ei

fe
rt

an
d

A
nd

re
a

H
er

rm
an

n,
 U

ni
ve

rs
itä

t H
ei

de
lb

er
g,

 a
nd

 M
ic

ha
el

 G
ei

ss
er

 a
nd

 T
ob

ia
s

H
ild

en
br

an
d,

U

ni
ve

rs
itä

t M
an

nh
ei

m
)

16
.2

0-
16

.4
0

(S
es

si
on

 C
ha

ir)
 A

nd
re

a
H

er
rm

an
n

U
ni

ve
rs

ity
 o

f H
ei

de
lb

er
g

S
es

si
on

 T
op

ic
 C

ha
lle

ng
es

 (5
-1

0m
in

) a
nd

 O
pe

n
D

is
cu

ss
io

n
16

.4
0-

17
.2

0

W
or

ks
ho

p
su

m
m

ar
y

Su
m

m
ar

y
of

 C
ha

lle
ng

es
 a

nd
 Is

su
es

 Id
en

tif
ie

d:
 W

or
ks

ho
p

Fe
ed

ba
ck

 a
nd

 C
lo

si
ng

(T

on
y

G
or

sc
he

k,
 B

le
ki

ng
e

In
st

itu
te

 o
f T

ec
hn

ol
og

y)

17
.2

0-
17

.5
0

(n
ew

s
an

d
up

da
te

s)

w
w

w
.b

th
.s

e/
gr

ew
07

|

 w
w

w
.ic

gs
e.

or
g

Table of Contents
1st International Global Requirements Engineering Workshop (GREW’07)

Introduction

1st International Global Requirements Engineering Workshop (GREW’07)..................................1
Tony Gorschek (Blekinge Institute of Technology),
Samuel Fricker (ABB Switzerland Ltd. and University of Zurich)

Papers

Requirement Management in Software Product Line ...5
Hyon Cho (Samsung Electronics Co. Ltd.)
Issue-Based Variability Modeling..11
Anil Kumar (Siemens AG),
Thurimella, Timo Wolf (Technical University of Munich)
The Effects of Communication Mode on Distributed Requirements Negotiations23
Teresa Mallardo, Fabio Calefato, Filippo Lanubile (University of Bari),
Daniela Damian (University of Victoria)
The Effects of Distance, Experience, and Communication Structure
on Requirements Awareness in Two Distributed Industrial Software Projects29
Irwin Kwan, Daniela Damian, Sabrina Marczak (University of Victoria)
A Model of Requirements Engineering at Organizational Interfaces:
An Empirical Study on Distributed Requirements Engineering...36
Dorina-C. Gumm (University of Hamburg)
Release Planning in Distributed Projects..45
Korbinian Herrmann (Technische Universität München)
The Challenges of Distributed Software Engineering and Requirements Engineering:
Results of an Online Survey ...55
Timea Illes-Seifert, Andrea Herrmann (University of Heidelberg),
Michael Geisser, Tobias Hildenbrand (University of Mannheim)

1st International Global Requirements Engineering Workshop (GREW´07)

Tony Gorschek
Blekinge Institute of Technology

School of Engineering,
Department of Systems and Software Engineering

tony.gorschek@bth.se

Samuel Fricker
ABB Switzerland Ltd.

samuel.fricker@ch.abb.com
University of Zurich, Department of Informatics

fricker@ifi.unizh.ch

Abstract

GREW´07 brings researchers and industry
practitioners together to discuss the area of global
product development from a requirements engineering
and product management perspective. The workshop
aims at analyzing selected challenges, which are put
forward by accepted papers, in detail., The session
discussions then lift the view in an attempt to identify
the future needs with regards to research and study.

Industry presence at the workshop is intended to
ground the discussions of future research, helping to
assure relevance and usefulness from both an
industrial and an academic perspective.

1. Introduction

Distributed multi-site software product
development is increasingly becoming commonplace
as companies become global not only in terms of
customer base, but also with regards to large parts of
the software product development that is spread over
continents and cultures. Distribution is driven by that it
enables companies to leverage their resources, and to
draw on the advantage of proximity to customers and
markets during large-scale software development [1].
The potential opportunities, however, come with new
challenges for the product planning, management and
development organizations of a company that affect
requirements engineering of software products. The
threat of defect increase and overruns in multi-site
development has been documented in literature.
According to industry experience reports, some of the
main problems are attributed to heterogeneous
understanding of requirements and substantial
differences in domain understanding and
interpretation. This is compounded by the fact that
multi-site development usually is detrimental to
informal communication between stakeholders such as

product managers, experts, and developers, as these
roles are often separated geographically.

2. Workshop Goals
The goals of this workshop is to identify, report,

discuss, and address the challenges associated with
requirements engineering (RE) and product
management (PM) from two main perspectives:
(i) PM/RE for Global Software Development –
assuring that the handling of requirements and
products are effective and efficient in relation to a
global/distributed development environment where
development is conducted over multiple sites, and
(ii) Distributed PM/RE – the activities associated
with PM and/or RE are conducted globally over
multiple sites, and the development may be conducted
in one single site or distributed around any number of
sites.

2.1. Target Groups
The workshop is relevant for any researcher or

professional that is faced with the challenges of
conducting requirements engineering or product
management in a global environment or of working in
a distributed organization. The workshop focuses on,
but is not limited to, a pre-solution implementation
perspective, as the initial requirements selection,
analysis, refinement, and communication activities are
of particular importance in a global environment. This
perspective, unlike the project centered, is rarely
covered in software engineering. In addition, facets of
economy and management of the software engineering
endeavor are also highly relevant.

3. Workshop Sessions
The GREW’07 workshop features following

sessions (see www.bth.se/grew07 for details).

GREW'07 - Page 1 of 66

3.1. Product Lines for Global Markets
 This session addresses the definition, use and

evolution of product lines in a multi-site distributed
environment.

Session Chair: Gerald Heller, Hewlett-Packard
GmbH.

Paper 1: Requirement Management in Software
Product Lines (Hyun Cho, Samsung Electronics Co.
Ltd.).
ABSTRACT: Product line requirement (PLR) secures
the success of product line adoption by giving
direction to the development and management of
product line architecture and core asset. But, it is not
easy to develop PLR to leverage requirements reuse
and to serve design inputs while expressing variations
of every product requirements in simple and flexible
way. This paper introduces how PLR are categorized
and modeled according to the characteristics of
requirements and how they are structured with their
relevant artifacts.

Paper 2: Issue-based Variability Modeling (Anil
Kumar Thurimella, Siemens AG, and Timo Wolf,
Technical University of Munich).
ABSTRACT: Product line development is tending to be
globally distributed with complicated organizational
models, involving distributed expertise from diverse
cultures. Therefore the use of the communication
models for variability management is a vital issue.
SYSIPHUS supports informal collaboration in
software engineering by using the issue model (a
rationale model) as a communication model. This
paper proposes that the issue model of the SYSIPHUS
can be used to model product line variability
supporting informal collaboration for the variability
management, which paves the way for a new concept
called issue-based variability modeling. Further issue-
based variability modeling addresses the capture of
rationale, and supports the instantiation and evolution
of the variation points. This paper is illustrated using
an industrial case study from the domain of
infotainment systems and is evaluated empirically.

3.2. Globally Distributed Communication
This session addresses requirements engineering

and release planning in a distributed organization and
the effects of factors like distance, communication
mode and organizational structure on activities like
negotiations and maintaining awareness of
requirements.

Session Chair (part I): Daniela Damian University
of Victoria.

Paper 1: The Effects of Communication Mode on
Distributed Requirements Negotiations (Teresa
Mallardo, Fabio Calefato and Filippo Lanubile,
University of Bari, and Daniela Damian, University of
Victoria)
ABSTRACT: Videoconferencing is generally
considered as the most appropriate medium to conduct
requirements negotiations between remote
stakeholders. To improve the effectiveness of
distributed requirements negotiations, drawing upon
the postulates of theories on media selection, we argue
that a combination of lean and rich media is needed.
In this paper we empirically test the hypothesis that the
early resolution of uncertainties through an
asynchronous lean medium can shorten the list of open
issues to be negotiated over a synchronous rich
channel.

Paper 2: The Effects of Distance, Experience, and
Communication Structure on Requirements Awareness
in Two Distributed Industrial Software Projects (Irwin
Kwan, Daniela Damian and Sabrina Marczak,
University of Victoria).
ABSTRACT: In global software development,
communication is difficult due to distance between
sites. How effectively do team members distributed
among multiple geographical locations become aware
of changes and clarifications to requirements? In a
case study of two different global software
development projects, we observed how requirement
analysts, developers, and testers maintain awareness
of changes in the project. To gather data, we attended
local and remote meetings, and conducted interviews
of project team members. Based on our experience
with these projects, we discuss the following
awareness factors in software development: distance,
experience of team members, and communication
structure. We present the effects on awareness, and
provide some lessons learned for global software
development projects. We expect these lessons learned
can be used by projects with similar settings.

Session Chair (part II): Samuel Fricker ABB
Switzerland Ltd. and University of Zurich.

Paper 3: Requirements Engineering between
Organizational Units (Dorina-C. Gumm, University of
Hamburg).
ABSTRACT: In this paper results are presented from
an empirical study about the relationship between
requirements engineering practice and distributed
software project settings. The focus here lies on
organizational distribution and the requirements
engineering activities that take place between
organizational units. In order to understand

GREW'07 - Page 2 of 66

distributed requirements engineering, the concept of
organizational interfaces is introduced. Requirements
engineering activities are then analyzed with respect to
organizational interfaces. The resulting model aims at
facilitating practitioners and researchers to design
distributed processes and understanding respective
challenges.

Paper 4: Release Planning in Distributed Projects
(Korbinian Herrmann, Technische Universität
München).
ABSTRACT: During release planning project
managers decide what to deliver in a specific release.
In globally distributed projects his decision is a
“wicked problem” [4] because local decisions might
contradict global decisions. Project managers have to
respect many factors such as customer preferences,
time and budget as well as constraints from
development. Existing approaches to release planning
neglect the influence of system models. This paper
proposes a single tool that supports both release
planning and modeling in globally distributed software
projects. The approach allows developing a single
model for every release. This enables project
managers to make an informed decision with respect to
the system model during release planning.

3.3. Challenges of Global Requirements
Engineering: Consequences for Research

This session discusses challenges of distributed
requirements engineering that have been elicited from
IT professionals to build a basis for shaping future
research in the global requirements engineering area.

Session Chair: Andrea Herrmann University of
Heidelberg.

Paper 1: The Challenges of Distributed Software
Engineering and Requirements Engineering: Results of
an Online Survey (Timea Illes-Seifert and Andrea
Herrmann, Universität Heidelberg, and Michael
Geisser and Tobias Hildenbrand, Universität
Mannheim).
ABSTRACT: Growing globalization and increasing
complexity of software lead to international and
national collaboration of geographically distributed
organizations, sites and persons. Therefore, it becomes
more important to understand and to know how to
optimize distributed software development. Thus, we
performed a survey among professionals on their
experiences with distributed software development.
This publication presents an evaluation of 744
questionnaires, with a focus on requirements
engineering. The survey results show that a variety of
human and process-related aspects are important for

distributed software development. They furthermore
emphasize the importance of communication in
equirements engineering: Communication, particularly
face-to-face meetings, represents the most frequently
mentioned solution to diverse problems. Similar results
were found before, but this survey supports them with
a high quantity of data.

4. Workshop Organization
4.1. Organizing Committee
• Tony Gorschek, organizing chair (Blekinge Institute of

Technology, Sweden),
• Aybüke Aurum (University of New South Wales,

Australia),
• Christof Ebert (Vector Consulting, Germany),
• Samuel Fricker (ABB Switzerland Ltd., Switzerland,

and University of Zurich, Switzerland),
• Conny Johansson (Ericsson, Sweden and Blekinge

Institute of Technology),
• Claes Wohlin (Blekinge Institute of Technology,

Sweden).

4.2. Program Committee
• Ayse Bener (Boğaziçi University, Turkey),
• Maya Daneva (University of Twente, the Netherlands),
• Alan M. Davis (University of Colorado at Colorado

Springs, USA),
• Robert Feldt (Blekinge Institute of Technology,

Sweden),
• Samuel Fricker (ABB Switzerland Ltd., Switzerland,

and University of Zurich, Switzerland),
• Paul Grünbacher (Johannes Kepler Universität (JKU)

Linz, Austria),
• Gerald Heller (Hewlett-Packard, Germany),
• Andrea Herrmann (University of Heidelberg, Germany),
• Ann M. Hickey (University of Colorado at Colorado

Springs, USA),
• Natalia Juristo (Universidad Politécnica de Madrid,

Spain),
• Irwin Kwan (University of Victoria, Canada),
• Filippo Lanubile (University of Bari, Italy),
• Marek Leszak (Alcatel-Lucent, Germany),
• Sabrina Marczak (University of Victoria, Canada),
• Michael Mattsson (Blekinge Institute of Technology,

Sweden),
• Audris Mockus (Avaya Labs Research, USA),
• Michael Ochs (Fraunhofer IESE, Germany),
• Peter Sawyer (Lancaster University, UK),
• Darja Smite (University of Latvia, Latvia),
• Giancarlo Succi (Free University of Bolzano-Bozen,

Italy),
• Richard Torkar (Blekinge Institute of Technology,

Sweden)

GREW'07 - Page 3 of 66

GREW'07 - Page 4 of 66

Requirement Management in Software Product Line

Hyun Cho
Samsung Electronics Co. Ltd.

hcho@samsung.com

Abstract

Product line requirement (PLR) secures the success

of product line adoption by giving direction to the
development and management of product line
architecture and core assets. But, it is not easy to
develop PLR to leverage requirements reuse and to
serve design inputs while expressing variations of
every product requirements in simple and flexible way.
This paper introduces the types of requirement
variations, the scheme of PLR specification and the
relationships of PLR and other requirements.

1. Introduction

PLR is a medium for capturing and communicating
to all interested parties what is needed in the entire
product line. PLR provides a basis for most of the
management and engineering functions associated with
maintaining the product line, such as assessing
proposed changes, resolving requirements disputes,
developing test requirements, writing manuals,
planning support activities and implementing
enhancements. In addition to its role as a traditional
requirements vehicle, it must capture the commonality
and variability between the individual products that
comprise the product line.

Since Parnas introduced commonality and

variability for interface design [1], many researchers
have been expanded this concept to software
development process [2], requirement engineering
[3][[4][5], design [6][7][8][9], and others. In addition,
some researches tried to define the category of
variability [10][11], the abstraction levels of variability
[12], and the variability management[13].

Although a bunch of good methods and guidelines
was introduced and practiced, capturing commonality
and variability cannot be achieved unless the form and
content of PLR enables it to be understood by all of its
potential stakeholders: strategic planning, product

planning, product development, engineering
management, engineering development, testing
organizations, documentation, etc. These participants
have different perspectives and interests of varying
scope and depth and PLR must be capable of
addressing these different views.

This paper describes how to represent, organize,

and document requirements effectively for entire
product lines, suitable for use in developing using a
Product Line development approach

2. PLR Specification

In requirements not designed for describing entire
product lines, the organization of the requirements into
sections and subsections provides a logical grouping
that is intended to facilitate locating and understanding
the requirements. In PLR, this is also the case, but
there is an additional factor to consider - the variations
between products in the product line.

It is important to remember that the requirements

specification of product lines should describe the
requirements of the core assets that are to be developed.
If the core assets need to support different features or
combinations of features, PLR needs to explicitly
specify these variations and provide an indication of
what combinations are valid. Such variations generally
take four flavors: Mandatory, Optional, Alternative,
and Variable. The following sections describe what
these types of requirements are and how to represent
them.

2.1. Variation Representation

The basic concepts or types of variation can be also

applied to PLR specification. Table 1 provides an
overview of requirement types and the criteria for
inclusion of a requirement in a product line instance.

GREW'07 - Page 5 of 66

Table 1. Variation types of requirement

Types Meaning

Mandatory The requirement should be included to
all product lines with no variants.

Alternative
The requirement can be mutual
exclusively selectable among the
feature group.

Optional The requirement can be selected
multiple in a feature group

Variable The requirement can take option values
as a variant

The three variation types, Mandatory, Alternative,

and Optional, are widely used to model variants of
product line. But, Variable is newly introduced
variation type to manage variants that come from
diversity of each option value such as throughput,
response time, number of buttons, and etc. As Variable
is not type of representation for the inclusion or
exclusion of a grouping of requirements, it can be
combined with other variation types, Mandatory,
Optional, and Alternative.

For illustration purpose, the requirements of

Weather Station products are taken to show how PLR
specification looks like and how PLR is differ from
product requirements (PR). Let say a Weather Station
consists of some form of user interface and some
number of devices that provide weather-related
measurements, such as temperature and barometric
pressure. Some products in the product line will have
very simple user interfaces, for example a very small
LCD display with associated control buttons, while
others will be more complex, for example, with larger
touch-screen displays.

When a statement is written for a product like
below, it might be true as a requirement of a product

 The weather station shall measure barometer.

In PLR perspective, this statement is always true if

all products include this feature. Then, this statement
can be mandatory requirement. On the contrary, this
statement may not be true if some products do not
support this requirement. Hence, the statement should
be changed to achieve specification correctness
throughout product line. The new requirement
specification need to be changed to choose whether to
support time display or not and it might look like

 The weather station shall be capable of being built with or
without barometer.

This is typical example of optional requirements.

Alternative is redefined as a special case of

Optional requirements, that is, the selection of one
alternative from many optional requirements. Thus,
each of the individual options is flagged as optional,
meaning that each product must choose whether to
include the requirements grouping or not and then the
additional constraint is applied to choose option
mutually exclusive from these groupings. Hence,
Alternative can be expressed like below

 The system shall be capable of being built with or without
thermometer.
 The system shall be capable of being built with or without
barometer.
 The system shall be capable of being built with or without
hygrometer
 The system shall be capable of being built with support for
exactly one of thermometer, barometer, or hygrometer

Finally, Variable, used to specify the variation of

number, range or set across product line, can be
specified like below.

The weather station shall be capable of being built with or

without thermometer, which is able to measure temperature with a
certain percentage of precision number

If PLR should have forms like previous examples,

PLR specification would be very difficult to write, read,
and understand. To facilitate understanding and the use
of PLR for actual product requirements, it is desirable
to write the actual requirements statements as if there
were no variability and denote the variability via
separate means.

For this purpose, some attributes are introduced and
Table 2 shows how attributes are used to model PLR.
In order to represent all the variation types, two
attributes, pline_Applicability and pline_Grouping, are
introduced. pline_Grouping effects only if
pline_Applicability has Optional. Alternative is
implicitly represented by having pline_Applicability
attribute with a value of "Optional" and
pline_Grouping attribute with a value of ChooseOne.

For Variable type, variable name is enclosed with %
symbols in both side of variable and handled in the
same manner as DOS shell variable substitutions. In
addition, Variable type requires some attributes to
explain the variable and to provide information about
the values that it can take. Thus, three attributes,
pline_VariationCardinality, pline_VariableRange, and
pline_VariableType, are defined to represent
cardinality of value, value range, and value type
respectively.

GREW'07 - Page 6 of 66

Hence, PLR of Weather Station can be rewritten

like blow.

1. Description [pline_Applicability=comment]
1.1. The products in the product line consist of Weather Stations. A
Weather Station consists of some form of user interface and some
number of devices.

2. Measurement [pline_Applicability =mandatory]
2.1. Thermometer [pline_Applicability=mandatory]
2.1.1 The system shall be capable of measureing temperature
2.2 Addltioanl Measurement [pline_Applicability =optional,
pline_Grouping=ChooseOne]
2.2.1. Barometer [pline_Applicability =optional]
2.2.1.1. The system shall be capable of measuring atmosphere
pressure
2.2.2 hygrometer [pline_Applicability=optional]
2.3.2.1. The system shall be capable of measuring humidity.

3. Network Support [pline_Applicability =optional]
3.1. Network Card [pline_Grouping =mandatory]
3.1.1. The system shall support %NETWORK_SPEED%. NIC card.
3.1.1.1 NETWORK SPEED [pline_Applicability = Variable;
 pline_VariableCardinality = 1..2;

 pline_VariableType = Enum;
 pline_VariableRange = 10/100T, 1G]

 2.2. Dependency Representation

When PLR groupings are nested, the meaning

matches the intuitive interpretation that any sub-
groupings inside an optional grouping are included
only if the enclosing grouping is also included. In other
words, if an optional grouping is not included, then all
sub-groupings are also not included. This provides a
natural way to express dependencies between optional
features simply using the organization of the
requirements.

However, it is not always possible to represent all
relationships between requirements groupings in a
hierarchical or nested manner. In some case, a
requirement may have multiple dependencies with
other requirements group. To represent this multiple
dependency, the attribute, pline_Requires, is defined
and the dependency is defined by listing dependent
requirements as a comma separated values. For
example, time synchronization depends on network
support and time server, it can expressed like

2.2. Synchronization [pline_Applicability =optional]
 [pline_Requires=”Network Support,

Time Server”]
if the requirement is further refined to having time server feature.

Table 2. Attributes for product line requirement representation
Attribute Type Description

pline_Applicability

Enum {
Comment |
Mandatory |
Optional |
Variable

}

Comment: The item is not requirement but comment
Mandatory: The requirement group is mandatory within its
context.
Optional: The requirement group is optional within its context.
Variable. The item represents a variable definition.

pline_Grouping

Enum {
All |
ChooseOne |
ChooseZeroOrO
ne |
ChooseAtLeastO
ne

}

All. All requirements are included.
ChooseOne. Only one requirement is included from the
requirements group.
ChooseZeroOrOne. At most one requirement is included from the
requirements group.
ChooseAtLeastOne. At least one requirement is included from the
requirements group.

pline_VariationCar
dinality String with syntax

Specify how many values of the variable type must or may be
provided by the product definition. It must be single, non-
negative integer or a range of the form n..m where n and m are
non-negative integers (n≤m)

pline_VariableRang
e String with syntax

Applies only to requirements whose pline_Applicability is
Variable. It forms like {n..m} where n and m are minimum and
maximum value respectively.

pline_variableType

Enum{
Integer | Real |
Enumeration |
Set | Custom

}

Applies only to requirements whose pline_Applicability is
Variable.

GREW'07 - Page 7 of 66

The rules for dependency control of optional
requirements groups mentioned above are the most
common to ruling dependencies between different
groups. However, this is not all inclusive and does not
even address all of the reasonable situations that might
arise, let alone all possible situations.

To covering all possible situations, pline_IsPresent
is defined and it borrows the concepts of Java-like
expression where the terms are references to
requirement groups. In pline_IsPresent, standard Java-
like precedence and ordering applies, and Java
operators and parentheses may be used as necessary.
The result of the expression must be a Boolean value
and the requirement is considered for inclusion if the
pline_IsPresent expression evaluates true. Otherwise it
is not included in the requirement group. In addition to
referencing requirement groups, one additional
keyword is allowed, SELECTED. This is replaced with
the current selection state for the requirement group in
question. The example of pline_IsPresent looks like

2.2. Synchronization [pline_Applicability =optional]
 [pline_IsPresent=”Network Support &&

Time Server &&
SELECTED”]

Table 3 shows some examples of pline_IsPresent

expressions and their meanings.

Table 3. Example of pline_IsPresent expression

Expression Meaning
Network Support &&

Time Server &&
SELECTED

The requirement is available for
selection if “Network Support” and
“Time Server” are both presented.

Network Support &&
Time Server

The requirement is automatically
included if “Network Support” and
“Time Server” are both presented.

(Network Support ||
Time Server) &&

SELECTED

The requirement is available for
selection if either “Network Support” or
“Time Server” is presented.

Network Support ||
Time Server

The requirement is automatically
included if either “Network Support” or
“Time Server” is presented.

As the semantic of each pline_IsPresent is slightly
different, the expression should be carefully described
to work with original intent.

3. Requirements Organization and
Management Process

3.1. Requirement Structure

As a result of PLR introduction, requirement

documents are reorganized like Figure 1 to leverage

requirements reuse and to manage requirements
efficiently.

Figure 1. Requirement Structure

As described in previous sections, PLR is a
collection of all PR including future product
requirements and plays a centerpiece of all links
between PLR, PR and FS. This link help to trace how
the PLR is varied in the PR and how PLR is designed,
implemented, and tested.

Functional Specifications (FS) are collections of
behavior specifications of each requirement in PLR. FS
precisely describes the behaviors and constraints of
PLR and used inputs of product line architecture
construction and core asset development.

Product Requirements (PR) is a requirement of
specific product development and it is instantiated
from PLR.

The selection is compulsory process for PR
instantiation from PLR and the detail selection process
is described in 3.2.

3.2. Requirement Instantiation

Program Manager (PM) creates a project file of PR
(PPR) for a new product which specifies requirements
of base model and its series. Different from PR, PPR
does not contain actual product requirements. Instead,
it lists just information of selected requirements among
optional and alternative and specific values for variable
requirements. PPS is created through product selection
tool, which is front-end tool of PLR and guides user to
create PR by showing available requirements, which
are determined through the analysis of PLR attributes
and dependencies of the selected requirements. With
the use of PPR, every PR can be reproducible by
mapping PPR information to PLR and PM does not
need to distribute big and large PR documents.

Once PPR is created, PM distributes PPR to

regional marketing representative (RMR), organized
worldwide to promote new products and to collect
regional customer’s requirements. Each RMR reviews

GREW'07 - Page 8 of 66

PPR and return it to PM. Then PM merges all PPR and
requests Requirement Manager (RM) to open review
meeting with the member of Change Control Board
(CCB). The members are architect, development team,
SQA team and they work at geographically distributed
regions. Due to geographical distribution and time
difference, teleconference equipments, which
integrates video, phone, and web technology, is used to
sharing opinions of review participants.

When CCB agrees to the contents of PPR, the first
official release of PR is created as a form of document
and maintained as a project artifact.

3.3. Requirement Change Management

The process and activities of change management in
product line environment are similar to those of
requirement instantiation except the processes is
invoked by the submission of change request (CR) and
RM facilitates all change process. When CR is
submitted from stakeholders and CCB reviews and
approves CR via integrated teleconference. Generally,
CCB manages the changes of PR but, in product line
environment, CCB has to manage one more type of
change. That is PLR. The difference of these two
changes is rooted from the change sources.

For PR, the sources of changes are same to those of
traditional product development and CR of PR is
handled similar ways of normal product requirement
change process except some CRs could be escalated to
CR of PLR. Usually, CR that affects architecture
and/or requirement variations is usually escalated to
CR of PLR.

On the other hand, CR of PLR largely comes from
the changes of product and technology roadmap. Both
roadmaps describe brief requirements of each feature
in roadmap and outlook of release. In the product-wise
development paradigm, the roadmap is maintained in
the separated documents and does not belong to any
development artifacts until they are included
development project. But, in product line approach, the
requirements of roadmap are specified in PLR
whenever they are introduced and are valuable inputs
to manage requirements variation and to plan product
line architecture and core asset development.

4. Conclusion

As know as the most common reasons for project

failure are rooted in poor estimation or weak definition
of requirements. Likewise, PLR also important to
planning, managing, and developing product line
architecture and core assets which are critical factors to
the success of product line approach.

In this paper, tow major aspects of PLR are
mentioned; PLR specification and management.

For PLR specification, seven attributes are defined
to handle all variation types and dependencies in PLR.
PLR is quite a well structured with the attributes and
become more extendible and flexible by changing
attribute contents or adding new attributes.

For management perspective, some processes and
activities are attached additionally to manage PLR.
These changes are slight to the existing requirement
management process but these are so important to keep
the integrity of PLR throughout all kinds of change
requests.

5. References

[1] D.L. Parnas, “On the Criteria to Be Used in Decomposing
Systems into Modules,” Comm. ACM, vol. 15, no. 12, pp.
1053-1058, Dec. 1972.

[2] David M. Weiss, Chi Tau Robert Lai. Software Product-
Line Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson.,
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study”, Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University,
November 1990.

[4] Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe.
Feature-Oriented Product Line Engineering. IEEE Software,
19(4):58–65, July/August 2002.

[5] M. Griss, J. Favaro, and M. d’Alessandro, Integrating
Feature Modeling with the RSEB. In Proceedings of the Fifth
International Conference on Software Reuse, pages 76–85,
Vancouver, BC, Canada, June 1998.

[6] Hassan Gomaa and Michael Eonsuk Shin. Multiple-view
meta-modeling of software product lines. In Eighth
International Conference on Engineering of Complex
Computer Systems, December 2002.

[7] Isabel John and Dirk Muthig. Product Line Modeling
with Generic Use Cases. In Proceedings of the Second
Software Product Line Conference, August 2002.

[8] Matthias Clauss. Generic modeling using uml extensions
for variability, In OOPSLA 2001 Workshop on Domain
Specific Visual Languages, September 2001.

[9] Gomaa, H. Designing Software Product Lines with UML:
From Use Cases to Pattern-based Software Architectures,
Addison-Wesley, July 2004.

[10] Felix Bachmann, and Len Bass. Managing Variability in
Software Architecture, Proceedings of the ACM SIGSOFT

GREW'07 - Page 9 of 66

Symposium on Software Reusability (SSR’01), pages 126–
132, May 2001.

[11] Günter Halmans, and Klaus Pohl, Communicating the
variability of software-product family to customers,
Proceedings of the Software and Systems Modeling, volume
2, pages 15–36. Springer, February, 27, 2003

[12] Mikael Svahnberg and Jan Bosch, Issues Concerning
Variability in Software Product Lines, In Third International
Workshop on Software Architectures for Product Families,
pages 146–157, 2000.

[13] Ivar Jacobson, Martin Griss, and Patrik Jonsson.,
Software Reuse: Architecture, Process and Organization for
Business Success. Addison-Wesley, 1997.

GREW'07 - Page 10 of 66

Issue-based Variability Modeling

Anil Kumar Thurimella
Siemens AG, CT SE1

Otto-Hahn-Ring 6
Munich, Germany

thurimel@in.tum.de

Timo Wolf
Chair for Applied Software Engineering

Technical University of Munich
Munich, Germany
wolft@in.tum.de

Abstract

Product line development is tending to be globally
distributed with complicated organizational models,
involving distributed expertise from diverse cultures.
Therefore the use of the communication models for
variability management is a vital issue. SYSIPHUS
supports informal collaboration in software
engineering by using the issue model (a rationale
model) as a communication model. This paper
proposes that the issue model of the SYSIPHUS can
be used to model product line variability supporting
informal collaboration for the variability
management, which paves the way for a new concept
called issue-based variability modeling. Further
issue-based variability modeling addresses the
capture of rationale, and supports the instantiation
and evolution of the variation points. This paper is
illustrated using an industrial case study from the
domain of infotainment systems and is evaluated
empirically.

1. Introduction

A software product line is a set of software-
intensive systems that share a common, managed set
of features satisfying the specific needs of a
particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way [1]. Using product line approaches
software products can be deployed faster, cheaper
and quicker. The software product line engineering
[2] paradigm includes two processes: domain
engineering and application engineering as defined in
[2]. Variability management is an important aspect of
software product line engineering. In many industrial
domains (such as automotive, mobile phone,
domestic appliances etc), mass customization is
increasing due to increasing number of customers and
therefore the complexity of variability is growing. In

addition, the increasing global distribution of mass
customization, domain and application engineering,
as well as the distribution of expertise motivates the
research for global software product line engineering.

Requirements engineering is a critical phase of
software engineering and is complicated, because of
the communication problem between stakeholders.
Product line requirements engineering has additional
complexity of variability management and becomes
even more complex. Communication models that
provide strong communication and collaboration
between stakeholders are vital in the context of
global requirements engineering, and address the
problems that results from outsourcing and
globalization. In global product line requirements
engineering communication models are needed for
both: requirements and variability management.
When the collaboration between the stakeholders
takes place without concrete negotiation rules, it is
termed as informal collaboration.

Rationale is the justification behind decisions,
including alternatives explored, evaluation criteria,
arguments and decisions [4]. The rhetorical
Questions, Options and Criteria (QOC) [5] model is a
way of capturing rationale in the form of a graph.
Rationale improves the understandability of
requirements. Therefore it is very useful for global
requirements engineering, in which requirements
must be understood in various cultures. Product lines
are long-term investments and are to be maintained
over a longer period of time (compared to products).
As rationale supports the evolution of requirements
[4], investments of applying rationale management
can pay off.

Variability management is the essence of the
current product line practices and is based on
variability modeling. The current variability
modeling techniques [2, 7 and 8] capture the
variation points using dependencies and constraints.
The major activities of the variability management

GREW'07 - Page 11 of 66

are: variability identification, variability modeling,
product instantiation (instantiating variations for
specific products in application engineering) and
variability evolution. All these activities involve the
collaboration of stakeholders. The major variability
management problems identified by this paper are:

Problem1. Under specified representation: The
current variability modeling techniques such as OVM
[2], feature modeling (e.g FODA [8]) and the use
case extensions by Gomma [7] do not answer the
following questions and thus, they are
underspecified:
• Why is a dependency mandatory, optional or

alternative?
• Why is a constraint requires or excludes?
• How is the variability related to mass-

customization?
The understandability of these underspecified

variability models gets worse in the global context, as
the stakeholders have regional, cultural and linguistic
differences. Further these variability models do not
provide information for product instantiation and
variability evolution. Therefore we claim that
capturing rationale information for variability models
is critical.

Problem 2. Gap between domain and application
engineering: In large product line organizations,
domain engineering is realized as a separate
organizational unit with respect to application
engineering units. Due to this organizational
separation their roles, clients, timelines, milestones
and goals are different thus crating a gap between
domain and application engineering. Domain
engineering teams can be concerned with identifying
and creating variation points, while application
engineering teams are instantiating the variation
points. Due to this gap, it may be sometimes easier to
develop a domain requirement from the scratch
instead of instantiating the appropriate variation
points. But reducing the requirement redundancies
among products is important for the product line
maintenance. Increasing numbers of application
engineering teams makes this gap worse. To reduce
this gap, we are researching on variability modeling
techniques that support both domain engineering (e.g.
identification and evolution) and application
engineering (instantiation of variation points).

Problem 3. Lack of collaboration for variability
management: The variation points in application
requirements engineering are to be instantiated by the
collaboration of domain engineers, application
engineers and customers, and therefore the product

instantiation is a collaboration intensive problem. The
existing product instantiation approaches such as [9],
[10], [11] and [12] and do not address the
collaboration between stakeholders. Further the
collaboration in the variability identification and
evolution are not addressed as well.

Section 2 of this presents the background
information required for this paper. Section 3 shows
related work. The infotainment systems are
introduced in section 4. Section 5 proposes the issue-
based variability modeling which is the core
contribution of this paper. In section 6, variability
management activities such as variability
identification and capture of rationale, product
instantiation and variability evolution are addressed.
Section 7 gives empirical evaluations and the
conclusion of this paper is given in section 8.

2. Background information

This section provides the concepts that are vital

ingredients for building up the meta-model of issue-
based variability modeling. Section 2.1 presents the
meta-model for the Orthogonal Variability Model
(OVM), section 2.2 presents SYSIPHUS and 2.3
presents Rationale-based Variability Management in
Requirements Engineering (RVMRE).

Figure 1: Variability meta-model

2.1 Variability meta-model

The Orthogonal Variability Model (OVM) [2]
represents variability and advocates the use of a
centralized and separate variability model for all
models of the software development process, such as
use case diagrams, class diagrams, activity diagrams,

GREW'07 - Page 12 of 66

component diagrams etc. In OVM, the variability
model is connected to various model elements of
software development process, by using traceability
links. Using a single representation concept to depict
the variability of the complete software development
process fits in the global picture of the variability
management. Therefore, OVM is very useful for
global software product line requirements
engineering and we adapt the meta-model of OVM
(shown in Figure 1) for the managing variability.
According to Pohl in [2], the variability information
is distributed through out the artifacts of software
development (e.g. use cases, classes, test cases etc)
and is not localized in the features. Due to this
criticism, we are not confined to feature modeling.
Further this paper follows the representations of the
variability model proposed in [2].

2.2 SYSIPHUS

 SYSIPHUS [6] is the global software engineering
approach, which gives equal weight to the system
models, the communication models and the
organizational models. Further it unifies them by
deriving these models from a single meta-model as
shown in Figure 2. The issue model (a model in
Figure 2 with classes Issue, Option, Criterion,
Assessment, and Resolution) of SYSIPHUS is same
as the QOC model. Using the annotates association,
each object of ModelElement can be linked to many
objects of Issue and thus rationale discussions are
initiated. Within the rationale discussions options,
criteria and assessments are proposed by various
stakeholders (located in different places). Using this
information resolutions (decisions) are made on the
issues. Thus on the basis of rationale discussions,
SYSIPHUS uses the issue model as a communication
model, and enables informal collaboration in the
global software engineering and is evaluated
empirically in [6]. The decisions of the rationale
discussions are assigned to the objects of ActionItem,
which are linked with the OrganizationalUnit.
Following the association between
OrganizationalUnit and SystemModel the action
items are performed by a stakeholder in the
organizational model. SYSIPHUS supports
requirements engineering on the basis of rationale
management. The criteria of the issue model can be
goals and non-functional requirements. As per the
recently published state of SYSIPHUS, it does not
support variability management. The process free
SYSIPHUS tool is open source software
downloadable at [26].

2.3 Rationale-based Variability Management in
Requirements Engineering

In the issue model (which is same as QOC) an
issue is associated with many options, and an option
(or options) is justified using arguments and criteria.
In a typical variability management problem, a
variation point is associated with many variants and
some variants are to be instantiated for a specific
product. Therefore issue model is a generic method to
manage variability [3]. Rationale-based Variability
Management in Requirements Engineering
(RVMRE) [3] is our first attempt to use issue model
for the variability management. It advocates the
combination of the issue model and the OVM for the
variability management and proposes:

• Rationale-based product instantiation is a

technique to instantiate variation points using the
variability of issue model.

• Rationale-based variability constraints is a
technique to identify variability constraints using
rationale discussions.

Though RVMRE exploits the variability of issue

model, it does not come up with a technique to model
variations using the issue model. Kruchten [13]
proposed that the rationale elements can be
constrained using some dependencies and constraints
[13]. We identified that these constraints and
dependencies used in the rationale management
community are similar to that of variability
management. As SYSIPHUS uses the same issue
model as a communication model, the variability
meta-model can be realized as a special type of the
issue model by exploiting its variability (as per
RVMRE) and using the constrains of rationale (as
proposed by Kruchten). This is the motivation behind
issue-based variability modeling and is the
contribution of this paper. Using this we address the
problems shown in section 1.

3. Related Work

The capture of architectural knowledge in product
line engineering is emphasized by [19]. The use of
knowledge-based product configuration techniques
for product instantiation are proposed by [22] and
[23]. These techniques use product context
knowledge for the instantiation of variations, but do
not address the capture of rationale behind variations
and its reuse for the product instantiation and product
line evolution. [20] is an ongoing research to support
collaboration for variability modeling by sharing the
variability models in a distributed team and linking

GREW'07 - Page 13 of 66

Figure 2: SYSIPHUS, the unified software development approach

variability models to different assets, but it does not
address the use of communication models and
negotiations for the activities like variability
identification, product instantiation and variability
evolution. Further [20] attempts to use decisions as
variation points, but it does not come up with a
variability meta-model using the rationale artifacts.
[21] is a way of using collaboration in product line
scoping. All the above-mentioned product line
approaches do not address the collaboration problem
in product line requirements engineering especially in
variability identification, product instantiation and
variability evolution, and do not address the problems
presented in section 1.

The challenges in the distributed requirements
engineering are presented in [21]. Requirements
negotiation approaches such as EasyWinWin [14]
can enable stakeholder collaboration in requirements
engineering. The use of asynchronous
communication in the context of global software
engineering is addressed in [18] and the cost
estimation is addressed in [15]. Information models
can improve the stakeholder communication in
requirements engineering [24]. Variability modeling
techniques such as [2], [7] and [8] consider the
variability models as an integral part of system
models but not as a part of the communication model
or the rationale artificats. Therefore realizing
variability meta-models within the communication
artifacts (or the rationale artifacts) is new, and
therefore is the innovation of this paper.

4. Infotainment systems

The information in this section is based on an
empirical study in an automotive organization, which
is planning to move into global product line
development in the near future. Infotainment systems
are one of their key products and have four major
business branches: radios, in-car navigation systems,
mobile telecommunication systems and in-car
entertainment systems. Each of these business
branches has product lines. In-car navigation system
has a current business estimate of 20 billion USD
with 70% of its current business focused in USA and
Japan. In the near future, its business is forecasted to
have bright prospect in the booming economies such
as India and China. The organization of our
consideration has their development centers in India
and China, and therefore they are planning to move
into the global product line development. To enable
this we are researching on the techniques to support
variability management in the globally distributed
requirements engineering setup, with a major focus
on the infotainment application domain.

5. Issue-based variability modeling

The issue model of the SYSIPHUS can be
modified to obtain a constrained issue model as
shown in the Figure 3, which is the meta-model for
the issue-based variability modeling. This meta-
model of the issue-based variability modeling is
engineered by combining pieces of concepts as
follows:

GREW'07 - Page 14 of 66

Variation points and variants: According to
RVMRE, the VariationPoint and Variant of the
OVM are similar to the Issue and Option classes of
the issue model. In order to exploit this concept,
VariationPoint is realized as a subclass of the Issue
and Variant is realized as a subclass of Option (refer
Figure 3). Doing this we support the modeling of
variation points in domain engineering using issues,
and enable their instantiation using the justification
matrices of the issue model in application
engineering.

Constraints in the issue model: According to
Kruchten in [13] decisions can be modeled using the
relationships such as constrains, forbids, enables,
subsumes, conflicts with, is bound to etc. We
identified that these relationships are very similar to
the constraints of the variability meta-model.
Therefore we improvise by introducing the
constraints (requires and excludes) between the
options of the issue model as well as exploit the same
for the variability meta-model. As per the dashed
association between the self-association of Option
and Constraint Dependency, options (as well as
variants) can be constrained using Requires and
Excludes.

Figure 3: Constrained issue model, a meta-model for

issue-based variability modeling

Variability dependencies in the issue model: In our
observations, some options (proposed during the
rationale discussions) of the issue model can be
mandatory i.e they are decisions, some can be

optional and some can be optional alternatives.
Therefore the association between Issue and Option
can be modeled using a VariabilityDependency,
which can be Mandatory or Optional. The Optional
dependencies can be further constrained using
AlternativeChoice. Thus the dependencies of the
variability meta-model can be introduced into the
issue model as well.

Orthogonality of variation points and variants: We
propose an orthogonal to association between the
classes Variant and SystemModel (of SYSIPHUS).
This concept enables us to link the variants of the
issue model to all the system model elements (such as
features, use cases, classes, test cases etc). This is the
orthogonality of the variants. In the existing
SYSIPHUS (Figure 2), ModelElement can be
associated with many instances of Annotation,
therefore SystemModel can be linked to an Issue,
which is the orthogonality of the variation point.
Thus we can use the orthogonality concept of the
OVM, to link the system model elements with the
communication artifacts, which are variation points
and variants.

Thus exploiting the variability of the issue model
(as proposed by RVMRE), constraining the issue
model and tailing OVM orthogonality for the
communication, we engineered the variability meta-
model on the issue model (also a communication
model), which paves the way for a new concept
called issue-based variability modeling. Because of
the overlap between the variability meta-model and
the communication model, the variation points
modeled as issues can be instantiated using the
justification matrices enabling informal collaboration
of the stakeholders. Issue-based variability modeling
uses the graphical representations of variation points,
variants, constraints and dependencies as proposed by
Pohl in [2]. Figure 4 is a simple illustration from our
in-car navigation system case studies, which depicts
the variability in the functional requirements. The
Routing Management variation point has optional
variants such as Voice guidance and Automatic
accident notification, and optional alternatives with
variants such as Automatic routing, Live traffic data,
Traffic congestion and Rerouting. The variability
model is connected to the use case models using
traceability (see Figure 4), i.e variability model is
orthogonal to the use case models. Managing the
variability in Routing Management is the running
example of this paper.

GREW'07 - Page 15 of 66

Figure 4: Variability in in-car navigation systems using issue-based variability modeling

6. Variability management

The meta-model of the issue-based variability
modeling (refer Figure 3) supports variability
modeling similar to OVM [2], additionally it supports
the instantiation and evolution of the variation points,
capture of rationale as well as supports informal
collaboration. This is the big boost of using issue-
based variability modeling when compared to the
conventional variability modeling techniques such as
OVM [2], FODA [8] and Gomma’s UML extensions
[7]. The important activities of the variability
management such as product instantiation, capture of
rationale and evolution of variability are presented in
the subsections 6.1, 6.2 and 6.3. All these activities
are illustrated using the example of Figure 4.

6.1 Product instantiation

The product line customers have their own set of
concerns and the product line needs to support the
instantiation of the products based on the quality
concerns of the customers. Therefore the product
instantiation is to be done using the collaboration of
domain engineers, application engineers and
customers, and is a collaboration intensive problem.
Furthermore product lines are tending to support the
instantiation of products for global markets. In this
case, product line development has domain
engineering in a country and the application
engineering teams and customers from different
countries and cultures of the globe. Therefore there
are very important aspects of the globalization and
distribution that are to be handled in product
instantiation, and the issue based variability modeling

attempts to do that. In this specific case of
instantiating Routing Management, 18 stakeholders
(domain engineering team 7, application engineering
team 9, customer team 2) with various cultural and
academic/professional backgrounds, located in multi-
sites are involved. Table 1, shows the justification
matrix for the instantiation of the Routing
management, which is constructed as follows:
• In the view of application engineering, the Issue of

the variation point is “How to instantiate a
variation point?” and the optional variants
constitute the options of the justification matrix
(refer Table 1).

• The product specific quality concerns of the
customer and the product specific goals constitute
the criteria of the justification matrices.

• All the stakeholders involved in the product
instantiation process give their arguments, i.e fill
the cells using the SYSIPHUS tool. SYSIPHUS
supports various arguments such as + (supports),
++ (supports strongly), 0 (no effect), - (hinters) and
– (hinters strongly).

• Based on the arguments, a resolution is made
which supports the variants Voice guidance, Live
traffic data and Automatic accident notification for
the city car related to the customer XXX.
Thus using the informal collaboration of the

stakeholders, issue-based variability modeling
supports the instantiation of the variability models in
a distributed setup of domain engineering, application
engineering and customer teams. Further the simple
notations of the justification matrices, is the medium
of communication between people of various
cultures.

GREW'07 - Page 16 of 66

Issue: How to instantiate Routing Management for a city car product to a customer XXX?

Criteria Usability Memory Price Traffic
intensity

Security Reliability Extensibility Maintainability

Option1: Voice guidance ++ 0 0 ++ 0 + + +

Option2: Automatic
routing

++ 0 -- + 0 0 0 0

Option3: Live traffic data ++ + 0 + 0 + + +

Option4: Rerouting -- - - 0 0 - 0 +

Option5: Automatic
accident notification

0 0 ++ + ++ 0 + 0

Resolution: Voice guidance, Live traffic data and Automatic accident notification are decided to be instantiated for the city car.

Table 1: Justification matrix for product instantiation, a tabular view of the variability model for the
resolution of the variation points using informal collaboration

As per the issue-based variability modeling, the
options of the justification matrices are the variants,
which are linked to the system model elements (in
this case use cases). Therefore following the links
from the options to system model elements the
instantiated artifacts for a specific product are clear.
Please note that variability modeling in domain
engineering (Figure 4) is done using the issue-based
variability modeling and the instantiation of the
variation points in application engineering are done
using the justification matrices (justification matrix is
a tabular view of the variability models). This is the
major improvement brought by our technique when
compared to conventional variability modeling
techniques.

6.2 Variability identification and capture of
rationale

The expertise of domain engineering is often
distributed. Variability identification may involve the
collaboration of stakeholders from application
engineering as well. Therefore variability
identification is also a collaboration intensive
problem. In this section we show a way of identifying
the dependencies and constraints of the variability
model on the basis of the brainstorming and the
informal collaboration provided by issue model. Here
the rationale behind the variability models is captured
within the process of the variability identification.
This is done on the basis of the issue model of
SYSIPHUS by using the following abstractions:

Issue triggers the identification of a variability
dependency or a constraint by posing questions on it.

For e.g. issue of the Table 2 initiates the
identification of the variability dependencies.
Option supports/hinters a possible variability
dependency or constraint that corresponds to an issue
(for e.g. please refer options of Table 2).
Criterion is the representation of the mass-
customization forces that cause variations. Mass-
customization forces can be non-functional
requirements (NFRs) and goals that come from
business, marketing, technology, project management
and legal issues. For e.g. the criteria that cause the
variability dependency of Voice guidance are
Usability, Memory and Price which are also
presented in Table 2.

Issue: What is the variability dependency of the Voice
Guidance in Routing Management?
Criteria U

sability
PL

M
em

ory PL

Price PL

Option1: Mandatory dependency is
supported

++ -- 0

Option2: Optional dependency is
supported

0 + +

Resolution: Variability dependency of Voice guidance is
decided to be optional because of better assessments in
price and memory.

Table2: Justification matrix for variability
dependency

In the case of the justification matrix of Table 2,

variability identification is performed using the
collaboration of 5 stakeholders, sitting in different
locations. Further Table 2, is the rationale behind the
mandatory dependency and therefore the variability

GREW'07 - Page 17 of 66

rationale (rationale behind the variations) is captured
within the process of variability identification, and
provides reasoning and justification behind the
variations. Similarly we can identify the constraint
dependencies (requires & excludes e.g. Table 4) and
alternative choice (Table 3), as well as capture the
rationale behind them using the involvement of
distributed expertise.

Issue: What is the alternative choice of the Routing
Management?
Criteria U

sability
PL

M
em

ory PL

Price PL

Traffic
intensity

PL

Option1: A range of 0..2 is
supported.

++ 0 0 +

Option2: A range of 0..3 is
supported.

-- -- -- 0

Resolution: Option1 is decided to be alternative choice
of the Routing Management, because of better usability
and support of traffic intensity.

Table3: Justification Matrix for Alternative
Choice

Issue: What is the constrain dependency between Live
traffic data and Traffic congestion?
Criteria U

sability
PL

M
em

ory PL

Price PL

Option1: Traffic congestion
requires Live traffic data

++ 0 --

Option2: Bi-directional excludes
between Live traffic data and
Traffic congestion

0 + +

Option3: No constraint dependency
is required

0 0 --

Resolution: Option2 is decided because of better
assessments in memory and price.

Table4: Justification Matrix for Constraint
Dependency

In section 5, we model variation points as issues.

In the view of domain engineering, the issue of the
variation point is “Why do we have variation?”. In
SYSIPHUS, an issue can be linked to many issues
(refer Figure 1). So the variation point is linked to
the issues of variability dependencies and constraints
(in the running example Table 2, Table 3 and Table 4
). These justification matrices answer the issue of the
variation point and further address the Problem1 of
Section1. Thus, linking the issue of the variation
point to the issues of dependencies and constraints,

captured rationale information is integrated into the
variability models. Doing this we provide model-
based reasoning and justification for variations along
with the representation of mass-customization forces
in the form of criteria. Further the criteria of the
justification matrices captured in the variability
identification can be reused for product instantiations,
e.g. criteria Memory, Usability, Traffic intensity and
Price are reused from Table 2, Table 3 and Table 4 to
Table 1. Please note that, while reusing the criteria of
the captured variability rationale for the product
instantiation, their qualities are to be adjusted based
on the quality concerns of the customers. This is done
using the conflict resolution technique of
SYSIPHUS.

Capturing rationale for variations improves the
global understandability of the variability models.
Further rationale provides information related to the
instantiation of the variability models (e.g. criteria of
the variability rationale). As the variability models
are to be instantiated for global markets, variability
models with rationale as per issue-based variability
modeling are very useful in the context of global
product line engineering.

Issue: What is the variability dependency of the Voice
Guidance in Routing Management?
Criteria U

sability
PL

M
em

ory_1
PL

Price_1
PL

Option1: Mandatory dependency is
supported

++ + 0

Option2: Optional dependency is
supported

0 - 0

Resolution: Variability dependency of Voice guidance is
decided to be mandatory because of better assessments in
usability and memory.

Table5: Update of justification matrix

6.3 Variability evolution

The capture of the variability rationale can support
the evolution of the variability models. As per Table
2, Voice guidance is justified to be optional. On the
passage of time MemoryPL and PricePL criteria of
Table 2 are changed to Memory_1PL and Price_1PL.
Due to the change of the mass customization forces,
the state of the justification matrices has changed
(from Table 2 to Table 5) and this leads to turning
Voice guidance into a mandatory variant. In this
particular update is done using the collaboration of
two stakeholders, who are not involved in the
building Table 2. Please note that the product lines

GREW'07 - Page 18 of 66

live for a longer period of time, and the capture of
variability rationale can support their evolution
continuously over their life.

6. Empirical evaluations

Issue-based variability modeling enables the
modeling of variation points using issues in domain
engineering and support their instantiation using
justification matrices (a specific view of the issue
model) in application engineering. Therefore domain
engineering and application engineering are done on
the same basis i.e. issue model. Further the criteria of
the variability rationale captured in domain
engineering, is reused in application engineering.
This can bring domain engineering and application
engineering together and addresses Problem2.
Activities like variability identification (Table 2,
Table 3 and Table 4), product instantiation (Table 1)
and variability evolution (Table 5) are done using the
informal collaboration of the stakeholders. This
addresses Problem3. The capture of the rationale
behind variations addresses Problem1 as discussed in
section 7. Thus issue-based variability modeling
addresses the problems raised by this paper.

The issue-based variability modeling is
implemented as the variability plug-in to the
SYSIPHUS by an industrial organization. This
tailored most of the SYSIPHUS functionalities such
as traceability, justification matrices etc for the
product lines and provides extensive tool support for
global product line requirements engineering. Please
note that the existing state of SYSIPHSUS as
published in [6] supports sharing models in a
distributed environment and enables the distributed
design and update of models based an event
mechanism. The variability-plugin of SYSIPHUS
exploits the same techniques to share the justification
matrices and the variability models. Using the
variability plugin an experiment is conducted with in
a group of 23 people (not related the automobile
company of section 4) with various cultural and
professional backgrounds. The people are randomly
divided into an experimental group of 12 (using
SYSIPHUS with issue-based variability modeling)
and a control group of 11 (using OVM and
communicating on Skype, telephones and emails).
Both the experimental group and the control group
members are distributed in different locations, in a
similar way. This experiment considered 53 variation
points from the domains of domestic appliances and
infotainment systems obtained from the industrial
requirements specifications. Both the experimental
and control groups worked on the same variation
points. In this we observed that:

• The average time taken to instantiate variation

points in the experimental group was lower (by
30%) to that of control group.

• We performed several product instantiations, and
on average 76% of the criteria of the captured
variability rationale is reused in the experimental
group. This justifies the capture of variability
rationale as per section 7. Please note that the
reuse of criteria is illustrated in section 5 (criteria
from Tables 2, 3 & 4 to Table 1).

• At the end of the experiment a self-administrated
questionnaire was given to the participants of the
experimental and the control group. Q1 (please
refer appendix section) is a research question in
the questionnaire given to the participants. The
responses were collected from them. The
response choices (Very high, High, Fair, Low,
Very low and No information available) are
coded [25], and the mean quality is computed for
the response frequencies of both the
experimental and control group data. The mean
quality of the data (from Q1) collected from the
experimental group is 80% more than the mean
quality of the control group data. This justifies
that the issue-based variability modeling
provides more information to change variations
than the OVM.

We did an attempt to use a descriptive survey for

evaluating the application of the notations of the
justification matrices for global requirements
engineering, with interview as a survey instrument
[25]. The idea of this survey is to measure the
qualities of the simplicity related parameters of the
justification matrices such as understandability,
easiness, learnability, usefulness for informal
collaboration and willingness to adopt in cultures
such as European, Chinese and Indian using the
research questions Q2, Q3, Q4, Q5 and Q6. 20
professionals are sampled from each culture and are
interviewed. We observed that all the parameters
recorded a mean quality higher than 93% in all
cultures. This gives some evidence that the
representations of the justification matrices are
understandable in various cultures and therefore can
be a good medium of communication between
various cultures. Further variability rationale
represented using these justification matrices (which
are understood in various cultures) improves the
understandability of the variability models in various
cultures.

GREW'07 - Page 19 of 66

7. Conclusion

SYSIPHUS is the global software engineering
technique, which uses the issue model (a rationale
model) as the communication model. This paper
proposes a new technique to model variations, issue-
based variability modeling, which is obtained by
engineering the variability meta-model on the issue
model of SYSIPHUS. Issue-based variability
modeling is implemented as a variability plug-in to
the tool SYSIPHUS and is evaluated empirically
using an experiment and a survey. From our
research, implementation and empirical evaluation
experience we conclude that:

• Issue-based variability modeling supports

variability modeling similar to the existing
techniques (such as OVM & FODA), and uses
communication artifacts of SYSIPHUS to model
variation points. Additionally it supports aspects
such as informal collaboration, capture of rationale,
instantiation and evolution of variation points.
Further the issue-based variability modeling uses
the graphical representation standard proposed by
Pohl in [2].

• The notations of the justification matrices are very
simple notations, which can be understood in
various cultures. Therefore they are good
representations of the communication artifacts.
This is also evaluated using a survey.

• The empirical evaluations of this paper show
positive results on the aspects like instantiation
support and evolution support of the variability
models. But they do not validate aspects like
external validity, usability in a various teams with
different skill and motivation levels, and the long-
term usefulness of rationale. Therefore they are
planned for future.

Acknowledgements

We would like to thank Dr. Peter Amthor (Siemens
CT SE1), Dr. Allan Dutoit (TUM) and Dr. Guenter
Boeckle (Siemens CT SE3) for their support in our
research.

References

[1] P. Clements and L. Northrop, “A Framework for
Software Product Line Practice-Version 4.2 [online]”.
Carnegie Mellon, Software Engineering Institute URL:
http://www.sei.cmu.edu/prodvolnuctlines/framework.html,
Pittsburgh, USA, 2006.

[2] K. Pohl, G. Böckle, F. van der Linder, Software Product
Line Engineering Foundations, Principles, and Techniques,
Springer 2005.
[3] A.K Thurimella, “Rationale-based Variability
Management in Product Line Requirements Engineering”,
IASTED Software Engineering 2007, Innsbruck, February
13 to 15 2007.
[4] A. Dutoit, R. McCall, I. Mistrik, B. Paech, Rationale
Management in Software Engineering, Springer 2006.
[5] Allan MacLean, Richard M. Young, Victoria M.E.
Bellotti, and Thomas P. Moran, “Questions,options, and
criteria”. Elements of design space analysis, Human-
Computer Interaction, 6(3-4),1991, 201–250.
[6] B. Bruegge, A.H. Dutoit, T. Wolf, “Sysiphus: Enabling
informal collaboration in global software development. In
Proceedings of the First International Conference on
Global Software Engineering”, Costão do Santinho,
Florianópolis, Brazil, October 16-19 2006.
 [7] H. Gomaa, Designing Software Product Lines with
Uml: from Use Cases to Pattern-Based Software
Architectures, Addison Wesley Longman Publishing Co.,
Inc 2005.
 [8] Kang.C.Kyo, Sholom, G.Cohen, James, A.Hess,
William, E.Novak, and A.Spencer Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study”,
Technical Report: CMU/SEI-90-TR-21. Software
Engineering Institute. Carnegie Mellon University, 1990.
[9] L. Hotz, T. Krebs and K. Wolter, “Using a Structure-
based Configuration Tool for Product Derivation”, 19th
IEEE International Conference on Automated Software
Engineering (ASE'04), 2004, pp. 388-391.
[10] Anton Jansen, Rein Smedinga, Jilles van Gurp and Jan
Bosch, “Feature-based Product Derivation: Composing
Features”, IEE Proceedings Software - special issue on
Software Engineering, August 2004.
[11] Sybren Deelstra, Marco Sinnema and Jan Bosch.
Product Derivation in Software Product Families: A Case
Study, Journal of Systems and Software, Volume 74, Issue
2, 15 January 2005, pp. 173-194.
[12] T. Krebs, K. Wolter and L. Hotz, Model-based
Configuration Support for Product Derivation in Software
Product Families. Workshop Planen, Scheduling und
Konfigurieren, Entwerfen (PuK2005) -- KI 2005 Workshop
[13] P. Kruchten, "An ontology of architectural design
decisions in software intensive systems". In 2nd Groningen
Workshop on Software Variability, December 2004, pages
54--61.
[14] P. Grünbacher, “Collaborative Requirements
Negotiation with EasyWinWin”, 2nd International
Workshop on the Requirements Engineering Process,
Greenwich, London, IEEE Computer Society, 2000, pp.
954-960.
[15] P. Keil, D. Paulish, R. Sangwan,
“Cost Estimation for Global Software Development”,
Proc. of the Int. Workshop on Economics-Driven Software
Engineering Research (EDSER), Shanghai, China, 2006,
pp. 7-10.
[16] Izquierdo, L., D. Damian, and D. German,
“Requirements management in special case of global
software development: a study of asynchronous
communication in the open source community”, Proc. of

GREW'07 - Page 20 of 66

Int. Workshop on Distributed Software Engineering, Paris,
Aug. 2005
[17] Damian, D. and Zowghi, D., “Requirements
Engineering challenges in multi-site software development
organizations”, Requirements Engineering Journal, 8,
2003, pp.149-160.
[18] D. Herlea and S. Greenberg, “Using a groupware
space for distributed requirements engineering”, Proc. of
the Seventh IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
June 1998, pp. 57-62.
[19] Deepak Dhungana, Rick Rabiser, Paul Grünbacher,
Christian Federspiel, Klaus Lehner, "Architectural
Knowledge in Product Line Engineering: An Industrial
Case Study", 32nd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA),
Cavtat/Dubrovnik (Croatia), August 29-September 1, 2006
[20] Deepak Dhungana, Rick Rabiser, Paul Grünbacher,
"Coordinating Multi-Team Variability Modeling in Product
Line Engineering", Proceedings 2nd Workshop on
Supporting Knowledge Collaboration in Software
Development, Tokyo, Japan, 2006.
[21] Muhammad Asim Noor, Rick Rabiser,
Paul Grünbacher, "A Collaborative Approach for
Reengineering-based Product Line Scoping", Proceedings
1st International Workshop on Agile Product Line
Engineering (APLE'06), Baltimore, USA, 2006
[22] Rick Rabiser, Deepak Dhungana, Paul Grünbacher,
"Integrating Knowledge-Based Product Configuration and
Product Line Engineering: An Industrial Example", ECAI
2006 Workshop on Configuration, Affiliated with the 17th
European Conference on Artificial Intelligence (ECAI
2006), August 28 - 29, Riva del Garda, Italy, 2006
[23] L. Hotz, A. Gunter, and T. Krebs, “A Knowledge-
based product derivation process and some ideas how to
integrate product development”, In Proc. of Software
Variability Management Workshop, pp. 136--140,
Groningen, The Netherlands, (February 13-14 2003).
[24] Paech, B., Dorr, J., and Koehler, M. 2005, “Improving
Requirements Engineering Communication in Multiproject
Environments”, IEEE Softw, volume 22, Jan. 2005, pp 40-
47.
[25] A. Fink, The survey handbook, Sage Publications Inc,
2003.
[26] sysiphus.in.tum.de

Appendix: Research questions

Q1. Suppose you have change requests for the
variations in the variability model. Is there useful
information in the variability model that helps you to
justify, if the change requests can be applied?

Answer: Please select only one of the following

 [] Very high
 [] High
 [] Fair
 [] Low

 [] Very low
 [] No information available
 [] Don’t know the answer

 Additional Comments:

Q2. To what extent do you understand the
representations of the justification matrices?

Answer: Please select only one of the following

[] 90 to100% (1)
[] 70 to 90 % (2)
[] 40 to 70% (3)
[] Below 40% (4)
[] Not at all (5)

Additional Comments:

Q3. How easy/difficult for you are the
representations of the justification matrices?

Answer: Please select only one of the following

[] Very easy
[] Easy
[] Fair
[] Difficult
[] Very difficult
[] Don’t know

Additional Comments:

Q4. How easy/difficult is for you to learn the
representations of the justification matrices?

Answer: Please select only one of the following

[] Very easy
[] Easy
[] Fair
[] Difficult
[] Very difficult
[] Don’t know

Additional Comments:

Q5. How useful are the representations of the
justification matrices for the informal collaboration
between people of various cultures?

Answer: Please select only one of the following

[] Very useful
[] Fairly useful
[] Useful

GREW'07 - Page 21 of 66

[] Less useless
[] Useless
[] Don’t know

Additional Comments:

Q6. Do you adopt the representations of the
justification matrices for the informal collaboration?
Why?

Answer: Please select only one of the following

[] Definitely
[] Probably
[] Maybe
[] No
[] Don’t know

Additional Comments:

GREW'07 - Page 22 of 66

The Effects of Communication Mode on Distributed Requirements
Negotiations

Teresa Mallardo1, Fabio Calefato1, Filippo Lanubile1, Daniela Damian2

1University of Bari, Dipartimento di Informatica, Bari, Italy
2University of Victoria, Department of Computer Science, Victoria, Canada

Abstract

Videoconferencing is generally considered as the
most appropriate medium to conduct requirements
negotiations between remote stakeholders. To improve
the effectiveness of distributed requirements
negotiations, drawing upon the postulates of theories
on media selection, we argue that a combination of
lean and rich media is needed. In this paper we
empirically test the hypothesis that the early resolution
of uncertainties through an asynchronous lean medium
can shorten the list of open issues to be negotiated
over a synchronous rich channel.

1. Introduction

Requirements negotiation is one of the most
complex and communication intensive practice of
software engineering, especially in distributed
scenarios, where arranging collocated meetings is
often impractical. Previous studies in the field of
Requirement Engineering [5] [9] indicate that
videoconferencing is the most appropriate medium for
effectively conducting distributed negotiations, thanks
to its synchronicity (i.e., the capability of conveying
information in a timely manner) and richness (i.e., the
ability to convey the sense of physical presence of
individuals, as well as a number of visual and verbal
cues). However, while videoconferencing sessions
come with an additional overhead (e.g., the costs of
infrastructure setup and maintenance), even when
everything runs smoothly [11], it is still hard to
conduct a long-running and productive discussion
during a videoconference, especially when more than a
few people are involved. In contrast, asynchronous
lean media, such as email or discussion forums, lacks
all these abilities (e.g., one cannot see people nodding
in text-based communication). Thus, to improve the
effectiveness of distributed requirements negotiations,
drawing upon the postulates of theories on media
selection, we argue that a combination of rich

synchronous media and lean asynchronous media is
needed.

The Media Richness theory [1] [2] is one of the
most prominent in the field of computer-mediated
communication (CMC) studies. It posits the existence
of two complementary forces, namely uncertainty,
which act on individuals when they process the
information exchanged to execute a task. Uncertainty
represents the lack of required information, whereas
equivocality represents the existence of multiple and
conflicting interpretations of available information
However, during the execution of a complex task like
requirements negotiations, communicating and
agreeing on requirements involves a constant interplay
between both collecting further information about
requirements and their context (i.e., uncertainty
reduction), and resolving ambiguities,
misunderstandings, or conflicts in requirements (i.e.,
equivocality reduction) [10]. In addition, the Media
Switching theory [12], a more recent theory on CMC,
has analyzed communication from a cognitive
perspective, arguing that while rich media are useful in
ensuring commitment to the task execution, they allow
individuals a substantially lower ability to properly
(re)process information at will, as compare to lean
media. Thus, from the consistent combination of these
two theories we argue that, on the one hand, rich
synchronous communication is better suited for
resolving the ambiguities that may arise in the
discussion of requirements issues. On the other hand,
when discussing issues or inspecting requirements
documents, stakeholders may also need time to process
information properly and sift through the issues
outside of the meeting, at will and in a less interactive
manner. Hence, lean asynchronous communication can
more effectively support stakeholders in thoroughly
analyzing issues, as well as in resolving issues of
uncertainty by conveying missing information.

In two of our previous studies [3] [4], we have
already shown that asynchronous discussions improve
the effectiveness of synchronous requirements
negotiations. Instead, in this paper we aim at

GREW'07 - Page 23 of 66

investigating the hypothesis that the resolution of
uncertainties through an asynchronous discussion,
conducted before the synchronous negotiation meeting,
can shorten the list of requirements with open issues to
be negotiated in a real-time manner. Rich media
negotiation meetings will thus be mostly focused on
reducing ambiguities (equivocality) in requirements. In
this way the overall effectiveness of the requirements
engineering process can be increased by cutting down
the number of issues that remain open after the final
synchronous negotiation.

The remainder of the paper is organized as follows.
Section 2 describes the experiment in detail, including
the design, the variables and hypotheses, and the
threats to validity. Section 3 describes the results
whereas Section 4 discusses the findings from the
experiment. Finally, conclusions and future work are
presented in Section 5.

2. The Empirical Study

The study was performed during a software
engineering course, held in Spring 2005, and organized
by three universities: University of Bari (Italy),
University of Victoria (Canada), and University of
Technology, Sydney (Australia).

Thirty-two students (10 Italians, 12 Canadians, and
10 Australians) were divided into six international
project teams. Each team was formed by a client group
and a developer group, interacting remotely. All the
members of each group were, instead, always
collocated. As shown in Table 1, each Canadian and
Australian group was involved in two different
projects, playing the role of client (C) and developer
(D), respectively. Instead, each of the two Italian
groups was involved in only one project, either as a
client (Gr6cl) or as a developer (Gr6dev).

The study used three distinct projects, each with
two instances. Project A (A1 and A2 in Table 1) was
to design a Global software development system to
facilitate GSD collaboration. In project B (B1 and B2)
the students designed the interface for a “iMedia”
software to allow users to purchase movies online,
organize and play their movies. Finally, project C (C1
and C2) involved the design of a real estate system.

The outcome of each project was a software
requirements specification (SRS) resulting from the
mutual agreement reached by the client group and the
developer group. This mutual agreement was
developed through a series of scheduled activities.
First, a Request for Proposal (RFP) was produced by
the client group and discussed during the requirements
elicitation meeting, held in a videoconference by the

entire team (both clients and developers). Then, the
SRS was developed by the developer group in each
project, with the client team providing feedback. This
feedback had been provided earlier, through an
inspection entirely performed online with the help of
the IBIS tool [8]. The inspection was carried out
individually by each member of the client team, who
participated in the Discovery stage by reading the SRS
and recording issues in the system. Each recorded
issue was classified according to the IEEE standard
taxonomy for good requirements documents (i.e., as
omission, ambiguous info, incorrect fact, inconsistent
info, not verifiable, or not modifiable) [7]. One of the
researchers collected all issues and merged duplicates
(i.e., issues found by more than one client) into a
unique list of collated issues.

Table 1. Groups of clients (C) and developers

(D) allocated to course projects

Country Group
Project A
(A1, A2)

Project B
(B1, B2)

Project C
(C1, C2)

PT1 PT2 PT3 PT4 PT5 PT6

Ca
Gr1 C D
Gr2 D C
Gr3 D C

Au
Gr4 D C
Gr5 C D

It
Gr6cl C

Gr6dev D

After the inspection, three teams out of six
participated in a four-day asynchronous discussion
using IBIS (i.e., in the Discrimination stage), and the
other three teams jumped into the negotiation without
asynchronous discussion. The purpose of the
asynchronous discussion was to reach an
understanding of each issue and identify those issues
that could be closed online (i.e., where resolution
could be reached without further negotiation) or
remained open issues (everything else, which had to be
further negotiated in real-time discussion). The process
of closing issues used two mechanisms in IBIS: a
discussion thread consisting of messages with respect
to a certain issue was created, and voting as to whether
it is still an open issue or is resolved and thus could be
closed.

Finally, all six teams attended the requirements
negotiation, which was held in a one-hour
videoconference meeting session involving the remote
developers and clients. The three teams that
asynchronously discussed prior to the negotiation had
to resolve only those issues that could not be closed
during the asynchronous discussion and thus, remained
open issues. The other three teams entered the

GREW'07 - Page 24 of 66

negotiation with the entire list of issues collated from
the inspection.

2.1. Study Design

As shown in Table 2, we manipulated as
independent variable the communication mode, with
the following two treatments: (1) mixed media and (2)
rich media-only.

Clients and developers in the mixed media teams
used the IBIS tool to asynchronously discuss and store
threaded discussions on requirements issues. The aim
was to come to an understanding of each issue by
exchanging messages and to reach an early resolution
through a common agreement expressed by voting.
Those open issues that could not be closed during
asynchronous discussion were then left for the
synchronous requirements negotiation.

Rich media-only teams skipped the asynchronous
discussion and all issues found at the discovery stage
were thus considered as open issues to be dealt at the
negotiation.

Table 2. Study design

project team
(client/developer) communication mode

A1 (gr1/gr4) rich media-only

B1 (gr2/gr6dev) rich media-only

C1 (gr3/gr5) rich media-only

A2 (gr5/gr2) mixed media

B2 (gr4/gr3) mixed media

C2 (gr6cl/gr1) mixed media

2.2. Variables and Hypotheses

To conceptualize the elements in our research
hypothesis, we defined the construct of the type of
issues being discussed during the asynchronous and
synchronous discussions. Our intention was to
distinguish between elements of uncertainty and
equivocality in the conversations. When an issue
indicated the absence of sufficient information in a
specific requirement and thus, implied a request of
explanation in form of extra information, it was
classified as uncertainty. Conversely, when an issue
indicated multiple and possibly conflicting
interpretations of a specific requirement and thus,
implied a request of explanation in form of
clarification, with no additional information, it was
classified as ambiguity (or equivocality). Therefore, we

measured the number of uncertainties and ambiguities
in all asynchronous and synchronous discussions.

To count uncertainties and ambiguities, we parsed
all the issues identified during the IBIS-based
discovery stage performed by clients. We included in
the uncertainty set all the issues classified under the
category “omission” of the IEEE taxonomy. Similarly,
we included in the ambiguity set all the issues
classified under the category “ambiguous info” of the
IEEE taxonomy. The issues classified in the remaining
categories of “incorrect fact”, “inconsistent info”, “not
verifiable” and “not modifiable” were also analyzed
and counted as part of the one of the two sets
depending on whether they required additional
information (i.e., could be resolved by removing
uncertainty and thus, classified in the uncertainty set)
or clarifications (i.e., meaning was ambiguous and had
to be clarified and thus, classified in the ambiguity set).

Thus, we formulated the following two hypotheses:

H1 During asynchronous discussions of mixed media
teams the percentages of closed uncertainties are
higher than the percentages of closed
ambiguities.

H2 During synchronous negotiations of all teams the
percentages of closed ambiguities are higher
than the percentages of closed uncertainties.

To investigate the H1 and H2 hypotheses, we

collected the following dependent variables:
% closed uncertainties during async discussion = the

ratio of closed uncertainties after async discussion
to uncertainties after discovery.

% closed ambiguities during async discussion = the
ratio of closed ambiguities after async discussion to
ambiguities after discovery.

% closed uncertainties during sync negotiation = the
ratio of closed uncertainties after sync negotiation
to uncertainties before sync negotiation.

% closed ambiguities during sync negotiation = the
ratio of closed ambiguities after sync negotiation to
ambiguities before sync negotiation.

Where closed issues (uncertainties or ambiguities)

are issues for which a consensus was reached between
developers and clients during discussions, either
asynchronous or synchronous.

Furthermore, to investigate the presence of extra

info and clarifications related to issues in the
conversation, we performed the content analysis (or
coding) on the transcripts of the video recorded
synchronous negotiations. One of the researchers

GREW'07 - Page 25 of 66

identified thematic units1 within negotiations’
transcripts, then two coders performed the coding
separately, and finally we counted the number of
thematic units classified as extra info and
clarifications. An extra info is a category specific for
issues classified as uncertainties which raises new
information about the issue that has not been elicited
yet. A clarification is a category for issues classified
both as uncertainties and ambiguities which states
explanation without adding new information about the
issue. Both categories do not include any form of
agreement or disagreement expression.

According to the previous hypothesis (H2), during
synchronous negotiations, mixed media teams were
more focused on closing ambiguities. Thus, we
expected that they provided more clarifications than
rich media-only teams. Conversely, because mixed
media teams closed most of the uncertainties
asynchronously (H1), during synchronous negotiations
they were expected to provide less extra info than rich
media-only teams. Therefore, we formulated the
following other two hypotheses:
H3 Mixed media teams use fewer clarifications than

rich media-only teams to reach a consensus.
H4 Mixed media teams use fewer extra info than rich

media-only teams to reach a consensus.

2.3. Threats to Validity

One of the key issues in experimentation is
evaluating the validity of results [13]. Thus in the
following we report the threats that are relevant for our
study.

Threats to internal validity influence the
conclusions about a possible causal relationship
between the treatment and the outcome of a study. The
following rival explanations for the findings have been
identified. Because in this study there were three
different project topics, we cannot exclude that the
topic and project complexity could have been a
confounding factor. Another threat to internal validity
occurs because we were not able to completely
randomize the selection and participants’ assignment
to the different groups. Indeed, while Australian and
Canadian students were exposed to both levels of the
independent variable, although with different roles
(clients or developers), Italian students were not able
to work on two projects and had the chance to choose
the experimental treatment.

External validity describes the study
representativeness and the ability to generalize the

1 A single thought unit or idea unit that conveys a single item of
information extracted from a segment of content [6].

results outside the scope of the study. We identified the
following threats to external validity. Involving
students as subjects of the study (both as clients and as
developers) may not be representative of the
population of professional stakeholders. However, this
threat is partially mitigated by the presence of
Canadian students, who were attending a specific
course on global software development and then were
trained on meeting protocols and negotiation
techniques for requirements engineering. Some
students had also previous working experience in the
software business.

Finally, conclusion validity concerns the relation
between the treatments and the outcome of the
experiment, regarding statistical methods, reliability of
measures and treatment implementation. In our study
an issue that could affect the statistical validity is the
size of the sample data (6 projects, 32 subjects), and
for this reason we performed non-parametric tests.

3. Results

To validate the H1-4 hypotheses we performed the
Wilcoxon matched pairs test as a nonparametric
alternative for dependent samples. The Wilcoxon’s
matched pairs test only assumes that the variables to be
compared are on an ordinal scale and that the
differences between the two variables can be rank
ordered too [13].

In testing H1, we compared the percentages of
closed uncertainties to that of closed ambiguities
during the asynchronous discussion for the three mixed
media teams. In testing H2, we compared the
percentages of closed uncertainties to that of closed
ambiguities during the synchronous discussion for all
teams.

With regard to the H1 hypothesis, Figure 1 shows
that asynchronous discussions were more useful to
close uncertainties than ambiguities, as expected.
Although participants had a high number of
uncertainties to be discussed during the asynchronous
discussion, they were able to close many of them.
During the asynchronous discussions of all the three
mixed media teams, the percentages of closed
uncertainties (0.53%, 0.91%, and 0.53%, respectively
for A2, B2 and C2) were always higher than the
percentages of closed ambiguities (0.33%, 0.82%, and
0.0%, respectively for A2, B2 and C2). The Wilcoxon
test was significant at the 10% level (Z=1.603,
p=0.10).

With regard to the H2 hypothesis, Figure 2 shows
higher percentages of closed ambiguities than closed
uncertainties during synchronous negotiation for each

GREW'07 - Page 26 of 66

of the six projects, according to our expectation. Also
in this case the difference is statistically significant at
the 10% level (Z=1.603, p=0.10).

With regard to the H3 and H4 hypotheses, we
performed the content analysis on the negotiations’
transcripts. The inter-coder agreement between the two
coders was measured by Cohen’s kappa and ranged
from 0.84 (for project A2) to 0.94 (for project A1).
Our interest was in observing any differences between
the numbers of extra info and clarifications recorded
for the rich media-only vs. mixed media teams. In
testing the H3 and H4 hypotheses we found the
following results (see Table 3):
(1) the mixed media teams had significantly higher

numbers of clarifications per issue (Z=1.963,
p=0.04) than the rich media-only teams;

(2) the number of extra info per uncertainty were
significantly lower for the mixed media teams
(Z=1.963, p=0.04).

4. Discussion

The quantitative analysis of data indicates that, as
compared to the synchronous discussions, in the
asynchronous discussions participants closed more
uncertainties than ambiguities. Consequently,
participants who had already run an asynchronous
discussion (i.e., belonging to mixed media teams)
could start the videoconference negotiation meeting
with a shorter list of open issues to be discussed
(mostly ambiguities). Instead, for rich media-only
teams more ambiguities than uncertainties were closed
during the videoconference negotiation meeting (i.e.,
the only media participants used).

Moreover, results of the content analysis indicate
that a lower number of extra info units were recorded
consistently for the mixed media teams. In other
words, participants of mixed media teams in the
negotiations did not provide additional information for
those uncertainties already discussed asynchronously
but that remained still open.

Our findings are consistent with the predictions of
media selection theories described [1] [2] [12], since
asynchronous discussions resulted more effective for
reducing the uncertainty in requirements, whereas
synchronous discussions more effectively reduced the
ambiguity in requirements. In particular, while rich
media high in social presence – such as synchronous
videoconference meetings – are needed for converging
to a shared agreement, lean media low in social
presence – such as asynchronous text-based
discussions – are valuable in providing an early

0,00

0,20

0,40

0,60

0,80

1,00

1,20

% closed uncertainties
during async discussion

% closed ambiguities during
async discussion

B2

A2

B2

A2 C2

C2

Figure 1. Uncertainty and equivocality

reduction during async discussion

0,00

0,20

0,40

0,60

0,80

1,00

1,20

% closed uncertainties during
sync negotiation

% closed ambiguities during
sync negotiation

A1
B1

C1

A2

B2

C2

A1
B1

C1

A2

B2

C2

Figure 2. Uncertainty and equivocality

reduction during sync negotiation

Table 3. Results from the content analysis
 rich media-only mixed media

 A1 B1 C1 A2 B2 C2

discussed
issues 34 50 31 12 12 13

thematic
units 350 245 298 174 141 125

clarifications
per issue † 3.03 1.66 3.32 5.42 4.67 3.62

extra info per
uncertainty ‡ 1.81 1.09 2.00 0.63 0.86 0.44

† values we compared to test the H3 hypothesis
‡ values we compared to test the H4 hypothesis

mechanism to structure the discussion of requirements
issues before synchronous negotiation sessions.

Although synchronous videoconferencing meetings
ensure project stakeholders’ motivation and attention
in the discussion of possibly conflicting requirements,
the high social presence, important in supporting the
social relationships, may also impede unbiased or
prompt decisions. Asynchronous text-based

GREW'07 - Page 27 of 66

communication medium emerges as a useful
complement in preparation for such meetings: they
allow the group participants to process information and
consider requirements issues and provide missing
information (reducing uncertainty) at their own time
and pace. Moreover, asynchronous discussions
allowed shortening the duration of synchronous
negotiations that were effectively carried out in a one-
hour videoconference session.

5. Conclusions & Future Work

In this paper we have presented an empirical study
on the effects of rich-media synchronous
communication (i.e., through videoconferencing) and
lean-media asynchronous communication (i.e., through
a web-based discussion forum) in distributed
requirements negotiations. The study was conducted in
collaboration of three universities in three countries
(Australia, Canada, and Italy).

Our findings have shown that, during rich
synchronous discussions, remote stakeholders closed a
statistically significant higher number of ambiguities
than uncertainties. Conversely, during lean
asynchronous discussions, stakeholders were able to
close a significantly higher number of uncertainties
than ambiguities.

These results have a practical impact in the design
of a new toolset, which has to include a combination of
synchronous/asynchronous media for effectively
supporting distributed requirements negotiations.
Then, such toolset would be capable of shortening the
duration of a synchronous negotiation, conducted over
a rich-medium, by running first an asynchronous
discussion over a lean medium to cut down the number
of issues left open to discuss.

As future work, in order to gain a more in depth
understanding of ways in which structured
asynchronous discussions can support remote teams
resolve open issues prior to negotiations, we are
analyzing the broader context in which this causal
relationship was observed. In particular, we are
analyzing the negotiation meetings behavior, by
measuring the conversational efficiency in terms of
speaking turns and words, and the process, by
classifying the types of turn (e.g., questions,
agreements), exchanged to reach mutual agreement on
issues. This will enable us to understand which factors
in the computer-mediated collaborative process
contributed to these results. We thus hope to draw
more detailed guidelines on conducting structured
asynchronous discussions in support of expensive but
important synchronous requirements negotiations.

Acknowledgements

This work is partially supported by MiUR-Italy,
under grant PRIN 2006 “METAMORPHOS”.

References

[1] R.L. Daft and R.H. Lengel, “Information Richness: A

New Approach to Managerial Behaviour and
Organizational Design”, in BM. Staw and L.L.
Cummings (eds.), Research in Organizational
Behaviour, CT JAI Press, Vol. 6, 1984, pp. 191-233.

[2] R.L. Daft and R.H. Lengel, “Organizational
information requirements, media richness and
structural design”, Management Science, Vol. 32, No.
5, 1986, pp. 554-571.

[3] D. Damian, F. Lanubile, and T. Mallardo, “The Role of
Asynchronous Discussions in Increasing the
Effectiveness of Remote Synchronous Requirements
Negotiations”, Proc. of the Int’l Conf. on Software
Engineering (ICSE’06), ACM Press, 2006, pp. 917-
920.

[4] D. Damian, F. Lanubile, and T. Mallardo, “An
Empirical Study of the Impact of Asynchronous
Discussions on Remote Synchronous Requirements
Meetings”, LNCS, Vol. 3922, Springer-Verlag, 2006,
pp. 155-169.

[5] D. Damian and D. Zowghi, “Requirements Engineering
challenges in multi-site soft-ware development
organizations”, Requirements Engineering Journal,
Vol. 8, pp. 149-160, 2003.

[6] F. Henri, “Computer conferencing and content
analysis”, The Najaden papers, Springer-Verlag, 1991,
pp.117-136.

[7] IEEE Std IEEE-Std-830-1998, IEEE Recommended
Practice for Software Requirements Specification,
IEEE CS Press, 1998.

[8] F. Lanubile, T. Mallardo, and F. Calefato, “Tool
Support for Geographically Dispersed Inspection
Teams”, Software Process: Improvement and Practice,
Vol. 8, No. 4, 2003, pp. 217-231.

[9] W.J. Lloyd., M.B. Rosson, and J.D. Arthur,
“Effectiveness of Elicitation Techniques in Distributed
Requirements Engineering”, Proc. of the Int’l Conf. on
Requirements Engineering (RE’02), 2002, pp. 311-
318.

[10] L. Macaulay. Requirements Engineering. Springer,
1996.

[11] S.E. Poltrock and J. Grudin, “Videoconferencing:
Recent Experiments and Reassessment”, Proc. of the
Int’l Conf. on System Sciences (HICSS-38), 2005.

[12] L.P. Robert and A.R. Dennis, “Paradox of Richness: A
Cognitive Model of Media Choice”, IEEE
Transactions on Professional Communication, Vol. 48,
No. 1, 2005, pp.10-21.

[13] C. Wohlin et al., Experimentation in Software
Engineering: An Introduction, Kluwer Academic
Publishers, 2000.

GREW'07 - Page 28 of 66

The Effects of Distance, Experience, and Communication Structure on
Requirements Awareness in Two Distributed Industrial Software Projects

Irwin Kwan, Daniela Damian, and Sabrina Marczak
Software Engineering Global Interaction lab (SEGAL)

University of Victoria
3800 Finnerty Road, Victoria, BC, Canada
{irwink, danielad, smarczak}@cs.uvic.ca

Abstract

In global software development, communication is dif-
ficult due to distance between sites. How effectively do
team members distributed among multiple geographical
locations become aware of changes and clarifications to
requirements? In a case study of two different global
software development projects, we observed how require-
ment analysts, developers, and testers maintain awareness
of changes in the project. To gather data, we attended
local and remote meetings, and conducted interviews of
project team members. Based on our experience with these
projects, we discuss the following awareness factors in soft-
ware development: distance, experience of team members,
and communication structure. We present the effects on
awareness, and provide some lessons learned for global
software development projects. We expect these lessons
learned can be used by projects with similar settings.

1. Introduction

In software development, a software developer should
keep aware of events that are occurring in a software de-
velopment project. Awareness, in the context of software
development, is whether a software developer working in
a project has knowledge of events, such as changes to a
requirement suggested by a customer, that occur in the
project. The communication that informs a developer about
an event is an awareness notification. This awareness be-
comes especially important in global software development,
where distance can have an effect on the quality of commu-
nication among project team members [2, 10].

It is believed that informal communication is a strong
contributor to awareness within a project [4]. Developers
have been observed to spend a significant amount of time
engaging in informal communication [11] and in group ac-

tivities [9]. Lack of awareness is costly: A leader who does
not maintain his knowledge of the application’s design may
be unable to manage the team effectively, and can lose con-
tact with the customer [12]. A developer must be aware of
the latest project developments and must remain synchro-
nized with the information available to the rest of the team
or problems with design, quality, and cost may occur.

This paper reports observations made during a case study
regarding awareness in software development. We con-
ducted a field study of two different globally-distributed in-
dustrial software projects in the Brazilian development cen-
tre of an American company. One project does distributed
development divided among Brazil and United States (US)
development offices, with its business clients in the US. The
other project does co-located development in Brazil, with its
business clients in the US.

The paper is organized as follows. We describe the con-
text of the study, including the company and the projects, in
Section 2. We describe the data collected in Section 3, and
our observations in Section 4. We explain factors that may
have affected awareness in Section 5 based on our observa-
tions and provide some lessons learned that may improve
awareness in an organization in Section 6. We conclude the
paper in Section 7.

2. Case Study Context

We conducted an observational study of two projects in
the Brazilian subsidiary of an American company, which
we will call ORG for confidentiality reasons. ORG has of-
fices all over the world, including development centres in
the US, Brazil, and India. ORG assembles and ships its
products world-wide, and has an extensive I/T department
to support its internal processes. The ORG unit in Brazil
is an organization recognized as SW-CMM Level 2, and
the unit is working on the definition of Level 3 processes.
This is a global software process improvement initiative to

GREW'07 - Page 29 of 66

align all the development processes. Each individual unit
defines how to use the set of standard tools available in the
organization. We observed two projects in the Brazil of-
fice, selected according to availability and easiness to reach
distributed members. Both projects involved communica-
tion and collaboration with remote clients in the US. We
describe the projects below; the project names have been
changed to maintain anonymity.

Shipping System The Shipping System project (SHIP)
updates and maintains an internal software product used by
ORG to support its shipping process. The product is ap-
proximately seven years old, and is a critical component of
the company’s business. The teams are located in the US
and in Brazil.

We were able to observe the last week of a maintenance
release, and the first 6 weeks of an enhancement release. At
the end of the observation period, the enhancement release
had approximately 10 weeks in its schedule before deploy-
ment.

Support Applications The Support Applications project
(APP) enhances and maintains a group of internal software
products used in ORG by product management and sales.
There are over 100 applications within this group, though
about twenty are considered critical to the operation of the
company. The applications are mature, and are undergoing
regular enhancements and maintenance. The project con-
tains a development group in Brazil, with the business part-
ners in the United States.

We observed 6 weeks of a maintenance and enhance-
ments release. At the end of the observation period, the
release had 6 weeks remaining in its schedule before com-
pletion.

2.1. Project Team Organization

We examined the similarities and differences between
two projects in an attempt to identify factors which may
have had an effect on awareness in distributed development
projects. We discuss the organization of the projects and
provide a brief outline of their processes below.

Both projects build software that supports internal pro-
cesses within the company. The requirements for the soft-
ware come from internal clients, which we call business
partners (BPs). BPs are employees of ORG, and may ne-
gotiate with external clients of ORG, may manage product
portfolios, and may be users of the end product.

2.1.1 Shipping System: Experienced Team with a De-
centralized Communication Structure

SHIP’s teams are a development team distributed geograph-
ically across two sites, and a test team located in Brazil.
The project manager, as well as the BPs, are in the US.
There are five developers in the US, including the develop-
ment lead with seven years experience, and the senior de-
veloper with five years of experience, allocated full-time to
SHIP. There are two developers in Brazil allocated full-time
to SHIP, including the Brazil development leader (Brazil
dev lead) with four years experience, and two developers in
Brazil allocated partially to SHIP. In addition, four contrac-
tors in a different building in Brazil are allocated in vary-
ing amounts to SHIP, though SHIP is their most important
project. There are four testers fully allocated to SHIP, lo-
cated in Brazil. There are two environment coordinators
(ECs), one in Brazil, and one in US, who have to manage
the development and test environments. The developers and
testers coordinate closely with these ECs. The team mem-
bers are working together for three years in average, and
they had run many projects on Shipping System portfolio.

The BPs communicate primarily with the project man-
ager, lead developer, and senior developer in US, as well
as the Brazil dev lead. Developers and testers are not en-
couraged to contact the business partners directly unless it
is through a team leader.

The team members in SHIP use face-to-face interaction,
instant messenger, phone, and E-mail extensively; the latter
three are used with remote team members. The Brazil dev
lead often meets with the test lead and the EC face to face.
The culture of the shipping system project encourages com-
munication among team members, even across geographi-
cal boundaries (Figure 1). A team member is encouraged to
contact any other team member for support. Because of this
open communication among the team members, we con-
sider SHIP as having a decentralized communication struc-
ture.

The SHIP team infrastructure features a version-control
system for code, and a test management tool for defect-
tracking, test cases and test results. Documents are stored
on a shared folder and only leaders have write-access to it.

2.1.2 Support Applications: Inexperienced Team with
a Centralized Communication Structure

APP is made up of 2 project managers (PMs), 5 business
analysts, 7 testers, and 25 developers divided into 4 devel-
opment teams in Brazil. One of these developers is the de-
velopment lead coordinator (dev lead coordinator). In total,
there are 39 people in the group. APP was formerly run by
I/T employees in the US, but the company began an initia-
tive to migrate application evolution to Brazil. Many of the
applications were missing documentation, and many of the

GREW'07 - Page 30 of 66

Brazil United States

Dev
Lead

Dev
Lead

Test
Lead

Project
Manager

Testers Developers Developers

Figure 1. Organizational Structure of SHIP,
with free communication among team mem-
bers occurring between the Brazil and US
sites.

employees who had originally developed the applications
had been transferred to other groups, or had left the com-
pany. Consequently, every team member in APP is new to
the product, with the most senior person having four months
of experience in the project.

In this structure, no cross-team communication is sup-
posed to occur without notification to the leaders of each
team. The team leaders and managers enforce the policy
that all cross-team E-mail communication must be CCed
to the appropriate team leaders (Figure 2). The purpose of
the CC is to ensure that the team leader can intervene in
the discussion to provide advice or feedback. Because the
organization is designed to control the flow of information
through team leads, we consider APP as having a central-
ized communication structure.

As a part of its infrastructure, APP uses a central version-
control system for requirements specifications and code.
All documentation is checked into a repository.

3. Data Collection and Analysis

We observed the software developers involved in each
project in local meetings and remote conference calls. We
also conducted semi-structured and free interviews during
a period of two months. The semi-structured interviews
scripts were prepared after a short period of observations,
and the free interviews were conducted according to events
were taking place that called for the researchers’ attention.

We conducted 14 interviews with the SHIP developers.
We interviewed 2 US developers, the test lead’s US mentor,
and 5 different Brazilian team members. We held multi-
ple interviews with the development leader (4) and the test
leader (2) to keep updated with project events, and to re-
ceive clarifications on observations.

We conducted 13 recorded interviews with the APP con-

BA
Lead

Test
Lead

Dev Lead
Coordinator

Dev
Lead

Dev
Lead

Dev
Lead

Dev
Lead

Project Managers

Project
Manager

Project
Manager

CC

CC

CC

TO

Testers Business Analysts

Developers

Figure 2. Organizational Structure of APP,
with an example of a tester communicating
with a developer

tributors in Brazil. We contacted 4 developers, 2 project
managers, 1 tester, and 5 business analysts. We conducted
two interviews with the BA lead.

We were able to gather project-related E-mail messages
from every member of the SHIP team members in Brazil
except 3. We were able to gather E-mail from only five
APP team members.

Through analysis of observations notes and interview
transcriptions we identified the awareness issues presented
as observations in the next section.

4. Observations of Awareness in Industrial
Practice in Distributed Development

In this section, we discuss observed situations which
highlight awareness issues we observed within SHIP. These
observations do not stress all situations observed. No
awareness issues within APP became apparent to us. This
feeling was corroborated with team members during inter-
views. It does not exclude the chances the issues were hid-
den, but it means they did not impact the team. We discuss
what the awareness issue was, how it was resolved, and the
potential effects on the project had the issue not been re-
solved in a timely fashion.

Observation 1: Domain knowledge not shared

A contractor in SHIP did not receive a document containing
domain knowledge related to one of his requirements, and
consequently lost an afternoon of work. The requirement
was to redesign a shipping label used by a client to meet
localization requirements. Because he did not receive all

GREW'07 - Page 31 of 66

of the information to code requirements, he designed proto-
type labels to send to the leaders for feedback. The Brazil
dev lead had a document from the client that contained clar-
ifications to a number of requirements, but he had forgotten
to forward it to the developer when the contractor was as-
signed the new label requirement.

The document, which describes the client’s updated label
standard, had been sent to every development lead by a BP
in 2005. The Brazil dev lead received a new E-mail message
on the BP list, which mentioned the label standard, which
prompted him to look up the document from past E-mail
archives and discuss it with the US development lead and
the US senior developer.

Just before a weekly team meeting, the Brazil dev lead
was discussing the prototypes that had been provided with
the US senior developer when he recalled the document de-
scribing the label standard. They both discovered that the
contractor did not receive the updated label standard. The
contractor found out about this document in the local team
meeting between all team members in Brazil.

Observation 2: Requirements clarifications late

The test team of SHIP did not receive requirement clarifi-
cations from the US project manager on time, despite the
fact that the development team received them. The test
lead in Brazil recalled a situation when she sent a list of
requirements questions from her team to the project man-
ager. She had also CCed to a senior developer in the United
States. When the project manager received clarifications, he
informed the developers, but forgot to inform the testers.

The senior developer in the US who received the origi-
nal copy of the message realized that the test team had not
received these clarifications, and forwarded them in E-mail
to the test leader, closing the awareness gap.

Although this situation was solved, a delay between
sending the clarifications to the development team and send-
ing the clarifications to the test team can mean that the test
team works on outdated requirements which may lead to
confusion especially when the development team and the
test team synchronize.

Obervation 3: Deadline not communicated

A meeting discussing the deadline for the final day of the
planning phase did not involve the test team. The test team
of SHIP was not informed about the exit date for the plan-
ning phase that was being discussed among the project man-
ager and some developers. However, an experienced test
lead from the US who was not allocated to the project, but
was acting as a mentor for the current test leader in Brazil,
was present in a conference call when she noticed that the
project manager was mentioning dates that seemed suspi-
cious to her. She spoke with the current test lead about the

situation, and then confronted the project manager to ensure
that he knew he was forgetting the test team in his planning.

The awareness issue was resolved quickly by the men-
tor and prevented any damage to the project. However, had
the test team not been made aware of the planning phase
deadline, coordination in the project would have been af-
fected. They may not have finished their estimations, their
task assignments, or their requirements questions before de-
velopment started.

5. Factors Affecting Awareness

We have identified some factors that may influence
awareness in each project. These include (1) the effect of a
distributed development, (2) the effect of experienced team
members, and (3) the effect of communication structure.

5.1. Effect of Distributed Development on
Awareness

Numerous sources have shown that distance between
team members has a significant impact on communication
[1, 8, 5]. SHIP was affected by awareness issues because of
the distance between its two development teams. In Obser-
vation 2, coordination creates a large delay in communica-
tion: The test team leader must contact the project manager
for requirements clarification over a large distance, and the
project manager must respond. Already, the response is de-
layed, which causes problems with the test team’s work.
However, the issue is compounded because distance also
reduces the project manager’s awareness of the test team.
In Observation 2 and 3, we see that the project manager
does not immediately contact the test team, and therefore
causes them to wait longer than would otherwise be nec-
essary. Fortunately, the presence of experienced members
on the SHIP team, as well as open communication among
these members, helped to mitigate the damage that aware-
ness problems may have caused.

APP did not have the same delays because the developers
were all colocated. This may be a reason why we did not no-
tice any awareness issues within APP. Only the clients were
remote, but BAs contacted the customer in the US regularly
and were able to promptly answer most of the developers’
questions.

5.2. Effect of Team Member Experience on
Awareness

It is well-known that experienced team members provide
great benefits to software engineering projects. One benefit
we have observed is their contribution to identifying and
resolving awareness gaps.

GREW'07 - Page 32 of 66

In both systems, experienced members take the role
of coordinators. In SHIP, the experienced team members
worked alongside each other team member, but were kept
up-to-date frequently using both formal and informal com-
munication, even across geographically-distributed sites.
We have observed that, in every awareness situation, the gap
in awareness was bridged by an experienced member who
realised that there was a knowledge gap, and took actions to
resolve the gap. For instance, in Observation 1, the Brazil-
ian lead, with the assistance of the US senior developer,
identified that the contractor did not have the label standard.
Observation 2, the senior developer from the US forwarded
information to the test team when she received a reply from
the project manager regarding the test team’s questions. In
Observation 3, the test leader’s mentor, from the US, iden-
tified that there was a gap in awareness between the project
manager, and the test team. We see in these cases that an
experienced member had an intuitive sense of where aware-
ness gaps existed, and took measures to fill those gaps.

In APP, experienced team members, serving as team
leaders, were hubs of communication, and were made aware
of every message sent across teams that were related to the
requirements or the design. The team leaders were copied
on each message so that they could intervene, thus avoiding
awareness problems.

5.3. Effect of Communication Structure on
Awareness

The way that team members coordinate, based on the
communication structure, has an effect on how aware each
team member is. The difference between the SHIP and the
APP communication structures are vastly different, which
may explain some of the awareness issues in SHIP.

The communication structure in SHIP is a decentralized
structure. Although there are clearly-defined development
leaders, the team members are not required to go through
the development leaders when contacting each other, al-
though there is extensive use of CCed E-mail. Because
communication was not structured in this group, there were
more communication paths (up to (n−1)2

2 lines of commu-
nication [6]), and therefore, more possibilities for a gap in
awareness. In Observation 1, the developer did not receive
the label requirements document that was supposedly sent
to each team member. Observation 2 and Observation 3
also highlight situations where a lack of structured com-
munication caused the project manager to forget to contact
the test leader. Despite the structure, the team was able to
stay aware of its requirements, especially during the volatile
planning phase, where requirements from the BPs came to
the team very loosely-defined. We did not see these aware-
ness problems in APP, where team leaders were able to in-
tervene if they observed gaps in awareness.

In an interview with the development lead coordinator
of APP, he stated that this structure is strong for new teams
such as APP until they can gain more experience. He men-
tioned the volume of E-mail as a problem. The develop-
ment lead coordinator also mentioned a vision for the team
to move toward “more decentralized communication” as it
gained more experience, and stated the advantages of de-
centralized communication as reduced communication on
team leaders, and faster information exchange among team
members. In this instance, we see a possible trade-off be-
tween how strict communication within a team is, and how
aware team members in the team are.

6. Lessons Learned

Based on our experience as researchers with the case
study, we have identified the following lessons in distributed
software development. These lessons should be applicable
to medium-sized distributed software projects with remote
customers that have similar project settings.

6.1. Experienced Team Members Bridge
Awareness Gaps

For most of the cases in which we observed an awareness
gap, the gap was bridged by an experienced team member
who had caught wind of the situation. In SHIP (the decen-
tralized group), the senior developer from Brazil, and the
senior developer from the US were able to intervene in or-
der to provide information to team members.

Based on this observation, an organization should try to
not only retain experienced team members in a team, but
also make them as accessible as possible, especially if the
experienced team member is remote.

6.2. Centralized Structures Keep New
Teams Aware

We have seen that experienced team members contribute
significantly in identifying and bridging awareness gaps. In
APP, the team members were very new to the application
domain, but yet, did not suffer from any awareness prob-
lems. In the team leaders were able to intervene if they
observed gaps in awareness. Although we cannot claim that
this was solely due to the use of a centralized structure, we
believe that this may have had an influence in preventing
awareness problems.

There are, however, some advantages to the decentral-
ized structure. Although the decentralized structure experi-
enced more awareness problems, we cannot claim that this
structure is worse than a centralized structure, namely be-
cause the projects cannot be compared directly. We found

GREW'07 - Page 33 of 66

that members in the decentralized team engaged in infor-
mal communication using E-mail and instant messenger
frequently with members of the remote site—usually mul-
tiple times a day. This was in contrast to a study performed
by Herbsleb and Grinter, which found that remote com-
munication did not occur unless scheduled [8]. Other ad-
vantages to the decentralized structure include less dense
communication and faster response times from colleagues,
but the decentralized structure may risk information over-
load [3]. Although there were awareness problems in SHIP,
the gaps were closed quickly, perhaps due to swift, unob-
structed communication even to remote sites.

A project may wish to strike a balance between a decen-
tralized and a centralized structure. However, in an organi-
zation with team members who are new to the domain, the
team members should communicate every message to their
appropriate team leader to ensure that leaders are aware of
what solutions are being discussed. Team leaders can easily
contribute to the discussion and remain aware of what the
team members are working on.

6.3. Frequent Meetings Improve Awareness
among Local and Remote Teams

Groups in ORG often use meetings to synchronize infor-
mation among project members. Every person interviewed
in the study mentioned the importance of regular meetings
to keep aware of project events. The majority of the groups
met twice a week to synchronize information among each
other. In SHIP, the group had one weekly meeting for every-
one at Brazil, and an additional meeting which included the
developers from the US on a different day of the week. A
group from APP met as often as five days a week, but scaled
back to three days a week after the team leader received
feedback that team members were not receiving enough
new information during each meeting.

To maintain awareness and ensure that team members
are up to date with the project’s events, the local team mem-
bers should meet face-to-face as a group, and remote team
members should meet together despite the distance. ORG
used conference calls for remote team meetings.

6.4. A Developer in a Distributed Team
who has Multiple Tasks Reduces The
Effect of Delays from Coordination

There is a significant delay when working in global soft-
ware development [8, 7], but parallelizing work may help
minimize the effect of this delay. When planning a project,
especially in a global software project, a manager should
consider assigning a number of stable requirements with an
unstable requirement to the same developer. This will al-
low a developer to explore the unstable requirements and

send appropriate questions to the remote team, or to the cus-
tomer. While waiting, he can work on stable requirements
and experience minimal downtime.

The developer in Observation 1 who did not receive the
documentation from the lead developer told us that he was
still productive even after he asked the business partners for
requirements details because he had other tasks to do.

The effect of the increased delay in global software de-
velopment may have been reduced because the developer
could work on other tasks. Although some time was lost
due to a lack of awareness about the requirement, the time
may not have been significant because he was able to work
on other, more stable requirements while waiting for more
information.

7. Conclusion

Awareness ensures that each team member is up-to-date
so he can do effective work. However, maintaining aware-
ness in a distributed development environment is extremely
difficult. From this case study of two distributed software
projects, we observed the following factors as having an ef-
fect on awareness. (1) A project with distributed develop-
ment sites reduces awareness. (2) Experienced team mem-
bers bridge awareness gaps. (3) A centralized communica-
tion structure may prevent awareness problems, but at the
cost of information overload [8].

There may be other factors that affect awareness in a
software development environment that we have not ob-
served. For example, requirements stability may be a factor.
A project that stabilizes its requirements early reduces the
need for communicating changes late in the project that may
lead to awareness problems. Cultural issues may have an
effect on communication and awareness. Our list of aware-
ness factors is far from complete.

We present the following lessons in our study. (1) Expe-
rienced team members can bridge awareness gaps, so ensure
they are accessible. (2) A centralized communication struc-
ture can help a new team keep aware. (3) Frequent meetings
improve awareness and help detect awareness issues. (4) A
developer in a distributed team with multiple tasks can be
productive when there are delays.

This is by no means a comprehensive list of recom-
mendations. This study is limited because the observa-
tions, though structured, are informal, and the sample size
is small. These lessons may not be applicable to every dis-
tributed development project, but we believe that they are
useful to those who wish to improve communication, coor-
dination, and awareness in their projects.

GREW'07 - Page 34 of 66

References

[1] T. J. Allen. Managing the Flow of Technology: Technology
Transfer and the Dissemination of Technological Informa-
tion Within the R&D Organization. The MIT Press, January
1984.

[2] D. Damian. Stakeholders in global RE: Lessons learned
from practice. IEEE Software, March 2007.

[3] D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Awareness
in the wild: Why communication breakdowns occur. In Sec-
ond International Conference on Global Software Engineer-
ing (ICGSE), Munich, Germany, August 2007. To appear.

[4] D. E. Damian and D. Zowghi. The impact of stakehold-
ers’ geographical distribution on managing requirements in
a multi-site organization. In IEEE Joint International Con-
ference on Requirements Engineering 2002, September 9–
13, pages 319–328, September 2002.

[5] K. Ehrlich and K. Chang. Leveraging expertise in global
software teams: Going outside boundaries. In International
Conference on Global Software Engineering 2006, Floria-
nopolis, Brazil., pages 149–158, 2006.

[6] J. Frederick Phillips Brooks. The Mythical Man-Month.
Addison-Wesley, 1975.

[7] J. D. Herbsleb and R. E. Grinter. Architectures, coordina-
tion, and distance: Conway’s law and beyond. IEEE Soft-
ware, 16(5):63–70, 1999.

[8] J. D. Herbsleb and R. E. Grinter. Splitting the organization
and integrating the code: Conway’s law revisited. In ICSE,
pages 85–95, 1999.

[9] J. D. Herbsleb, H. Klein, G. M. Olson, H. Brunner, J. S.
Olson, and J. Harding. Object-oriented analysis and design
in software project teams. Human-Computer Interaction,
10(2/3):249–293, 1995.

[10] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter.
An empirical study of global software development: Dis-
tance and speed. In ICSE ’01: Proceedings of the 23rd Inter-
national Conference on Software Engineering, pages 81–90.
IEEE Computer Society, 2001.

[11] D. E. Perry, N. A. Staudenmayer, and L. G. Votta. People,
organizations, and process improvement. IEEE Software,
11(4):36–45, 1994.

[12] Y. Yamauchi, J. Whalen, N. Ikeya, and E. Vinkhuyzen. The
problem of knowledge decoupling in software development
projects. In 28th International Conference on Software En-
gineering, Shanghai, China, pages 877–880, 2006.

GREW'07 - Page 35 of 66

A Model of Requirements Engineering at Organizational Interfaces:
An Empirical Study on Distributed Requirements Engineering.

Dorina-C. Gumm
University of Hamburg

Department of Informatics
Center for Architecture and Design of IT-Systems

gumm@informatik.uni-hamburg.de

Abstract

In this paper results are presented from an empirical
study about the relationship between requirements engi-
neering practice and distributed software project settings.
The focus here lies on organizational distribution and the
requirements engineering activities that take place between
organizational units. In order to understand distributed re-
quirements engineering, the concept of organizational in-
terfaces is introduced. Requirements engineering activities
are then analyzed with respect to organizational interfaces.
The resulting model aims at the facilitation of practitioners
and researchers to design distributed processes and under-
stand respective challenges.

Keywords: Distributed requirements engineering, orga-
nizational distribution, organizational interfaces

1 Introduction

Distributed software development projects are character-
ized by the cooperation of more or less independent orga-
nizations or organizational units. The problems resulting
from the communication and cooperation difficulties, from
different development approaches used, and from the vari-
ous cultures (national, social) and languages involved, are
discussed in several recent papers e.g. [6, 13, 15, 2, 12].

In order to understand the interplay between project’s
distribution and requirements engineering in detail, an
empirical study has been conducted. As basis for this
study serves a taxonomy of distributed software develop-
ment [11]. This taxonomy distinguishes between the phe-
nomenon of distribution, respective challenges, and solu-
tions to deal with the challenges, which all influence each
other. The phenomenon of distribution is described by four
dimensions: physical, temporal, organizational distribution
and distribution among stakeholder groups. The taxonomy

also implies the concept of perceived distance which illus-
trates that distribution not only depends on objective project
settings but on the perception of individuals.

One goal of the empirical study is to relate require-
ments engineering challenges to these dimensions of dis-
tribution. Though this relation turned out to be difficult and
less promising, the empirical data indicate that the organi-
zational dimension of distribution is more crucial than the
other dimensions. Similar results are presented by Beren-
bach [2]: In several large global projects “most of the issues
could be traced back to problems with organizational struc-
ture and/or management”.

Requirements engineering as a highly communicative
task that needs to be conducted in cooperation with different
stakeholders [14, 7, 8] actually takes place between organi-
zational units. The empirical data provide rich material to
understand this in detail. By using Grounded Theory for
data analysis (see Section 2) a concept could be developed
that helps understanding the nature of requirements engi-
neering in distributed project settings. This concept is called
organizational interfaces and describes what is between or-
ganizational units. Using this concept for analyzing require-
ments engineering practice, three types of activities could
be identified: Activities for 1) requirements management
at organizational interfaces, 2) increasing interface maturity
and 3) designing organizational interfaces.

The paper is structured as follows: In the next Section I
present research setting, method and empirical cases. The
concept of organizational interfaces is presented in Section
3 and the types of activities in Section 4. The paper con-
cludes with Section 5 by drawing a summary and pointing
out to consequences for future research.

2 Empirical Study

The experience drawn on in this research comes from an
interview study conducted with 9 industrial partners. The

GREW'07 - Page 36 of 66

research goal of this study was to investigate the connection
between distributed project settings and requirements engi-
neering practice. The research work was carried out with
participants of distributed software development projects
and who are involved in requirements engineering in one
or the other way.

In order to understand the correlation between dis-
tributed software development and requirements engineer-
ing, a series of semi-structured expert interviews [10] has
been done. Rather than providing quantifiable responses to
a specific question obtained from a large sampling of the
population, expert interviews allow a deep insight in spe-
cific project settings and practice.

Grounded Theory [19] has been chosen as methodology
to analyze and get access to the rich data collected during
the interview study. Grounded Theory is rooted and ac-
cepted in social sciences and has several times been used
for information systems research [16, 1].

The name “Grounded Theory” refers to theory that is de-
rived from inductive analysis of and thus grounded in em-
pirical data. Basic idea of this analysis approach is to read
and re-read a textual database (such as field notes, tran-
scribed interviews) and discover and label phenomena, cat-
egories, concepts, properties and their interrelationships [5].

The selection of industrial partners was driven by the
goal of collecting experiences from a broad spectrum of
distributed projects. The companies (introduced in Table
1) are located in different application domains and develop
software for different target groups (like customer-specific
software and kind of standard software).

2.1 The Case Projects

The participating industrial partners are large organiza-
tions from different sectors and are distributed in very dif-
ferent ways. The following paragraphs provide a brief de-
scription of the case companies, the respective software
development project and its distribution characteristics ac-
cording to [11].

Company A is an automotive manufacturer. The soft-
ware under development is a control system for automo-
biles. In this specific case the company cooperates with two
other automotive manufacturers that are located in the USA
and Japan. Goal of this cooperation is to use the software for
different products to increase the number of sold items. The
project’s distribution that is relevant for requirements engi-
neering is caused by the fact that three persons are respon-
sible for requirements specification, one at each site (Ger-
many, USA, Japan). Requirements negotiation thus does
not happen only between the development division and cus-
tomer but in addition between the three sites and between
the stakeholders at each site.

Company B is located in the sector of logistics and postal

delivery. It develops a routing software which is an indi-
vidual solution for one customer. The distribution here is
caused by the customer who is dispersed over Germany and
a third party software supplier located in Canada. Require-
ments need to be negotiated between users and analysts, be-
tween analysts and developers as well as between develop-
ers from this company and from the software supplier in
Canada.

Company C develops software for digital rights manage-
ment and operates in the telecommunication sector. The
project’s distribution here mainly refers to globally and or-
ganizationally distributed customers that have specific and
often disjunctive or even contradicting requirements. In ad-
dition to the development and customers other stakeholders
like consultants and marketing play a major role in the re-
quirements engineering process.

Company D develops an airline business software. Sim-
ilar to Case B a core distribution characteristic is that the
software company uses third party software that is adapted
and further developed for their own customers. A specific
circumstance here is that the cooperation between develop-
ers and end-users had been poor for micro political reasons.
Project-internal distribution relates to the fact that several
key persons in the project are external staff.

Company E is also located in the automotive sector and
in our study we focus on the development of the naviga-
tion part of an infotainment system. The company consists
of many sub-companies that represent specific knowledge
centers and that are dispersed all over Germany. These sites
operate rather independently but need to cooperate for spe-
cific software development projects which causes, in addi-
tion to physical distribution, also an organizational one.

Case F is about a hospital; its IT department uses a third
party software to adopt, customize and enhance it for this
hospital. The distribution perceived as challenge here refers
on one hand to the cooperation between IT department and
software supplier and on the other hand to the organiza-
tional distribution of end users. The end users are located in
different hospital wards and have thus different and some-
times contradicting requirements.

Company G is a globally operating consulting firm
which conducts global software development projects. In
the respective interview a variety of projects have been cov-
ered to discuss distributed requirements engineering prac-
tice. However, all discussed projects developed customer-
specific business software. The distribution refers mainly
to distributed development teams and to customers that are
typically located far from the development team.

Company H is also located in the telecommunication
sector; this case is about the development of a demo version
of their content management system. This demo version is
used by their consultants to present their CMS to potential
customers. In this project the development group was dis-

GREW'07 - Page 37 of 66

Cases Sector Product
A Automotive Control System
B Logistics / Post Delivery Routing
C Telco DRM
D Airline Airline Business System
E Automotive Navigation
F Health Care Hospital Information System
G several several information systems
H Telco CMS / Demo Version
I Research particle accelerator

Table 1. Case Companies

persed over two locations in Germany. Even more impor-
tant was the organizational distribution of groups that pro-
vide requirements for the software. Requirements sources
in this case have been projects that developed former demo
products as well as projects working on specific aspects of
the actual CMS; in addition the dispersed group of consul-
tants was involved in that project. Also the temporal distri-
bution has been a key issue since most of the project mem-
bers were not involved full time.

Case I is about a research center for particle physics.
The respective project was about requirements definition
for a particle accelerator. Even if it is not a software
development project, software requirements engineering
methodology has been used to carry it out. The project was
affected on one hand by the organizational distribution of
the requirements stating units and on the other hand by the
temporal distribution caused by stakeholders who are not
available during the whole project life cycle. The benefits
and challenges of the project are very similar to the other
cases.

To classify types of distributed projects, Paasivaara [17]
proposes the distinction between inter-organizational and
intra-organizational distribution. This distinction is use-
ful; however, in the empirical data a third type of distribu-
tion turned out to be relevant for requirements engineering:
inter-project distribution. In the following I briefly present
some typical structures of the case projects according to the
mentioned types of organizational distribution:

• Inter-organizational distribution. In some of the cases
inter-organizational distribution is given because the
studied development project cooperates with a third-
party software vendor (B, D, F). In these cases, the
third-party software needs to be further developed, in-
tegrated into other software, and/or customized. The
cooperation of more or less equal partners to increase
competitiveness can also lead to inter-organizational
distribution (A). Inter-organizational distribution is
also given if the project deals with customers from var-

ious companies or even application domains (C, D, E).

• Intra-organizational distribution. Intra-organizational
distribution can be observed in cases where a large sys-
tem is developed by a variety of rather independent
technical departments (A, E); or where requirements
holders are dispersed among several departments (I).
In one case, different user groups with divergent re-
quirements are located in different organizational units
(F).

• Inter-project distribution (both inter- and intra-
organizational). In a variety of cases the distribution
among projects plays a major role for requirements en-
gineering. Inter-project distribution is given when the
studied software development takes place across sev-
eral related projects. This could be observed in cases
where other projects develop software that needs to ex-
change data with the actual software (A, B, C, E, H).
Inter-project distribution is also given in cases where
parallel to the actual project other projects start or end
in which former or later versions or branches of the
software is developed (A, B, H).

The selected case projects illustrate the multifariousness
of organizational distribution. Therefore, the empirical data
have been analyzed with respect to underlying similarities,
for which Grounded Theory proved to be very helpful. As
result I present the concept of organizational interfaces in
the following Section 3; this concept is used afterwards for
describing distributed requirements engineering practice in
Section 4.

3 Organizational Interfaces

Requirements engineering is a highly communicative
task in the software development process for which a va-
riety of stakeholder groups and organizational units need
to cooperate [14]. Thus, many RE activities take place be-
tween organizational units; this between can be described
with the concept of organizational interfaces.

GREW'07 - Page 38 of 66

3.1 Definition

An interface is a part of a system at which independent
systems meet and act on or communicate with each other.
For example, software interfaces are logic points of contact
and define the exchange of commands or data. Thus, an
interface can be defined by its connected endings (systems)
and the data exchange, respectively.

An organizational interface is defined here by two or-
ganizational units which interact within a project. Organi-
zational unit is a place holder for any organizational struc-
ture a group of stakeholders is working in. Organizational
units might be units within an organization, like IT or mar-
keting departments; they could also represent cooperating
companies like a software vendor and a company further
developing this software. Organizational units also can rep-
resent different development projects, hierarchy levels or
functional roles.

Typical organizational interfaces in software develop-
ment projects are, for example, between the development
and the customers, between development and the users or
between development and analysts which are in contact
with the users. Most of the case projects are far more com-
plicated and thus they deal with a lot of organizational in-
terfaces (also compare [3]). In the empirical data most fre-
quently the following interfaces play an important role for
requirements engineering: the interfaces between a) the ac-
tual development and a third-party software vendor; b) co-
operating technical divisions; c) the actual development and
one or more customers.

Interfaces always exist between organizational units and
are no specialty of distributed projects. However, in phys-
ically distributed software development projects, organi-
zational distribution becomes a bigger challenge. This is
due to the fact that in physically distributed projects orga-
nizational interfaces a) become more visible than in non-
distributed projects, b) are more perceived as interfaces and
c) they hence more likely lead to problems.

3.2 Characteristics

According to the empirical cases, the perceived distance
between organizational units highly depends on the estab-
lished communication and cooperation at the respective in-
terface and thus on the interface maturity. Communication
and cooperation at different organizational interfaces differ
significantly in the cases. These differences can be identi-
fied between different interfaces in one case project as well
as between equivalent interfaces in different case projects.

Thus, the empirical data have been analyzed concerning
the similarities between the different interfaces to develop a
general notion of organizational interfaces that is indepen-
dent of particular projects or interfaces. According to this

analysis, interface maturity can be described by means of
the following two interface characteristics: communication
channels and social distance.

Communication channels. Communication channels
represent the media that are used for communication
at an interface. In the empirical data three types of
communication channels could be identified:

• Contact person: In many cases communication is
channelized by one contact person per organizational
unit. Such persons are, for example, responsible for
collecting requirements at several interfaces in order to
transfer them afterwards to other members of her/his
organizational unit, or for transferring information in
the other direction.

• Social events: Often communication at interfaces is ar-
ranged by events like workshops, stand-up-meetings
or user events (at professional exhibitions or prototype
presentations).

• Artifacts: Artifacts like requirements documents or
requirement management software are often used for
channelizing requirements related issues.

Some examples illustrate the importance of communica-
tion channels. In Case B the communication at the interface
developers–users was mediated by analysts. In Case F key
users served as communication channel between IT depart-
ment and single hospital wards.

Regular meetings and workshops are the most frequently
used channels for communication at various interfaces.
Especially in cases with a large and, if so, anonymous user
group special social events are conducted. The two inter-
viewees from the automotive sector discussed so-called
car clinic events where key users are invited to evaluate
newest prototypes. In two cases professional fairs are an
important communication channel between development
and anonymous users. In another case special conferences
held by the software vendor served as communication
channel.

Communication at a specific interface is (if at all) usu-
ally supported by a collection of communication channels.
However, not only the adequate channel is crucial for co-
operation but also the degree by which this channel is es-
tablished and used. Thus, the interface maturity regarding
communication channels is dependent on two dimensions:

• Amount (many channels – no channel)

• Development (well established – poorly established)

GREW'07 - Page 39 of 66

Social Distance. Social distance represents the under-
standing that exists between two organizational units (freely
adapted from [4]). In the empirical data social distance can
result from differences regarding

• culture (both national and working culture): Different
cultures rooting in nationalities or working habits is of-
ten accompanied by a perception of distance; at least
until the involved parties carefully deal with it and mu-
tually learn from each other.

• language (both national and professional language):
Also different languages affect social distance. In the
case projects requirements engineering suffers from
differing national languages as well as from different
vocabulary in the same language of cooperating units.

• views on a subject: In a variety of cases the involved
organizational units hold different views on the subject
matter which causes irritations and thus a perception of
distance.

• processes: Differing processes at an interface are a
very crucial issue that can lead to social distance be-
cause they can imply different notions of requirements
engineering as well as on scheduling.

Interface maturity is affected by social distance but not
always in the same way. According to the empirical data in-
terface maturity does not necessarily increase by decreasing
social distance or the respective diversity. Rather, interface
maturity depends on how sensitive the organizational units
deal with it.

The concept of organizational interfaces does not de-
scribe organizational structure in general but focusses on
the between of cooperating organizational units. This focus
is of particular interest for requirements engineering since
the latter is one of the most communication-intensive tasks
in software development. The concept is illustrated in Fig-
ure 1.

The concept of organizational interfaces helps to under-
stand the relation between requirements engineering prac-
tice and distributed project settings. Requirements engi-
neering activities identified in the empirical data can be an-
alyzed using the concept of organizational interfaces. The
results are presented in the next section.

4 RE Activities at Organizational Interfaces

Requirements engineering at organizational interfaces
not only implies activities like requirements elicitation,
analysis, negotiation or change management. Rather, those
activities are intertwined with activities referring to organi-
zational structures and thus to interfaces. The interviewees

always foucssed on the RE activities between the units, not
those within.

Thus, for understanding requirements engineering in dis-
tributed projects it is useful to be aware of activities that
are closely connected to the respective interface. According
to the empirical data the following categories of activities
could be identified, which are described in the following
paragraphs:

1. Requirements Management;

2. Increasing Interfaces Maturity;

3. Designing Organizational Interfaces;

4.1 Requirements Management

Four types of requirements management activities that
refer to interfaces could be identified: requirements
bundling, requirements redistribution, requirements adjust-
ment, and informing.

Requirements bundling. In many cases requirements
elicitation is (supposed to be) done within the require-
ments holders’ organizational unit. If requirements holders
are dispersed over several organizational units, the task of
bundling requirements becomes very important. Require-
ments are collected at several interfaces and bundled at a
central location. This task works best in the cases where
one person of the requirements bundling organizational unit
is responsible for it. If so, this person serves as communi-
cation channel at the respective interfaces.

Two examples illustrate this: In Case F each hospi-
tal ward provides one key user who bundles requirements
stated by end users; and one consultant of the IT department
collects the requirements from various hospital wards.

In Case E the person responsible for specification must
carry together requirements stated by professional depart-
ments. The interviewee came to the point:

Elicitation only works by [...] collecting them
from different stakeholders. [...] And I think it is
necessary to collect them distributed. The prob-
lem I definitely see in bundling them.

Requirements redistribution. Redistribution of require-
ments (and respective changes) is subsequent to require-
ments bundling. Especially when developing large systems,
requirements have to be analyzed according to which parts
of the system (and respective development groups) are af-
fected by them. System interface requirements typically
affect more than one development group. The task of re-
distributing requirements at respective interfaces needs to

GREW'07 - Page 40 of 66

Organizational
 Unit

Organizational
 Unit

Interface

Culture Language ViewProcess

Communication Channels:

Social Distance:

Figure 1. Characteristics of Organizational Interfaces

be carefully performed but often suffers from insufficient
qualification of the responsible person.

In Case E it is an important task of the project leader to
redistribute parts of the requirements set to responsible de-
velopment divisions. Often requirements affect more than
one development division. Also in Case C the task of re-
quirements redistribution has been discussed; in contrast
to case E requirements were redistributed to cooperating
projects, not company divisions.

Requirements adjustment. In many cases the respective
software needs to be embedded in an infrastructure of ex-
isting and/or other new software. Hence requirements for
the actual software needs to be adjusted to requirements of
software developed or maintained in other projects. The
need for adjustment can be observed in inter-organizational
as well as intra-organizational distributed development ef-
forts.

In Case E this adjustment takes place, for example,
between the three cooperating automobile manufacturers.
Here, three different views on the product need to be syn-
chronized.

In Case B the software under development needs to blend
well with other systems for data exchange. This is simi-
lar to Case C where requirements of the own digital rights
management software and those of vendors’ or customers’
software (e.g. billing systems) need to be adjusted.

Especially in cases with more than one customer a very
important activity is to balance requirements that are con-
flicting or go beyond the scope of the product. This turned
out to be important especially in Cases C and E. On one
hand requirements should be customer-independent to sat-
isfy as many customers as possible; and a close cooperation
with one customer could lead to a too specific product. On
the other hand, a close cooperation makes it possible to dis-
cover the ’real’ needs. As one interviewee illustrates:

We try to be as independent from a customer
as possible. And we also profit from [the fact]
that we work very closely together with the cus-
tomers, because [like this] we learn very very
much from it about what are real requirements.

Requirements adjustment is also accompanied by the ne-
gotiation of concerns between development and customers.
If during development questions arise about specific re-
quirements these need to be answered by responsible per-
sons. In Case G, for example, this is processed by using
an issue list in which developers can enter their concerns.
If the functional designer is not able to clarify this point
(for example because there is a contradiction to other re-
quirements), he or she needs to go back to the customer to
negotiate this.

Informing. A variety of requirements engineering activ-
ities simply refer to information transfer from one organi-
zational unit to another. For example, at the interface be-
tween development and customers informing mainly refers
to document exchange, especially requirements and techni-
cal specifications, for keeping each other up-to-date. At the
interface between different development departments much
effort is necessary to inform each other about changes that
may affect requirements. Informing also implies preparing
information for different stakeholder groups with differing
knowledge, background and expectations.

In Case A new versions of the requirements specifica-
tion are regularly exchanged between development and cus-
tomer. Basically, the contractor regularly receives new ver-
sions.

In Case C a so-called Jour Fixe had been established
where not only customers and developers take part but also
sales persons or consultants to inform each others about re-
quirements, change requests and requirements implementa-
tion status. In Case H it was important to regularly inform

GREW'07 - Page 41 of 66

customers about what will (not) be included in the next soft-
ware release.

Requirements management activities at organizational
interfaces are illustrated in Figure 2.

4.2 Increasing Interface Maturity

Whereas the activities discussed in the last subsection
mainly refer to the handling of requirements at organiza-
tional interfaces, a variety of other activities refer to increas-
ing the interface maturity in order to improve conducting
the other activities. Such activities regard the strengthen-
ing of communication channels as well as the reduction of
social distance.

One could argument that such activities belong to project
management rather than to requirements engineering [9].
However, in all case projects, requirements engineering ac-
tivities and interface-related activities are very tightly in-
tertwined. A separation of these types of activities makes
it more difficult to understand requirements engineering in
distributed project settings.

Strengthening Communication channels In a variety of
case projects requirements engineering suffers from poorly
established or poorly used communication channels. Thus,
activities could be observed that refer to this leakage which
is often accompanied by poorly defined responsibilities.
Poorly defined responsibilities cause problems such as that
requirements cannot be bundled and that hence they get lost;
that information about requirements changes are difficult to
trace and transfer; or that requirements specification is del-
egated to unqualified personnel.

Strengthening communication channels can also mean
to improve requirements management software usage or to
communicate new ways of using it.

In Case I requirements had to be elicited from a variety
of different technical divisions. Since the group that was re-
sponsible for the general RE process was not able to define
requirements of these different technical areas, they tried
to define persons responsible for requirements definition in
each division. However, for some of them requirements def-
inition was too unimportant so that they delegated the task
to someone less qualified. Requirements engineering be-
came a task of looking for qualified persons and, if nec-
essary, of mediating between less qualified individuals and
actually responsible persons. However, all in all the strat-
egy of defining responsible persons for specification was
perceived as good strategy to increase respective interface
maturity.

Also the interviewee of Case D complained about poor
defined responsibilities. Requirements where stated by ev-
eryone who thought to contribute; this resulted in the fact
that some important persons did not contribute at all, that

other persons contributed who did not need to, and that re-
quirements occurred uncontrolled.

Decreasing Social Distance. Interface maturity also de-
pends on how good the respective organizational units un-
derstand each others’ views and approaches. Thus, re-
quirements engineering implies activities of mutual learn-
ing about requirements, needs, views and technical options
as well as about differing processes. Activities in the case
projects imply conducting workshops to get to know each
other; developing a shared vocabulary; deepening the com-
munication to learn from each other; and agreeing on dif-
fering processes. In most of the cases the latter issue does
not necessarily mean to share a common process but to syn-
chronize processes and to be aware of the differences (cf.
similar results in [18]).

For example in Case B, specifications were poor due to
misunderstandings. Development and customer’s analysts
hold different notions of which features the system should
provide. Thus requirements engineering comprised activi-
ties to facilitate getting to know each other, mutual under-
standing and developing a shared vocabulary.

In Case C requirements engineering with one particular
customer turned out to be as important as critical. The cus-
tomer is of high value, inter alia because they analyze and
discuss requirements in a very detailed manner. Since this
customer is located in Japan whereas the development is lo-
cated in Germany, difficulties occurred regarding cultural
differences and hence different notions of the requirements
engineering process and of the role of a ’software devel-
oper’. Some time and effort was necessary to learn about
each other’s conception of how the requirements discussion
should proceed.

4.3 Designing Organizational Interfaces

In many cases organizational interfaces need to be estab-
lished in the first place. The most striking example can be
observed in Case D where for micro-political reasons no or-
ganizational interface between development and users exist
at all. This shortfall hampered requirements elicitation and
modeling and eventually led to wrong requirements. Only
after the appearance of such problems, a respective interface
had been established and users had been involved.

Not only the development of new interfaces is an issue –
also the deletion or by-passing of existing interfaces turned
out to be a frequent activity. This was often necessary to
speed up the process or to facilitate mutual learning. A very
illustrative example can be found in Case F. The hospital’s
IT department cooperated with the involved software ven-
dor via their professional service. In order to increase the
priority of the hospital’s requirements, the IT department
wrangled to establish a close cooperation with the software

GREW'07 - Page 42 of 66

Organizational
 Unit

Interface

Organizational
 Unit

Organizational
 Unit

Organizational
 Unit

Organizational
 Unit

Organizational
 Unit

Organizational
 Unit

Organizational
 Unit

Bu
nd
lin
g

R
ed
is
tri
b u
tio
n

Informing

Adjustment

Figure 2. Characteristics of Organizational Interfaces

vendor’s developers. This close cooperation also implied
that the hospital became beta tester and reference hospital
for the respective software.

In some cases the design of organizational interfaces im-
plies the identification of responsible persons for being con-
tact person for requirements issues. In Case E the (sub-
)project managers are dedicated to be responsible for re-
quirements engineering; and everything regarding require-
ments has to be carried out via these persons.

Interesting for the task of designing organizational inter-
faces is the Janus face of it. Whereas from some perspec-
tives a new organizational interface is desirable for good
requirements engineering, they are perceived as drawback
from other perspectives because efforts of defining specific
processes and communication channels might be foiled.

5 Conclusion and Future Work

In this paper I presented an empirical study of distributed
requirements engineering. The problems discussed in the
interviews mainly refer to organizational distribution. In
order to understand the nature of organizational distribu-
tion and requirements engineering practice respectively, I
first introduced the concept of organizational interfaces and
then described how requirements engineering activities are
related to organizational interfaces.

This work is supposed to support practitioners as well
as researchers who have to deal with requirements engi-
neering in distributed software development projects. The
concept of organizational interfaces can help to understand
what is necessary for conducting requirements engineering
between organizational units, and to analyze which inter-
faces are important or need special attention in a particular
project.

The different types of activities can help to understand
how requirements engineering is embedded in and affected
by distributed project structures. In addition it illustrates
that much requirements engineering effort is spent on de-
signing interfaces and increasing their maturity. Some em-

pirical data indicate that such effort would not be neces-
sary if the related companies have a larger expertise with
(global) distributed projects. However, other data show that
software development projects usually have not much time
to carefully establish organizational interfaces, mutual un-
derstanding and common processes before requirements en-
gineering starts. Thus, the results of this paper may help to
understand distributed requirements engineering and to use
such insights to carefully design the own project’s approach.

The empirical data the results base on are limited as they
are taken from only nine interviews. Though the small num-
ber of interviews and projects is not a representative data
base to be unrestrictedly generalized, the Grounded Theory-
driven analysis of the empirical data provide us with a deep
understanding of the analyzed cases and direct our focus to
concepts that abstract from particular cases. Also for this
reason, the presented activities are not related to specific
case projects or organizational interfaces.

Further work should be done for improving and validat-
ing the presented results. Currently they are examined by
means of a longitudinal case study.

References

[1] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen. Action
research. Commun. ACM, 42(1):94–97, 1999.

[2] B. Berenbach. Impact of organizational structure on
distributed requirements engineering processes: lessons
learned. In GSD ’06: Proceedings of the 2006 international
workshop on Global software development for the practi-
tioner, pages 15–19, New York, NY, USA, 2006. ACM
Press.

[3] J. M. Bhat, M. Gupta, and S. N. Murthy. Overcoming re-
quirements engineering challenges: Lessons learned from
offshore outsourcing. IEEE Software. Special Issue on GSD,
23(5):38–44, 2006.

[4] E. Bogardus. A social distance scale. Sociology and Social
Research, 17:265–271, 1933.

[5] S. Borgatti. Introduction to grounded theory. 2003. Last
access February 2007.

GREW'07 - Page 43 of 66

[6] K. Coar. The sun never sets on distributed development.
Distributed Development, 1(9):32–39, January 2004.

[7] J. Coughlan and R. D. Macredie. Effective communication
in requirements elicitation: A comparison of methodologies.
Requirements Engineering, 7(2):47–60, 2002.

[8] D. E. Damian, A. Eberlein, M. L. Shaw, and B. R. Gaines.
An exploratory study of facilitation in distributed require-
ments engineering. Requirements Engineering, 8(1):23–41,
Feb 2003.

[9] R. Fahney, A. Herrmann, and R. Weibach. A new dimen-
sion in the distinction between Requirements Engineering
and Project Management. Report from the RE&PM Working
Group (belonging to the German Informatics Society’s (GI)
“Requirements Engineering” special interest group, 2006.

[10] U. Flick. Qualitative Forschung: Theorien, Metho-
den, Anwendung in Psychologie und Sozialwissenschaften.
Rowohlt-Taschenbuch-Verlag, Hamburg, 4 edition, 1999.

[11] D.-C. Gumm. Distributed software development – a taxon-
omy. IEEE Software. Special Issue on GSD, 23(5):45–51,
2006.

[12] J. Hanisch and B. Corbitt. Requirements engineering dur-
ing global software development: Some impediments to the
requirements engineering process - a case study. In n/a, edi-
tor, Proceedings of the European Conference on Information
Systems ECIS’04, page n/a, 2004.

[13] S. Krishna, S. Sahay, and G. Walsham. Managing cross-
cultural issues in global software outsourcing. Communica-
tions of the ACM, 47(4):62–66, Apr. 2004.

[14] L. A. Macaulay. Requirements Engineering. Applied Com-
puting. Springer Verlag London, 1996.

[15] J. S. Olson and G. M. Olson. Culture surprises in remote
software development teams. Queue, 1(9):52–59, 2004.

[16] W. J. Orlikowski. CASE tools as organizational change: In-
vestigating incremental and radical changes in systems de-
velopement. MIS Quarterly, 17(3):309–340, 1993.

[17] M. Paasivaara. Communication needs, practices and sup-
porting structures in global inter-organizational software de-
velopment projects. In Proceedings of the ICSE Internal-
tional Workshop on Global Software Development, 2003.

[18] M. Paasivaara and C. Lassenius. Collaboration practices in
global inter-organizational software development projects.
Software Process Improvement and Practice, 8:183–199,
2003.

[19] A. Strauss and J. Corbin. Grounded Theory: Grundlagen
Qualitativer Sozialforschung (engl.: Basics of Qualitative
Research: Grounded Theory Procedures and Techniques).
BELTZ, 1996.

GREW'07 - Page 44 of 66

Release Planning in Distributed Projects

Korbinian Herrmann
Technische Universität München

Fakultät für Informatik
Lehrstuhl für Angewandte Softwaretechnik

herrmann@in.tum.de

Abstract

During release planning project managers decide

what to deliver in a specific release. In globally dis-
tributed projects his decision is a “wicked problem”
[5] because local decisions might contradict global
decisions. Project managers have to respect many fac-
tors such as customer preferences, time and budget as
well as constraints from development. Existing ap-
proaches to release planning neglect the influence of
system models [12].

This paper proposes a single tool that supports both
release planning and modeling in globally distributed
software projects. The approach allows developing a
single model for every release. This enables project
managers to make an informed decision with respect to
the system model during release planning.

1. Introduction

A release is a version of a software system that will
be made available externally [2]. During release plan-
ning project managers decide what to deliver in a
release, e.g. they define the requirements of a release.
Typically, it is not possible to bring all possibly feasi-
ble requirements to market within the next release.
Requirements that shall be delivered within a given
budget must be selected. This selection is relevant for
the profit of the company: Bringing a new innovative
feature to the market in time and budget might increase
the profit enormously. [5]

Many sources influence release planning. Figure 1
gives an overview: Marketing, Support and Analysis
result in new or changed requirements that could be
implemented in the next release. Testing results in a set
of bugs, which should be fixed. The project manager
has to identify an optimal set of requirements to im-
plement and bugs to fix within available resources:
Marketing specifies a schedule. Project organization

manages available project participants and their abili-
ties. Strategical business planning dictates the budget.
Risk management identifies risks related to the re-
quirements that should be avoided.

Figure 1: Sources of release planning

In global software engineering release planning is a
“wicked problem” [5] because project managers can’t
cope with the complexity of considering all these
sources from different sites: Requirements and bugs
are identified, globally distributed, and limitations of
resources are influenced from different locations. Fur-
thermore, requirements are often still not clearly
specified at project startup. As a consequence, release

GREW'07 - Page 45 of 66

plans start evolving during requirements elicitation.
Here, modeling influences release plans. This paper
addresses this problem. It proposes a single tool for
modeling and release planning. It provides consistency
between release plan and model, which increases
awareness of modeling and planning activities in dif-
ferent sites.

This paper is organized as follows: Section 2 describes
existing approaches to release planning. Section 3 de-
scribes the approach of this paper. Section 4 introduces
SYSIPHUS, which is the basis for the proposed tool.
Section 5 explains how to model multiple releases.
Section 6 focuses on the selection of requirements for a
release. Section 7 shows how project managers and de-
velopers collaborate being aware of each other. Section
8 shows how traceability supports release planning and
modeling. Finally, section 9 concludes the paper with a
perspective on future work.

2. Related Work

Existing methods for release planning such as
“EVOLVE” [7] try to generate an optimal release plan
considering criteria and dependencies of requirements.
Each method has its focus on specific criteria, for in-
stance the method “Planning Software Evolution with
Risk Management” [6] concentrates on minimization
of the risks. None of these methods can produce the
optimal release plan because the problem of selecting
the optimal set of requirements is NP-hard [5][1]. Fi-
nally, it is the project manager who has to cope with
selecting requirements for a release [5]. Existing tools
such as the ReleasePlanner [10] [11], VersionOne [14]
and the MicroTool [9] try to support project managers.

The ReleasePlanner [11] allows project manager to
define criteria. Multiple stakeholders assess require-
ments considering these criteria. The ReleasePlanner
uses this input to generate a set of suboptimal release
plans. The project manager finally has to evaluate these
alternatives. VersionOne [14] is an agile project man-
agement tool that supports planning of requirements.
MicroTool [9] allows modeling requirements and as-
signing them to releases. It does not support the project
manager in making his decision well informed.

Existing tools support either modeling of require-
ments or making an informed decision. As a result the
current practice is to use a set of tools in a single soft-
ware project, each of them supporting a single task.
These tools are independent of each other and have
their own repository to store project data. As a conse-
quence these repositories are inconsistent and not up-
to-date [8][15]. Consistency between system models
and the release plan is important as models change

quickly: For example if analysts get a better under-
standing of the problem domain, they add or change
requirements in the system model. [3] Consequently, a
project manager might have to review the release plan
to prove that the changed or extended set of require-
ments can be done with available resources.
Inconsistent models and release plans may lead to
wrong decisions of project managers as well as to
wrong models of developers.

3. Approach

This paper proposes a single tool for modeling and

planning multiple releases. It deals with change provid-
ing awareness and traceability.

Existing tools only permit to develop one model at a
time. The tool presented in this paper provides a single
system model, called release model, for each release: It
consists of a functional, a static and a dynamic model.
Consider a simple portable Multimedia Player as an
example. It is delivered in two consecutive releases:
Release 1 and 2. In release 1 the Multimedia Player is
only able to play songs; the user can transfer them us-
ing a USB cable. In release 2 its functionality is
extended to support podcasts and bluetooth. The func-
tional model of release 1 will only contain the use
cases PlaySong and TransferViaUSB. The functional
model of release 2 however, will contain the use cases
of release 1 and 2: PlaySong, PlayPodcast, Trans-
ferViaUSB and TransferViaBluetooth.

The proposed tool uses release plans to define a re-
lease. A release plan contains a number of selected
release items. Release items are entities that can be de-
veloped or solved in a release, e.g. functional and
nonfunctional requirements, bugs or open issues. Al-
ternative release plans support project managers in
distributed projects: Every development site could
elaborate one proposal for a release plan. Finally the
project manager has to find a global decision respect-
ing alternatives from different sites. Here, the tool
supports his selection by providing criteria: These cri-
teria may include the needed resources to develop the
release, business criteria (e.g. profit), organizational
criteria (e.g. skills of project participants) as well as
criteria derived from the system model and architecture
(e.g. number of off-the-shelf components).

To bridge the gap between developing and plan-
ning, the tool provides awareness of changes:
Therefore it holds the model and releases consistent,
i.e. release items of the release plan are in the release
model and vice versa. Thereby, project managers re-
spect the latest results of analysis and testing, while
developers are aware of changes in the release plan.

GREW'07 - Page 46 of 66

Traceability supports project managers and devel-
opers to deal with change: For example, if a new bug is
identified, project managers can find out the require-
ments, which this bug affects.

4. SYSIPHUS

SYSIPHUS [11] is a distributed application that

emphasizes system models, collaboration models and
organizational models equally. System models depict
aspects of the system; examples are problem state-
ments, requirements and detailed class models.
Collaboration models include informal comments, is-
sues, risks, and action items. Organizational models
describe the participants and their relationship among
each other. [3]

SYSIPHUS represents system, collaboration and
organizational models of a project in a single graph.
This unified representation allows offering “the same
set of traceability” [3] (see Section 4) “and awareness”
[3] (see Section 7) “services for all three types of mod-
els” [3]. SYSIPHUS provides a server to store the
graph in a single shared repository. Participants access
the repository through a variety of tools based on their
skills and their role. An example for such a tool is the
fat client RAT (see Figure 2) [15].

Figure 2: Components of SYSIPHUS [15]

A uniform meta model builds the SYSIPHUS graph
to represent the models. This meta model consists of
two classes: Model element and model link. These
classes provide generic and extensible mechanisms to
store them persistently, to control access to them and to
track their history. „All system model elements (e.g.
use cases, nonfunctional requirements), collaboration
artifacts (e.g. comments, issues, action items), and or-
ganizational models (e.g., participants, teams) extend
model element. Associations between elements are im-
plemented by extending model link“ [3], which in turn
extends model element (see Figure 3). The next sec-
tions describe selected system models, collaboration
models and organizational models as well as their as-
sociations [3].

Figure 3: Meta model of SYSIPHUS [3]

4.1. System Models

SYSIPHUS provides system models for a number
of development activities. To support analysis, for in-
stance, these models include functional and
nonfunctional requirements, features, actors, scenarios,
use cases, as well as use case, class, sequence, activity
and state chart diagrams. SYSIPHUS uses UML for
system models and extends it with additional model
element and model link classes. Figure 4 depicts some
system model elements as an example: A use case is
associated with classes that implement the use case.
Diagrams represent model elements graphically. A
diagram has an association to the model element

Figure 4: Selected system models [3]

GREW'07 - Page 47 of 66

they contain: Class diagrams consist of a number of
classes while use case diagrams consist of actors and
use cases. [3]

Documents are system model elements that provide
a mechanism to show a structured view of the graph. A
document consists of sections and subsections. Subsec-
tions contain a filter to insert model elements into a
document. This allows mapping system, collaboration
and organizational models to documents in the same
way. [3]

4.2. Collaboration Model

SYSIPHUS supports collaboration by annotating

model elements. Annotations are comments, action
items, issues, and risks. By annotating collaboration
applies to one or more model elements. Comments are
a simple, unstructured way for participants to commu-
nicate. Action items represent a simple task model,
which allows assigning tasks to project participants. Is-
sues are part of the rationale management [4] and allow
a structured discussion of open questions or problems
by the participants using proposals and criteria. The
participants assess the proposals of an issue using crite-
ria. Risks are a specialization of issues and might
threaten a model element and have a probability and an
impact (see Figure 5). [3]

Figure 5: Selected collaboration models [3]

4.3. Organizational Model

The organizational model of SYSIPHUS consists of

organizational units, which can be either participants or
teams. A team has many organizational units (i.e. other

teams or participants) as members. Like system and
collaboration models, organizational units are model
elements. Besides, the system and collaboration model
can be assigned to organization units: All model ele-
ments have a creator and a modifier. Furthermore,
organizational units can be responsible for special
model elements, such as action items, issues or risks
[15] (see Figure 6).

Figure 6: Selected organizational models [3]

5. Modeling Multiple Releases

Modeling multiple releases has special needs as sys-

tem models keep on evolving from release to release:
New system models emerge while existing ones disap-
pear or change. Consider the Multimedia Player (see
Section 3) as an example: A new Release, release 3,
will introduce TV-shows and support data transfer via
bluetooth and WLAN (see Figure 7). Compared to the
system model of the previous release 2, the use cases
TV-shows and TransferViaWLAN emerge. Similarly,
the use case TransferViaUSB disappears as Release 3
offers WLAN and Bluetooth only. That’s why the use
cases PlaySong and PlayPodcast might change. The
modified use case PlaySong in release 3 is called a re-
finement of the use case PlaySong in release 2. To

Figure 7: Screenshot of the RAT client with a
use case diagram for release 3 of the Multi-

media Player

GREW'07 - Page 48 of 66

support emerging, disappearing or refining of system
model elements is one requirement to model multiple
releases.

Traditionally, software configuration management
addresses this problem. SYSIPHUS provides mecha-
nisms to develop one system model and track it over
time using software configuration management [15].
For modeling multiple releases the use of a software
configuration management system is not enough be-
cause it only tracks changes along a timeline. It allows
reconsidering a model at a particular time, for example
at the time of releasing the software. However, to de-
velop multiple releases it should be possible to develop
one model per Release simultaneously: While most of
the project participants are terminating, e.g. testing and
bug fixing, release 3 of the Multimedia Player, an in-
novation team elaborates ideas for release 4. Both need
to develop their own models. New ideas of the innova-
tion team should be isolated from the model of release
3 as it shall be delivered with release 3. In contrast, the
innovation team is interested in current changes in re-
lease 3. Their model should build upon a realistic
system model. Software configuration management
does not allow simultaneous development of two inde-
pendent system models while one is influencing the
other.

To address the problem of modeling multiple re-
leases, we introduce release and knowledge nuggets [8]
as two new model elements in SYSIPHUS: A release
represents a version of the system that is made avail-
able externally. Releases can be ordered using the
setNextRelease()-method: A release is the next release
of another, if it is delivered later than the other one. In
the example of the Multimedia Player release 2 is the
next release of release 1. A release uses one knowledge
nugget to provide the modeling, collaboration and or-
ganizational knowledge of a specific release.
Therefore, a knowledge nugget is associated with any

Figure 8: Releases and knowledge nuggets

number of system model elements (see Figure 8).
These system model elements represent the system
model of the release. Knowledge nuggets use the trace-
ability services of SYSIPHUS to procure the
collaboration and organizational models of its system
models. A specific system model element however, can
only be linked to one knowledge nugget. To map one
system model element to several releases, a copy is
created. So every knowledge nugget is associated with
its own copy of the system model element. By modify-
ing such a copy, the developer refines a system model
element of a specific release.

The advantage of this concept is easy refinement of
system model elements. However, now these copies
have to be managed. The main issue is to assign sys-
tem model elements to knowledge nuggets of releases
at the time of their creation. There are three ways to
perform this task: First, the user explicitly selects the
release when he creates a model element. As this is a
repeating, humdrum activity, the tool analyses the crea-
tion context and proposes a possible release for the
created model element. The user has to confirm in am-
biguous cases only. Second, if the project manager
modifies a release plan, the release items of this plan
are added to the knowledge nugget of this release. Sec-
tion 7.2 describes this. Third, knowledge nuggets
propagate model elements to knowledge nuggets of
later releases. Take the Multimedia Player as an exam-
ple: After adding the use case PlayPodcast to release 2,
its knowledge nugget creates a copy and adds it to re-
lease 3.

Aside from new system model elements, the knowl-
edge nugget also propagates modifications to existing
ones. That’s why a copy is still dependent on the sys-
tem model element it was created from: Figure 8
expresses this with a refinement association. A refine-
ment link, a specialization of the abstract model link
class, implements this association. Knowledge nuggets
may propagate changes along refinement links. This
happens if the object of change, e.g. an attribute of the
refined system model element, has not been changed
since it has been copied. This allows propagating
changes without overwriting refinements in later re-
leases.

6. Planning Multiple Releases

A release manager plans a release by proposing re-
lease items that could be implemented in a specific
release. We introduced release plan as a new model
element in SYSIPHUS. A release plan aggregates a
number of release items. Release items are functional
requirements, use cases, features, nonfunctional re-
quirements, issues and bugs (see Figure 9).

GREW'07 - Page 49 of 66

Figure 9: Release plans contain any number

of release items
Release items might be dependent on each other:

An example for such a dependency is that a release
item can only be delivered together with another re-
lease item. In release 1 of the Multimedia Player, for
instance, the use case PlaySong depends on Trans-
ferViaUSB in this way. Analysts should explicitly
specify those dependencies when they create release
items. Dependent release items cannot be planned in
isolation. If a project manager adds release items that
depend on other release items, the tool respects the de-
pendencies and adds all necessary release items to the
release plan. In the example, the use case Trans-
ferViaUSB will be added to the release plan, even if
the project manager selects the use case PlaySong only.
Those dependencies facilitate the selection of release
items: They permit to group single release items to
high-level release items. Project managers do not have
to consider every single release item.

To provide an informed selection of release items,
project managers assess them according to criteria.
Sources for criteria range from resources for the re-
lease over business numbers to the architecture or
models of the system. Figure 10 shows the release plan
for release 3 of the Multimedia Player: It contains the
new or refined use cases of release 3 as release items,
i.e. PlayPodcast, PlaySong, PlayTV-show and Trans-
ferViaWLAN. The example considers criteria such as
costs, needed number of analysts, java programmers,
player hardware and off-the-shelf components as well
as expected profit and risk exposure.

Figure 10: Release plan in the RAT client
These criteria help project managers to select re-

lease items for a release plan. Because it is difficult to
find an optimal selection [3], the tool allows evaluating
alternative release plans to find global solution that re-
spects aspects from different sites. To trade off
between alternative release plans, we integrated release
planning in the collaboration model. A release has a
special release issue: Which release plan shall be im-
plemented in this release? Project managers can
elaborate several alternative release plans as a proposal
for this release issue (see Figure 11).

Figure 11: Alternative release plans

To support the selection of a release plan, the alter-
natives are assessed according to criteria (see Figure
11). The tool calculates criteria assessments for every
release plan. This calculation is based on the assess-
ment of the release items. Assessments for release
items often can be summed up to assessments for the
release plan. However, there are criteria that use other
calculation rules, such as risk exposure that can be
summarized using a geometric series. Another example
is a criterion denoting the number of release items with
a high priority. Therefore, we introduced calculated
criteria. A calculated criterion is a criterion whose
value can be calculated using a formula. A formula
consists of a calculation rule, such as sum or geometric
series. To perform this calculation, a formula uses pa-
rameters as input. A parameter is either a criterion or a
formula (see Figure 12). In SYSIPHUS a proposal
provides its assessment of a criterion (see Figure 5).
According to this, release plans calculate values of cal-
culated criteria. For this purpose, the release plans ask
their associated release items for assessment regarding

GREW'07 - Page 50 of 66

a criterion of the formula. Then, it uses the formula to
calculate the assessment of its calculated criterion.

Figure 12: Calculation of assessments for re-

lease plans
Figure 13 shows a screenshot of a release planning

view for release 3 of the Multimedia Player comparing
two alternative release plans: Alternatively to the plan
presented in Figure 10, the project manager considers
to offer games instead of TV-shows. The assessments
for the criteria in Figure 13 are calculated as described
above. The project manager can create and add any cri-
teria to the release. Nevertheless, he should respect the
resources of the release as criteria (see Figure 11). For
this reason, the tool always adds resources, which con-
strain a release, to the release issue as criterion.

Figure 13: Evaluating alternative release plans

in the RAT client

7. Awareness

Awareness denotes being conscious of other project
participants’ changes and actions at different sites to
avoid misunderstanding and to increase trust. [3] Re-
lease modeling and planning introduces two new types
of changes of which other project participants need to
be aware: Changes to release models and changes to
release plans.

7.1. Awareness of Changes to Release Models

Changes to release models, e.g. adding a use case to

the functional model of a specific release, arise from
current development activities. Two groups of project

participants are interested in those changes: Developers
and project managers.

Developers might be interested in changes concern-
ing special model elements they have created, modified
or which have an impact on their work. SYSIPHUS
supports them by tracking activities, modifications and
authors of changes of all model elements. [3] The RAT
client, for example, uses this information to display the
date and author of the last modification to model ele-
ments. The software configuration management of
SYSIPHUS allows reconsidering the history of model
elements.

Project managers might be interested in refined,
emerged or disappeared release items of release models
that affect release plans. Project managers should be
aware of these changes and respect them in release
plans as they might need resources and influence the
desired outcome. The proposed approach addresses this
by applying changes in the release model to its plan:
The tool adds refined or emerged release items to the
release plan; similarly, it removes disappeared items
from the plan. Consider release 3 of the Multimedia
Player as an example: A developer refines the use case
PlaySong as USB transfer is not supported any more.
As a consequence the tool adds it to the release plan of
the release 3. This mechanism guarantees that the plan
is not a crystal ball, but reflects reality.

7.2. Awareness of Changes to Release Plans

Section 7.1 describes a mechanism to apply changes

from release models to their plans. SYSIPHUS sup-
ports project managers to be aware of these changes to
the release plan by tracking changes [3]: The RAT cli-
ent, for example, presents the latest changes together
with their authors. This mechanism helps project man-
agers as long as they observe release plans regularly.
Otherwise SYSIPHUS provides an email notification:
Users can register to obtain notifications of the meta
model [3]. Project managers, for instance, can register
for changes to release items of a release plan. If this re-
lease plan changes, e.g. due to a emerging release item
in a release model, subscribed project managers re-
ceive an email.

Aside from project managers, developers are inter-
ested in changes to release plans as they implement
them. To increase collaboration between project man-
agers and developers, the proposed approach applies
changes in release plans to the release model. When-
ever project managers change release plans or decide
for another release plan alternative, the tool updates the
release model: It removes release items from the re-
lease model, which are part of the model, but not of the
release plan. Similarly new release items in the plan
will be added to the model, if they are still not part of

GREW'07 - Page 51 of 66

the model. The tool replaces refinements of system
model elements in the model with those of the release
plan. By applying the latest changes of the project
manager to the system model, the approach of this pa-
per increases developers’ awareness of changes in the
release plan.

8. Traceability

Release planning has to deal with change: Release
plans change when the requirements change, open is-
sues are identified or bugs are detected. Release plans
also change according to organizational or economic
conditions: If an important participant leaves the pro-
ject ahead of time, a project manager has to decide how
to proceed. The unified meta model for system, col-
laboration and organizational models, consisting of the
abstract classes model element and model link allows
traceability to update models, identify change impact
and detect dependencies from resources. [3]

Explicit links allow a model update: The explicit
link from use cases to classes, for instance, allows up-
dating the class model, if the use case model changes
[3]. If the project manager of the Multimedia Player
decides to introduce games instead of TV-shows in re-
lease 3, the tool uses this link to add all classes to the
model of release 3 that are necessary to implement
games. Similarly, the tool removes all classes of the
use case PlayTV-show from the model of release 3,
which are only needed for the use case PlayTV-show.
In Figure 14 a screenshot of RAT shows a class dia-
gram with the supported products of release 3 after this
change.

Figure 14: Class diagram for release 3 of the

Multimedia Player in RAT
For release planning SYSIPHUS supports tracing

change impact: If a bug is identified in a class, the pro-

ject manager can trace back to the use cases and see
which use cases are affected [3]. This helps him to es-
timate the impact of a bug on the release.

Project managers can observe dependencies from
resources, for example certain participants: By annotat-
ing model elements and assigning participants to
annotations, project managers can trace participants to
model elements [3]. For example, SYSIPHUS can
show him all issues or action items which a participant
is assigned to. So, project managers can evaluate the
consequences, if participants will not be available any
more.

9. Conclusion and Future Work

The proposed tool is based on SYSIPHUS that em-
phasizes system, collaboration and organizational
models equally. We introduce knowledge nuggets to
address the problem of release planning and modeling
for innovative, distributed software projects. In these
projects requirements often are vague at project startup
and are specified slowly during development. The pro-
posed tool deals with evolving requirements: If
developers change a specific model at any site, e.g. by
adding, removing or refining requirements, the tool
updates the release plans. The tool increases the project
managers’ awareness of changes in the model and in-
forms him about changes by sending an email.
Providing awareness is a key to reduce misunderstand-
ings and redundant work in distributed projects [3].
Then, project managers might review the plan and de-
cide how to deal with changes. The tool allows an
informed decision by providing traceability, alternative
release plans and assessment of criteria. Traceability
shows change impact and dependencies from re-
sources. Alternative release plans are a mechanism to
evaluate possible sets of requirements. Participants of a
distributed release-planning meeting could elaborate
alternatives synchronously during the meeting. These
might be used to reflect local decisions and support
project managers to find a global solution respecting
local ones. The tool calculates assessments of user-
defined criteria for every release plan alternative. This
calculation is based on the criteria assessment of re-
lease items. The assessment of release items and
release plans eliminates decisions that are based on in-
stinct. If project managers revise their decision, the
tool updates the release models of the system: It adds
and removes release items to the model respecting their
dependencies. Dependency management allows group-
ing release items and reduces the complexity of their
selection by shortening the number of release items
that must be considered. Using traceability, the tool
also applies changes in the release model resulting

GREW'07 - Page 52 of 66

from changed release items to the class models of the
release.

Knowledge nuggets, releases and release plans have
been implemented in SYSIPHUS as proposed.
SYSIPHUS is used, evaluated and evolved successive
since 2000 within student projects and consulting pro-
jects for industry. Our student projects provide a
realistic environment: A real client proposes an actual
problem. The projects involve up to 100 participants in
Germany, USA and New Zealand [3]. We plan to
evaluate the concepts presented in the paper in our next
student projects.

References

[1] A. J. Bagnall, V. J. Rayward-Smith, I. M. Whittley: “The
Next Release Problem”, In: “Information and Software Tech-
nology”, 43(14), pp. 883-890, 2001.

[2] Bernd Bruegge, Allen Dutoit: Object Oriented Software
Engineering - Using UML, Patterns and Java. Prentice Hall,
Upper Saddle River (NJ), 2nd edition, 2003.

[3] Bernd, Bruegge, Allen Dutoit, Timo Wolf: “Sysiphus:
Enabling informal collaboration”, In: “Proceedings of the 1st
International Conference on Global Software Engineering”,
Costão do Santinho, Florianópolis, Brazil, October, 2006.

[4] Allen H. Dutoit, Raymond McCall, Ivan Mistrik, Barbara
Paech: “Rationale Management in Software Engineering”.
Springer, Berlin, 2006.

[5] Pär Carlshamre: “Release Planning in Market-driven
Software Product Development - Provoking an Understand-
ing”, In: “Requirements Engineering Journal”, 7(3), pp.139-
151, London, September 2002.

[6] D. Greer: “Decision Support for Planning Software Evo-
lution with Risk Management”, In: “Proc. 16th International
Conference on Software Engineering and Knowledge Engi-
neering”, pp. 503-507, June, 2004.

[7] D. Greer, G. Ruhe: “Software Release Planning: An Evo-
lutionary and Iterative Approach.” In: “Information and
Software Technology”, Volume 46, pp. 243-253, 2004.

[8] Korbinian Herrmann, Bernd Bruegge: „Visualization of
Release Planing.“ In: “Proceedings of 1st International
Workshop on Requirements Engineering Visualization“
(REV'06), IEEE Requirements Engineering, Minneapolis-
St.Paul, Minnesota, 2006.

[9] MicroTool-Homepage: http://www.microtool.de/
suite/de/releaseplanung.asp [11.05.2007]

[10] J. Momoh, G. Ruhe: “Release planning process im-
provement - an industrial case study”, In: “Software Process:
Improvement and Practice”, Volume 11, Issue 3, pp. 295-
307, 2006.

[11] ReleasePlanner-Homepage:
http://www.releaseplanner.com [11.05.2006]

[12] O. Saliu, G. Ruhe: “Supporting software release plan-
ning decisions for evolving systems”, In: “Proceedings of
29th IEEE/NASA software engineering workshop”, Greenbelt,
MD, USA, 2005.

[13] Sysiphus-Homepage: http://sysiphus.in.tum.de
[11.05.2007]

[14] VersionOne-Homepage: http://www.versionone.net/
product_planning.asp [11.05.2006]

[15] Timo Wolf: “Sysiphus: Modellbasierte Kollaboration in
Software-Entwicklungsprojekten”, In: “Objektspektrum”,
Volume 2, pp. 30-35, Troisdorf, MarchApril 2007.

GREW'07 - Page 53 of 66

GREW'07 - Page 54 of 66

The Challenges of Distributed Software Engineering and Requirements
Engineering: Results of an Online Survey

Timea Illes-Seifert1, Andrea Herrmann1, Michael Geisser2, Tobias Hildenbrand2
1 Institut für Informatik, Neuenheimer Feld 326, 69120 Heidelberg, Germany

{illes;herrmann}@informatik.uni-heidelberg.de
2 Lehrstuhl für ABWL und Wirtschaftsinformatik, Schloss, 68131 Mannheim, Germany

{geisser;hildenbrand}@uni-mannheim.de

Abstract

Growing globalization and increasing complexity of

software lead to international and national
collaboration of geographically distributed
organizations, sites and persons. Therefore, it becomes
more important to understand and to know how to
optimize distributed software development. Thus, we
performed a survey among professionals on their
experiences with distributed software development. We
present an evaluation of 744 questionnaires, with a
special focus on requirements engineering. The survey
results show that a variety of human and process-
related aspects are important for distributed software
development. They furthermore emphasize the
importance of communication in requirements
engineering: Communication, particularly face-to-face
meetings, represents the most frequently mentioned
solution to diverse problems. Similar results were
found before, but this survey supports them with a high
quantity of data.

1. Introduction

The trend towards sub-contracting, outsourcing, and
off-shoring, as well as the collaboration with partner
organizations or within an organization at different
locations (nationally and internationally) requires the
use of knowledge and resources distributed over
multiple locations. Communication, as the process of
knowledge exchange, is therefore an important issue
for software development teams [2] - even when they
are not distributed: „Software Engineering is
inherently a team-based activity“ [1] and thus implies
knowledge exchange among its members. In the case
of distributed projects, communication becomes even
more important [7], [8], [19]. Existing research
indicates that means of communication, such as

phones, mobile devices, email, or video conferencing
equipment cannot fully substitute face-to-face
meetings and demand for instance communication by
traveling [4] or “get to know” meetings [6]. Although
tool support and processes which support collaboration
cannot guarantee a good software engineering result,
they are considered to be necessary prerequisites.
Requirements on such tools supporting distributed
software engineering are discussed in [8] and
requirements on distributed processes in [3]. A tool for
requirements prioritization by “non-co-located
experts” is presented in [13] and a process for
distributed requirements prioritization in [21]. First
studies investigated lessons learned from distributed
software development [20] and distributed design [7].

As their conclusions however are based only on a
few cases, we performed a quantitative online survey
among software engineering professionals with the
goal to investigate the state of the practice in
distributed projects, including distributed requirements
engineering. Particularly, we used an online survey in
order to reach a high number of participants and
consequently to derive statistically significant results.

High participation in our survey indicates the
practical significance of distributed software
development (744 participants within 3 weeks).
Moreover, the high degree of experience with
distributed software projects among the participants
underlines the study’s representativeness.

In this paper, we present the major results of the
online survey. The remainder of the paper is organized
as follows: Section 2 provides a description of the
survey, while section 3 presents characteristics of the
participants, of the distributed processes and of the tool
usage as indicated by the respondents. Section 4
describes the analyses of participants´ responses
related to challenges of distributed software
development as well as issues specific to distributed

GREW'07 - Page 55 of 66

requirements engineering (RE). Additionally,
successful solutions to the issues mentioned by the
participants are presented. Overall conclusions and
future work are provided in Section 5.

2. Methodology and Study Design

Distributed Software Development. In our study,
we define distributed software development as follows:
“All or at least some participants of a software project
predominantly use distributed technologies for team
communication (e.g. because this is not possible
otherwise due to geographical distance)” [12].

Questionnaire Design. We designed our survey
questionnaire and the categories for the coding of
answers to open questions by applying the
MOQARE/misuse case principle [10], [11]. We first
defined important quality goals of each – even
intermediate – product, i.e. of the requirements
specification, design, code, and test results during
distributed software development. This quality was
measured by quality attributes which were specific for
each product. As the quality goal of the process we
defined the efficiency in the creation of these products.
Then, we identified misuse cases, which can possibly
happen during the process of distributed software
development and which endanger the goals mentioned
above. Misuse cases describe scenarios which must be
avoided. Discussing such unwanted events and the
countermeasures that can detect, prevent or mitigate
them, usually helps to complement requirements. In
the next step, we identified such countermeasures
which here were requirements for processes and tools
used in the development of distributed software. We
identified misuse cases and countermeasures for the
different phases of the software development: for
requirements engineering, architectural design, coding
and testing. An example is the misuse case “The
requirements specification is ambiguous because
different terminologies and notations are used.”
Important countermeasures for this misuse case would
be to use a glossary and to define a common notation.
Many misuse cases could occur the same way in every
activity and were classified as “general problems”. For
two reasons, we did not include our 137 misuse cases
in the questionnaire. Firstly, this would demand too
much time of the survey participants to comment on all
of them, and secondly, pre-defining a list of misuse
cases would focus the answers on these particular
ones, without guaranteeing that the list contains the
most relevant ones as experienced by the participants.
Instead, the misuse cases were the basis for coding the
answers to the open questions during data analysis.

The questionnaire consists of two parts. The first
part contains questions on the respondent’s experience
with distributed software development. Particularly,
we asked about the roles of the respondent, the phases
which have been performed in a distributed way, as
well as the technology used for communication and
information sharing in distributed projects. The
analysis of the respondent’s answers to questions
covered by the first part of the questionnaire is
presented in section 3. The second part of the
questionnaire addresses problems that occur in
distributed projects, their causes and their solutions.
This second part consists of four sets of questions. In
the first set, respondents were asked about general
problems in distributed projects and their solutions
(here, we proposed those nine misuse cases which
apply to general problems), whereas the other three
sets of the questionnaire asked open questions
concerning problems and solutions specific to
distributed requirements engineering, software design
and coding as well as software testing. An analysis of
the respondents´ answers to questions covered by the
first set is presented in Section 4.1, whereas comments,
misuse cases and countermeasures concerning
distributed requirements engineering are presented in
Section 4.2.

The resulting questionnaire was thoroughly
reviewed and tailored by the authors before being
published online. Criteria for reviewing were above all
the comprehensibility of the questions. Another
criterion was the time needed for answering the
questionnaire. Since respondents are not willing to deal
with lengthy questionnaires [17], we aimed at
developing a questionnaire, which does not take longer
than 20 minutes to be completed.

Data Collection. The final version of the survey
was published online for three weeks. In order to
attract many participants, we promoted the
questionnaire by posting an online advertisement in the
news ticker of a popular German computer journal.
Additionally, we addressed the participants on the
mailing list of events organized by the MFG (Media
and Film Association) Baden-Württemberg, a centre of
excellence for information technology and media in the
southwest of Germany [16].

Data Analysis. Before performing analyses, we
validated the data, analyzing the responses with respect
to validity and consistency as recommended in [18].
E.g. 24 participants indicated having no experience
with distributed development projects, thus, we did not
consider their responses in our further analysis.
Finally, there were 744 valid questionnaires. The mean
time for completing the questionnaire finally was 14
minutes.

GREW'07 - Page 56 of 66

After data validation, we coded the answers [18].
Thus, answers to open questions were categorized in
order to be analyzed in further steps. In questions
concerning the technology used to support distributed
software development, we had proposed several
alternatives including email and chat. However, the
participants also had the opportunity to add other
technologies not mentioned in the list. Some of the
respondents indicated special software packages,
requiring that we had to code the information and to
categorize the answers by assigning the particular
software solutions to a particular underlying
technology.

3. Results

In the following, general characteristics of the
participants, of the distributed processes and of the tool
usage as indicated by the respondents are presented.

3.1. Participants Characteristics

Experience of the Participants. The participants
had worked in an average of 7.5 distributed projects.
This shows the high qualification of the participants,
and also that distributed software development is
neither an exotic, nor a newly emerging phenomenon.

Roles of the Participants. The most frequent role
the participants had taken in distributed projects was
the one of the developer (68%) and the software
architect (57%). 39% stated they were project
manager, 16% requirements engineer, 29% tester and
7% in other roles. (Double and multiple roles were
indicated frequently.)

Application Domains of the Software. The
participants were asked about the business domain of
their customers (multiple answers were possible). Most
frequently, respondents stated “software” (48%)
followed by the technical sector (42% including
mechanical engineering, chemistry, electrical
engineering, telecommunication, and transport) and
service (39% covering education, consulting, IT
services). The rest were commercial sector (banking,
insurance) (23%), public sector (administration,
government) (19%) and others (14%).

3.2. Characteristics of Distributed Processes

Size of Organizations. Software is being
developed in distributed projects in big organizations
as well as in small and medium sized organizations:
34% of these projects took place in organizations with
more than 10.000 employees, and 38% in such with

less than 100. The rest is distributed among
organizations with 1000-10.000 employees (13%) and
100-999 (15%).

Size of Projects. 33% of the distributed projects
had a volume of less than 10 person months and
another 22% from 10 to 20. Figure 1 illustrates the
average size of distributed projects as indicated by the
respondents.

An average of 94 persons per project communicated
via the distributed technology, and the average number
of project team members was 84. It can be concluded
that the distributed technology involved persons in the
communication who were not project team members.
On the other hand, 18% of the participants did not
know the number of persons involved. This high
number indicates that the distributed communication
leaves some persons without an overview or
“awareness” [9] about the members of the team and
their activities.

Figure 1. Average Project Size in Person
Month

Size of distributed Projects

33%

22%

16%

10%

16%

3%

0%

5%

10%

15%

20%

25%

30%

35%

<10 10-20 20-40 40-100 100-1000 ≥1000
Average Project Size in Person Month

N
um

be
r o

f M
en

tio
ns

in

 P
er

ce
nt

Project Phases and Roles. The project phase
which had been done in a distributed way most often
was implementation (92% of the participants),
followed by testing (73%) and architectural design
(62%). Requirements analysis (38%) and operation as
well as maintenance (46%) were less frequent. This
distribution among project phases is also reflected by
the role distribution of the participants (see preceding
section) and when being asked which roles did use the
distributed technology. We want to point out that 27%
of the respondents indicate that later users of the
system were also involved in the development project
using distributed technology for communication and
information exchange.

GREW'07 - Page 57 of 66

3.3. Tool Characteristics

Distributed Communication. Participants of the

survey were asked to indicate which kinds of
distributed technology they use for distributed
communication. Email seems to be the most important
tool for communication. Almost 95% of the
participants indicate to use those means for
asynchronous communication. The most important
synchronous technologies are the phone and the
conference call. 77% of the respondents indicate to use
phone and 59% indicate to use conference calls in
distributed projects. Other technologies used comprise
video conferencing (not via internet) and remote
desktops.

Distributed Information Exchange. Participants
of the survey were also asked to indicate which kinds
of distributed technology they use for distributed
information exchange. Version control systems and
document management systems referred to as the most
frequently used technologies for information sharing.
CASE tools and project management tools are only
used by about 40% of the respondents to exchange
information. Another information platform mentioned
by respondents represents problem/defect management
reports.

Figure 2 summarizes the results of the survey study
with respect to the frequency of mentions regarding
communication (white bars) and with respect to
information exchange using a certain distributed
technology (black bars). The finding, that email,
telephone and file sharing are the most frequently used
tools is consistent with results of other studies [6],[14].

Figure 2. Distributed Technology Usage
95

88

77
68

59

44 42 39 38
33 32

21 18

0

10

20

30

40

50

60

70

80

90

100

Email

Vers
ion

 C
on

tro
l S

ys
tem

Pho
ne

Doc
um

en
t M

an
ag

em
en

t S
ys

tem
s

Con
fer

en
ce

 ca
ll

Wiki
Cha

t

CASE Too
l

Proj
ec

t M
an

ag
em

en
t T

oo
l

VoIP
, e

.g.
 Sky

pe

Othe
rs

Onli
ne

 Fo
rum

Vide
oc

on
fer

en
ce

 vi
a I

nte
rne

t

Distributed technology

Fr
eq

ue
nc

y
of

 n
om

in
at

io
ns

 (i
n

pe
rc

en
t)

4. Analysis of Participants´ Comments,
Misuse Cases and Countermeasures

In this section, we present challenges of distributed
software projects and particular issues in requirements
engineering drawn from our survey.

4.1. Challenges of Distributed Development

In comments and open questions concerning misuse
cases, respondents mention mainly five types of
challenges concerning distributed development:
process barriers, cultural barriers, domain specific
barriers, technical barriers and communication barriers.
Figure 3 visualizes these barriers and their
corresponding specific facets by means of a fishbone
diagram. The numbers in parentheses represent the
number of mentions.

Process barriers are the most frequently mentioned
barriers in distributed software development. 10
respondents indicate as a major problem that
documented processes are not actually implemented
and that responsibilities are not clearly defined
(mentioned 9 times). Reasons for unclear
responsibilities as mentioned by the respondents are,
e.g. frequently changing responsibilities or the lack of
a coordinator role. Other important process barriers
represent enhanced communication needs (9) and
inappropriate processes (8). A main reason for
increased communication is reported in cases with
incomplete documentation. Inadequate processes
mainly result from the use of “standard” processes
which are not adjusted to the distributed context. A
special case of inadequate processes represent
inflexible processes (7). Respondents emphasize the
problem of rigid processes, where changes are very
slowly propagated. Finally, other process barriers
reported by the respondents include undefined
requirements concerning the tools and infrastructure to
be used, resulting in inappropriate tools, missing
commitment from the management, above all
concerning quality assurance activities related to
distributed processes and undefined processes.

Main facets of cultural barriers mentioned by the
respondents are not only differences concerning the
language (mentioned 16 times). Differences in the
awareness of quality (16) or work ethic barriers (8)
influence distributed projects, too. One respondent
highlights the problem that for some cultural groups it
is difficult to express disagreement to customers.
Consequently, “nice-to-have” features as well as key
features are treated equally, resulting in requirements
without priorities. Another participant reports that

GREW'07 - Page 58 of 66

countries differ in the work ethic with respect to the
accuracy of the work as well as to the ability to
improvise.

Domain specific barriers mainly subsume
differences concerning experience (mentioned 23
times) and the professional formation (18) of
distributed teams. Respondents report four kinds of
experiences missing in distributed projects: experience
in general, experience concerning distributed projects,
domain specific experience and experience with
specific tools.

Technical barriers also influence the efficiency of a
distributed project. Respondents report that
information in form of data is often distributed.
Providing consistency and availability of the data are
the most important technical barriers (mentioned 11
times). Another technical barrier is that tools do not
support distributed processes (9) and quality
requirements on processes (7). Particularly lacks in

security and performance of the tools often prevent
their (efficient) usage. Another technical barrier is that
tools used by customers are inappropriate and do not
integrate well with tools used within the organization
(3).

Missing face-to-face communication is a specific
communication barrier and it is seen as indispensable
even when technological support for synchronous or
asynchronous communication is available (mentioned
9 times). One respondent indicates that technology
does not replace a convivial evening having a “glass of
wine or beer” together. The use of asynchronous,
inefficient communication channels represents an often
mentioned communication barrier (5). Additionally,
respondents also indicate that distributed team building
to facilitate communication is a very difficult task (3).

Figure 3. Challenges of distributed development

4.2. Successful Countermeasures

We asked the participants about countermeasures

to problems occurring during distributed software

engineering, which had successfully been applied.
For 136 of the 189 problems, the participants
indicated countermeasures. In 30 cases, the
participants did not give any answer and in further 23

GREW'07 - Page 59 of 66

cases the participants explicitly indicated that there
was no successful countermeasure.

The solutions to the barriers presented in Section
4.1 can also be grouped into 5 main categories:
communication, process, quality assurance (QA), tool
and training. An additional category “other”
subsumes solutions which can not be assigned to any
of the categories mentioned above. Figure 4
summarizes the responses of the respondents and

assigns to each barrier the absolute number of
solutions indicated by the participants per category.
The most important countermeasure to barriers in
distributed software development is communication.
Above all, intensifying communication is indicated as
an important countermeasure to almost all barriers
(mentioned 55 times). Above all, communication by
email and face-to-face communication were indicated
as successful countermeasures in this category.

Figure 4. Countermeasures per barriers – absolute number of indications

2

3 3 3

13 4 14 18 6

8 2 10 11

16 4 4 2 7

4 6 4 1
6

10 2 5 2 6

4 12 6 2 6

7 7

process technical cultural communication domain

communication

QA

tool

process

other

training

barriers

counter
measures

mentions

55

33

15

8

31

no solution

no answer

25

30

23

Another important group of countermeasures deals
with process aspects (mentioned 33 times). Within
these mentions, process improvements, a clear
definition of responsibilities as well as the definition of
process standards were indicated as successful
countermeasures in this category. Additionally, the
definition of a flexible and iterative development
process was also mentioned.

Intensifying quality assurance activities represents
another group of countermeasures (mentioned 31
times). Above all, the definition of standards and the
performance of more frequent reviews and audits were
indicated as successful countermeasures in this
category. The definition of standards subsumes the
definition of a standard terminology and of a standard
language as a countermeasure to communication and
domain specific barriers. Additionally, the definition of
standard templates has proven of value to overcome
domain specific barriers. Finally, intensifying

reviewing activities is also a countermeasure to domain
specific barriers.

Noticeable is that for about half of all technical
problems the participants could not indicate successful
solutions.

4.3. Challenges of Distributed Requirements
Engineering

In addition to the general problems discussed in the
preceding section, in another part of the questionnaire
we asked whether there were problems specific to
distributed requirements engineering. 58% of the
participants answered that they had no problems
specific to this phase and to distributed software
development. 17% answered that there were such
problems, but they did not know them, and 25% said
there were problems, and these all together listed 122
of such problems.

GREW'07 - Page 60 of 66

We wondered how it was possible that 58%
reported no specific problems. (As we will show later,
in fact the reported problems are specific to distributed
requirements engineering, as was the intention of this
question.) To find out why this proportion is so high,
we first examined to what degree the person’s own
role influenced his/her answer. Of all those participants
who had the role of requirements engineer in the
distributed projects, 33% reported detailed problems,
12% said there were such problems, but they did not
know which, and 55% said there were none which
were specific. So, requirements engineers reported
about RE problems only slightly more often than the
average participant. Three further explanations for the
low percentages of reported specific problems, which
probably all are valid to a certain degree, can be: Many
of the RE problems observed during distributed
software development would have happened likewise
in non-distributed projects and therefore were not
reported here. Or the participants did not want to
answer this question, either because the questionnaire
seemed too long to them or because they did not want
to give too detailed confidential information about
problems.

We also wondered whether many participants did
not report RE problems as this phase was not done in a
distributed way. 146 participants reported that the RE
phase was distributed. For 34% of them, problems
were reported, 17% experienced problems without
knowing them and 49% seem to have had none.
Amazingly, only 57% of those participants who
reported RE problems which are specific to distributed
software development, also had reported that the RE
phase had been performed in a distributed way. These
replies are inconsistent. It is possible that the question
“Which phase was performed in a distributed way?”
was misunderstood by participants, maybe because
practitioners do not use the concept of phase. We do
not think that the question about problems, which are
specific to distributed RE, was misunderstood.
Evidence that the participants did understand the
question correctly is the fact that such problems which
are specific to RE, but not to distributed RE, were
rarely reported. Those were found in other studies on
RE problems, as in [19]: understanding the users´
needs, conflicts among different customers, how to
prioritize requirements, requirements changes.

As was described in Section 2, we asked to name up
to three problems (without pre-defined answers) in the
part of the questionnaire concerning RE, and in open
questions we asked for causes of the problems and for
successful countermeasures. In addition to these three
problems, further comments concerning RE could be
given.

To code the answers to the open questions, we
proceeded as follows: We defined the goal of
requirements engineering to be the quality of the
requirements specification in terms of the quality
attributes defined by the IEEE Standard 830-1998 [15]
(correctness, unambiguousness, completeness,
consistency, verifiability, ranking according to
importance and/ or stability, modifiability, traceability)
and the efficiency of the specification process. These
were the quality criteria we used for the coding of the
reported problems.

Each problem reported in the survey was assigned
to the quality criterion it endangered. In a second
dimension, the reported problems were coded
according to the cause of the quality problem
observed. These causes were coded according to the
types of barriers in Figure 3.

In our MOQARE analysis preceding this survey, we
had identified 53 potential misuse cases. Misuse cases
combine a cause with a resulting quality problem. (In
fact, a misuse case includes much more information,
but for our present purpose this simplification is
useful.) The analysis of the reported requirements
engineering problems led to 13 further misuse cases.

Of the 122 problems which the participants
reported, 7 could not be coded, because of vague
wording. 47 were related to ambiguity of the
requirements specification, 44 to the efficiency of the
process and 12 to the completeness of the
specification. Only five were related to modifiability,
three to correctness, two to consistency, one to
verifiability, one to prioritization and none to
traceability.

The participants named 19 out of the 66 misuse
cases more than once. In the following, the ambiguity
and efficiency misuse cases are discussed in more
detail, because they were clearly named most often.
Table 1 illustrates which type of barrier is observed in
which context. Significant differences can be observed.
For instance, communication barriers play a more
important role in RE than in software development in
general, and such communication barriers rather lead
to inefficient processes than to ambiguous
specifications. The ambiguous specification was
mostly (at 66%) attributed to domain specific barriers,
which were less important for process efficiency, but
highly relevant in RE overall. Such domain specific
barriers can be lack of technical knowledge as well as
domain knowledge. Technical barriers played an even
smaller role in RE than in software development in
general. Four times, email and phone were mentioned
(both together), but because the problem did not spring
from the technology itself, we did not count them as
technical barriers. Rather these four answers stated that

GREW'07 - Page 61 of 66

face-to-face communication cannot be replaced by any
technology, so we assigned them to communication
barriers.

Problem cause (a) (b) (c) (d)
Communicatio
n barrier

9% 27% 11% 41%

Domain specific
barrier

22% 33% 66% 5%

Cultural b. 23% 16% 21% 18%
Technical b. 16% 3% 0% 5%
Process b. 31% 21% 2% 32%

Tab. 1: Problem causes: (a) in distributed software
development in general (data from Figure 3 for

comparison); (b) in distributed RE; (c) in distributed
RE and leading to ambiguity of the requirements
specification or (d) leading to an inefficient RE

process (columns add to 100%, i.e. percentage tells
the ratio of each barrier within each context)

In addition to the coarse-grained statistics in Table
1, in the following some chosen detail information
further illustrates the nature of problems in distributed
RE. In the context of ambiguous specifications, half of
the cultural barriers were of the type “language
barriers”; this is more than in software development in
general (compare to Figure 3). In distributed RE, 42%
of the domain specific barriers meant different
terminology or notation of requirements.

In the context of efficiency of the specification
process out of the 18 mentions of communication
barriers, 5 stated that face-to-face communication
cannot be replaced by indirect respectively distributed
communication. The other three sub-types of
communication barriers with three answers each were:
not enough communication, time zones, and
asynchronism of the communication. Among the 14
mentions of process barriers, the most frequent ones
were undefined responsibilities (5), high numbers of
stakeholders as sources of requirements (4), and
suitability of processes (3). Out of 8 mentions of
cultural barriers, language barriers were mentioned 4
times.

4.4. Successful Countermeasures for
Distributed Requirements Engineering

The survey participants were also asked about

successfully applied countermeasures for the indicated
misuse cases/problems. For only 37 of the 122
problems, such countermeasures were named (as there
were often several countermeasures per misuse case,
this made 45 countermeasures in all). In seven further

cases, the answer explicitly was that there was no
successful countermeasure (so far).

 As can be seen in Figure 5, the most frequently
proposed countermeasures were communication
measures (mentioned 16 times) or, more specifically,
face-to-face communication (12). This sums up to 28
out of 45 (i.e., 62%). It was proposed to communicate
more often, immediately as a question arises,
according to formal rules, using a tool (a wiki in this
case) and a common terminology. It is remarkable that
in distributed development in general (see section 4.1),
face-to-face communication was explicitly named only
4 times out of 55 communication measures, i.e. at 7%,
and not at 43% as in RE.

Figure 5. Countermeasures for barriers in
distributed RE: numbers of mentions

(“Comm.” = “communication”)

4831

552

4283

31111

242010321

communication

barriers

other

no solution

face-to-face
communication

no answer

counter
measures

process technical cultural comm. domain

78

7

17

12

16

The other (17) countermeasures were: Quality

Assurance (here: reviews and inspections) reduced
ambiguity of the specifications when it is due to
language problems, double work done due to unclear
responsibilities, and general human communication
problems. Training (here: coaching and workshops)
helped against culturally caused misunderstandings
and the lack of qualification which had led to
incomplete requirements (both domain specific
barriers). Three times working more was named.

Specific RE countermeasures were proposed for the
ambiguity of requirements specifications which is due
to different terminology or notation. These were:
example requirements, a glossary, early test
specifications, standardization of formats, and the
definition of minimum standards for documents. When
team members differ in working speed, they must be
pushed or their work passed on to faster groups.
Conflicts among a multitude of stakeholders are
handled by the project manager, e.g. by defining goals
which are shared by all stakeholders. Other process
barriers were tackled by process improvement, i.e. by a
formal change process (2) and regular “polling” (1).

GREW'07 - Page 62 of 66

Tools were named three times as countermeasures
to communication or quality problems. These tools
were: video conferencing, VoIP and Wiki. There were
two countermeasures which mention email, but one
was counted among the communication
countermeasures (because it said to communicate via
email and phone, so the advice was to communicate)
and the other among process countermeasures (to send
short status notes per email).

5. Summary and Discussion

This paper presents some of the major results of an
online survey among IT professionals who are
experienced in distributed software development. In
doing so, we focused on the results concerning
requirements engineering. The participation rate in this
survey was high. So was the average experience of the
participants with distributed software development.
This shows the practical relevance and
representativeness of the topic.

We identified five barriers which influence
distributed software engineering projects: process
barriers, cultural barriers, domain specific barriers,
technical barriers as well as communication barriers.
Comparing a former interview study with our study,
the authors in [2] also identify communication and
domain knowledge issues when developing large
software systems (not necessarily in distributed teams).
In addition to the problems mentioned in [2], in our
study we identified three further problems, which often
occur within a distributed project context. The most
frequently reported problems concern process barriers.
Thus, documented processes are not efficient and
appropriate in a distributed context with the result that
documented processes are not actually implemented.
Another issue mentioned by the participants of our
study is related to cultural barriers. This is not
surprising, as the study in [2] did not analyse
distributed projects. A project team working at one
location is more likely to be homogeneous with respect
to cultural characteristics than the members of a
geographically distributed project. In contrast to the
study in [2], the respondents of our study also report
technical barriers. Above all, difficulties to provide
consistency of distributed data as well as the lack of
support for distributed processes are the main issues
mentioned by the respondents. In contrast to the study
in [2], conflicting requirements are not often
mentioned by the respondents. Thus, respondents of
our study do not consider this specific to distributed
software development.

Altogether, our study shows that problems related
to distributed software engineering in general and
specific problems related to requirements engineering
are similar, but their relative occurrence frequencies
vary. For instance, communication barriers are more
important in requirements engineering and technical
barriers are less important. Moreover, there are
particular problems related to requirements
engineering. Above all, communication plays a critical
role as an important measure against problems.

Our study shows that process-related and human
aspects are more important than technical ones. The
survey participants did not emphasize tool support,
when answering to open questions about problems
which they encountered. As communication has been
such a frequent countermeasure to many different
problems in requirements engineering, we conclude
that the main goal of tools and processes must be to
support communication.

As can be seen from the literature cited in the
introduction, it is not surprising that communication
plays such an important role in distributed software
development, as a frequent type of barrier as well as a
recommended countermeasure to overcome barriers.
Thus, this work confirms former, often anecdotic and
qualitative findings quantitatively.

Barrier

[2
]

[4
]*

[5
]

[6
]*

[9
]*

[1
4]

*

[1
9]

[2
0]

*

[2
2]

*

Comm. X X X X X X X X
Domain
specific

X X X X

Cultural X X
Technic
al

 X X

Process X X X X

Tab. 2: Barriers/ problem sources identified by
other studies for distributed and non-distributed

development (studies which investigate distributed
development are marked by *)

Other empirical studies of software development
found similar barriers as we did. We summarize their
results according to our classification in Table 2.
Details of the context of the studies and results are
given below:

Curtis et al. [2] found three types of problems in the
development of large systems: (1) the thin spread of
application domain knowledge, (2) fluctuating and
conflicting requirements, (3) and communication
bottlenecks and breakdowns. Whether these are more
frequent in distributed software engineering than in the
“large system development” investigated by Curtis et

GREW'07 - Page 63 of 66

al. cannot be told, because the authors do not measure
their importance quantitatively.

An empirical study of distributed software
development found the following types of problems
[20]: requirements engineering, lack of standards of
the activities in distributed teams, the difficulty to
share information and the lack of a well-defined
software development process, language barriers and
communication, cultural differences, context sharing
and trust acquisition among teams. A study of
distributed RE [22] found these: communication,
planning, management, review process, validation,
prototyping, traceability, tool support, knowledge
management. [14], in the context of distributed
development of embedded systems found: time
difference, cultural differences, lack of knowledge of
the product. These all are consistent with our findings,
although the granularity is not always the same
(compare to Figure 3), and the other studies do not
quantify the importance of the problems.

One interview study of distributed software
development identified some further problems, not
found in our survey [14]. These are: openness of
communication between partners, problem hiding in
customer-supplier relations, unclear assignments, trust,
agreeing on intellectual property rights, reliability of
the partners´ development schedule, continuation of
the collaboration in the future, predicting the most
sales-boosting features, quality of the product,
becoming too dependent on one partner, competence
of new partners, weakening of one’s own competence.
One can wonder whether such problems are rather
mentioned in an interview study than in an online
survey because of higher trust and openness towards
the interviewer, or whether they were not considered to
be specific to distributed software development.

As was mentioned in section 4.3, such problems
which are specific to RE, but not to distributed RE,
were rarely reported during our survey, such as:
understanding the users´ needs, conflicts among
different customers, how to prioritize requirements,
requirements changes [19], or: package considerations
(analysis of COTS products), level of detail of process
models, examining current system, user participation,
managing uncertainty, CASE RE tools, project
management [5]. This is because we asked for
problems which are specific for distributed RE, and
also shows that the participants focused on these.

Counter-
measure

[2
]

[4
]*

[5
]

[9
]*

[1
4]

*

[2
0]

*

[2
2]

*

Communi-
cation

 X X X

Face-to-face
comm.

 X X X

Training X X X
Tool X X X
Process X X
Others X

Tab. 3: Countermeasures identified by other
studies for distributed and non-distributed

development (studies which investigate distributed
development are marked by *)

Table 3 presents an overview of countermeasures
proposed by other studies. The following were
proposed by practitioners: to increase application
domain knowledge, tools and methods must allow
change, appropriate communication media [2];
planning, training, standardization, requirements
engineering (face to face if possible), trust and
integration [20].

Although the other studies did not measure the
importance of these countermeasures quantitatively, it
seems that tools and communication media as well as
training had a lower weight in our study. We believe
that this is because these countermeasures are not
successful or not perceived as being so by the team
members (we explicitly asked for successful
countermeasures to the named problems). For instance,
in [14] it was found that most tools do not support
collaborative development well enough. Although
practitioners did not report tools as a major problem
neither in [14] nor in our study, this can serve to
explain why tools are rarely seen as solution of
problems in distributed software development.

From literature, one can edit lists of
countermeasures which are more comprehensive than
those found in empirical studies [14]. Many of these
countermeasures were not mentioned by the
practitioners in our study and in those studies cited
above. There can be several explanations for this
observation. Either these countermeasures are not
known to practitioners, are not applied or are not
perceived as being useful. Such countermeasures were:
synchronisation of main milestones, clear decision-
making practices, decoupling the work across different
sites, one project leader, relationship management,
architectural practices, frequent deliveries, frequent
and incremental integration, up-to-date documentation
[14].

Possible threats to the validity of our results include
for instance, that a high proportion of the participants

GREW'07 - Page 64 of 66

of this survey were developers and designers. This
does not necessarily mean that this adds a significant
bias to the results as most of the projects were small;
so also the developers probably had an overview of the
project, and the questionnaire always offered the
option to answer “I do not know”, e.g. concerning
requirements engineering problems. However, our
analyses in the beginning of section 4.3 show that
requirements engineering problems evidently have also
been known to participants other than the requirements
engineer. The answers to our questions were
subjective, i.e. the participants named the problems
which were most memorable to them and the
countermeasures which they believed were most
efficient. The relevance of these problems and the
efficiency of countermeasures have not been shown by
statistical analyses of project data, which was not our
purpose. Some practices which usually are advised in
technical literature, like using a glossary in
requirements engineering, rarely appeared in the
answers. This does not necessarily mean that they are
not used in practice, but this shows that their lack has
not been a major problem (either because a glossary is
less important or used without saying), and that such a
practice was not the most important solution to a
problem. As we have discussed before, some measures
are necessary, but not sufficient preconditions of good
work (like the tools) and therefore are presumably not
mentioned in this survey. We did not compare our
results quantitatively with such for non-distributed
projects so far, mainly because our focus was to
investigate the state of the practice. Some of the
identified problems also occur in non-distributed
projects. However, the comments and examples given
by the participants indicate that they quite well
understood that we asked for problems which were
specific to distributed work. The above must be kept in
mind when interpreting the survey results.
Nevertheless, we think that our results are a good basis
for investigating project problems and practices as
perceived by the team members, because of the high
number of participants and the amount of data.

Future work will focus on further analyses,
especially on software development phases other than
the requirements engineering. Furthermore, we expect
that the in-depth analysis of correlations will lead to
further interesting insights, e.g. whether some
problems are more frequent in big projects than in
small ones.

Acknowledgements

We would like to thank the numerous participants

of the survey for their time, trust and meaningful

answers, and Barbara Paech for her constructive
suggestions, comments and references. We also
appreciate the financial and organizational support of
the survey by the MFG, especially by Eike Bieber. We
also would like to thank Heise for publishing the
survey address in their news ticker, which significantly
contributed to the high participation. This work was
funded by the research network PRIMIUM.

6. References

[1] C. Cook and N. Churcher, “An Extensible Framework for
Collaborative Software Engineering”, Proceedings of the
10th Asia-Pacific Software Engineering Conference
APSEC’03, IEEE, 2003, pp. 290–301.
[2] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the
software design process for large systems”, Communications
of the ACM 31 (11), 1988, pp.1268-1287.
[3] D.L. Dean, J.D. Lee, M.O. Pendergast, A.M. Hickey, J.F.
Nunamaker, “Enabling the Effective Involvement of
Multiple Users: Methods and Tools for Collaborative
Software Engineering”, Journal of Management Information
Systems 14 (3), 1998, pp. 179–222.
[4] A.H. Dutoit, J. Johnstone, and B. Bruegge, “Knowledge
scouts: Reducing communication barriers in a distributed
software development project”, Proceedings of the Eighth
Asia-Pacific on Software Engineering Conference APSEC,
IEEE, Dec. 2001, pp. 427-430.
[5] K. El Emam and N.H. Madhavji, “A field study of
requirements engineering practices in information systems
development”, Proceedings of the International
Symposium on Requirements Engineering, IEEE, 1995,
pp.68-80.
[6] J. Grieb and U. Lindemann: “Design Communication in
Industry: A Survey Analysis”, International Conference on
Engineering Design ICED 05, Melbourne, Aug. 15 – 18,
2005, pp. 586-587.
[7] R.E. Grinter, J.D. Herbsleb, and D. E. Perry, “The
geography of coordination: Dealing with distance in R&D
work”, Proceedings of the ACM Conference on Supporting
Group Work (GROUP 99), Phoenix, AZ, November 14-17,
pp. 306-315.
[8] J. Grudin, “Why CSCW applications fail: problems in the
design and evaluation of organization of organizational
interfaces “, Proceedings of the 1988 ACM Conference on
Computer-Supported Cooperative Work, ACM, New York,
1988, pp.85-93.
[9] C. Gutwin, R. Penner, and Kevin Schneider, “Group
Awareness in Distributed Software Development”,
Proceedings of the 2004 ACM conference on Computer
supported cooperative work CSCW’04, IEEE, Chicago,
Illinois, USA, November 6–10, 2004, pp.72-81.
[10] A. Herrmann, D. Kerkow, and J. Doerr, “Exploring the
Characteristics of NFR Methods – a Dialogue about two
Approaches”, REFSQ - Workshop on Requirements
Engineering for Software Quality (2007), Foundations of
Software Quality, to be published.

GREW'07 - Page 65 of 66

[11] A. Herrmann, B. Paech, “Quality Misuse”, REFSQ -
Workshop on Requirements Engineering for Software
Quality (2005), Foundations of Software Quality, Essener
Informatik Beiträge, Universität Duisburg-Essen, Essen,
2005, pp. 193-199.
[12] T. Hildenbrand, F. Rothlauf and A. Heinzl, “Ansätze zur
kollaborativen Softwareerstellung”, WIRTSCHAFTS-
INFORMATIK 49 (Special Issue), 2007, pp. S72–S80.
[13] I. Hoh and R. Siddharta Roy, “Visualization issues for
software requirements negotiation”, Proceedings of the 25th
Annual International Computer Software and Applications
Conference COMPSAC, 8-12 Oct 2001, pp.10-15.
[14] J. Hyysalo, P. Parviainen, and M. Tihinen,
“Collaborative Embedded Systems Development: Survey of
State of the Practice”, Proceedings of the 13th Annual IEEE
International Symposium and Workshop on Engineering of
Computer Based Systems (ECBS06), IEEE, 2006.
[15] IEEE, Std. 830-1998: IEEE Recommended Practice for
Software Requirements Specification, IEEE, Washington,
1998
[16] MFG Baden-Württemberg,
http://www.english.doit-online.de/cms/About+us/
MFG+Baden-W%FCrttemberg, last visited May 2007
[17] B.A. Kitchenham and S.L. Pfleeger "Principles of
survey research: part 3: constructing a survey instrument",
SIGSOFT Softw. Eng. Notes vol. 27, no. 2, pp. 20-24, 2002.
[18] B. Kitchenham and S.L. Pfleeger "Principles of survey
research part 6: data analysis", SIGSOFT Softw. Eng. Notes
vol. 28, no. 2, 2003, pp. 24-27.
[19] M. Lubars, C. Potts, and Ch. Richter, “A review of the
state of the practice in requirements modeling”, Proceedings
of the International Symposium on Requirements
Engineering, IEEE, 1992, pp.2-14.
[20] R. Prikladnicki, J.L.N. Audy, and R. Evaristo, “An
Empirical Study on Global Software Development: Offshore
Insourcing of IT Projects”, Proceedings of the International
Workshop on Global Software Development, International
Conference on Software Engineering (ICSE 2004), IEEE,
Edinburgh, Scotland, May 24, 2004, pp. 53-58.
[21] B. Regnell, M. Höst, J. Natt och Dag, P. Beremark, and
T. Hjelm, ”An Industrial Case Study on Distributed
Prioritisation in Market-Driven Requirements Engineering
for Packaged Software, Requirements Engineering Journal
6(1), 2001, pp. 51–62.
[22] D. Zowghi, D. Damian, and R. Offen, „Field Studies of
Requirements Engineering in a Multi-Site Software
Development Organization“, Proceedings of the Australian
Workshop on Requirements Engineering, Sydney, Nov.
2001.

GREW'07 - Page 66 of 66

	Overview

	Program

	TOC

	Introduction

	Cho: Requirements Management in Software Product Line

	Thurimella, Wolf: Issue-based Variability Modeling

	Mallardo, Calefato, Lanubile, Damian: The Effects of Communication Model on Distributed Requirements Negotiation

	Kwan, Damian, Marczak: The Effects of Distance, Experience, and Communication Structure on Requirements Awareness in Two Distributed Industrial Software Projects

	Gumm: A Model of Requirements Engineering at Organizational Interfaces: An Empirical Study on Distributed Requirements Engineering

	Herrmann: Release Planning in Distributed Projects

	Illes-Seifert, Herrmann, Geisser, Hildenbrand: The Challenges of Distributed Software Engineering and Requirements Engineering: Results of an Online Survey

