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ABSTRACT
While diagrams play a central role in the software lifecycle,
computer-based modeling tools are often not used in prac-
tice. At least to some extent, this is due to their lack of
flexibility and support of recurring and tedious “model ad-
ministration” tasks. Such tasks, like the rearrangement of
existing model elements to provide the space required by a
new element or the manual adjustment of lines after mov-
ing an element, distract the user from the actual modeling
activities.

In this paper, we present an approach to relieve the mod-
eler from the painful manual placement of the labels accom-
panying the links in a diagram by handing this task over to
the modeling tool. Additionally, we give a short overview
over other modeling activities that come along with the cre-
ation and manipulation of a diagram but should be handled
by the tool and not the user.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Algorithms, Languages

Keywords
Modeling

1. INTRODUCTION
Diagrams show up in all stages of the software lifecycle,

from the specification of requirements to the maintenance of
software systems. Graphical or visual representations are of-
ten seen as more effective, especially in the communication
with end users, than textual representations [10]. While
there exists a multitude of tools which aim to ease the cre-
ation and manipulation of such diagrams, they are often not
used in practice. In principle, a computer-based tool sim-
plifies the work with a diagram because it can support the
user in ways that are not possible on paper or white boards.
However, with current modeling tools the user spends a large
fraction of her/his time with“drawing”rather than modeling
tasks. Overlaps between model elements have to be resolved,
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links have to be routed tediously around existing elements
and text labels need to be placed in a way that the text
remains readable. Most of the time these labor-intensive
tasks distract so much from the actual modeling activity
that users sidestep to more flexible approaches for the de-
velopment of a model. Formal modeling tools are then used
to document the final result of this process only. In order
to facilitate the modeling process, tools have to relieve the
users from some tasks instead of imposing additional ones
on them. Ultimately, tools should make it easier and not
harder to model a system.

In our previous work, we have published concepts and al-
gorithms to manage the complexity of a diagram [14], sup-
porting the user while changing it [15] and routing the con-
necting lines automatically [16]. In this paper, we present an
approach to automatically place the labels that accompany
the lines in a diagram. This is an additional step in evolv-
ing the interaction with modeling tools from that of simple
(dumb) drawing tools towards one that really facilitates the
actual modeling activities.

The remainder of the paper is organized as follows. In
section 2, we briefly discuss the main interaction problems
of current modeling tools and some concepts that have been
proposed to alleviate them. Our label placement approach
is presented in section 3. In section 4, we summarize our
work and sketch some future work.

2. PROBLEMS OF INTERACTIVE
EDITING

The iterative nature of the software modeling process re-
sults in specific problems because models have to be changed
and updated very frequently. Each of these changes re-
sults in additional drawing tasks (e.g., rearrangement of
nodes and links to provide additional or remove superfluous
space). Unfortunately, most modeling tools do not support
the user in handling this interaction overhead. Instead, they
often employ simple, brute-force approaches (e.g., overlap-
ping nodes, connecting nodes with straight lines or placing
labels always at the middle of lines) which results in un-
readable diagrams. However, a modeling tool has to offer
explicit solutions for these problems, if the aim is to relieve
the user from the tedious drawing tasks that are not an
integral part of the actual modeling but rather supporting
activities. These comprise tool-supported complexity man-
agement mechanisms, extended tool support during edit-
ing operations, a concept and algorithm that automatically
routes the lines and a basic algorithm to place the labels
accompanying lines automatically.



2.1 Complexity Management
Complexity is probably the most important challenge for

the software engineering discipline. The elements of a soft-
ware system interact with each other in a nonlinear fashion,
so that the complexity of the whole increases much more
than linearly with the number of elements [2]. The essen-
tial complexity of software systems stems largely from the
complexity of the problem that has to be solved and the envi-
ronment the system is embedded in [18]. As a consequence,
complexity is also one of the most intractable problems of
graphical representations of such systems. Unfortunately,
current modeling languages do not scale [10].

Most modeling languages, including UML [11], rely on the
principle of loosely coupled multi-diagram models as the pri-
mary means for separating concerns and decomposing large
models. At least to some extent, this is due to the fact that
current modeling tools rely on flat or practically flat mod-
els and do not provide any decent mechanisms to manage
the complexity. The basic idea of our Adora1 approach is
to reverse the underlying principles: we use an integrated,
inherently hierarchical model instead of a loose collection
of diagrams and a tool that generates abstractions and di-
agrams of manageable complexity by exploiting the hierar-
chy and filtering model elements. Adora is comprised of (i)
an integrated hierarchical modeling language [5] with hier-
archical decomposition and views (structure, behavior, user
interaction, etc.) and (ii) a tool [15] that allows a user to
navigate through the hierarchy and show or hide model el-
ements according to the selected view(s). While we show
our approach in the context of the Adora language, the
presented concepts can be used for any graphical modeling
language that supports a hierarchical decomposition, e.g.
hierarchical UML diagrams such as component diagrams.

Adora employs the nested box notation to represent hi-
erarchical relationships between model elements. The repre-
sentation directly suggests it’s meaning [10] and facilitates a
direct and straightforward fisheye zoom [4] interaction style:
By zooming-in and zooming-out, the user can control the
level of detail of each node. Fig. 1a) shows an abstract view
of a hierarchical model: only the three top-level nodes are
visible. The ellipsis after a node name is an indicator that
the node has an inner structure which is hidden in the cur-
rent view. By successively zooming-in nodes B and D, we
get the view of Fig. 1b) which shows the details of the model
in a focal point (node D) together with the global structure
of the model. Conversely, by zooming-out nodes in an ex-
panded model we get a more abstract view.

We have developed a zoom algorithm [14] which adapts
the layout of the diagram in case of such zoom operations.
With our fisheye zoom technique, the user can freely navi-
gate within the hierarchical structure of a model while the
algorithm solves the problem of having a user-editable layout
which is nevertheless stable under multiple zooming opera-
tions. Additionally, our algorithm can be used to hide indi-
vidual nodes or types of nodes to further reduce the complex-
ity of the diagram. Thus, the user can dynamically generate
different views (i.e., projections) on the model by filtering
specific model elements. This view generation mechanism
facilitates the integration of multiple system aspects in one
coherent model while keeping the size and complexity of the

1Adora is an acronym for Analysis and Description Of
Requirements and Architecture
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Figure 1: Fisheye Zooming

resulting diagram within reasonable limits.
The lack of adequate complexity management mechanisms

in current computer-based tools has made different authors
in various fields to think about better solutions. For ex-
ample, various aproaches such as SHriMP [19] or the Con-
tinuous Zoom [1] are built on the idea of fisheye views. In
contrast to existing techniques, the stability of zooming and
filtering operations is one of the most important properties
of our approach. Furthermore, most existing techniques do
not support model editing (movement, addition and removal
of model elements) very well.

2.2 Editing Support
The nested box notation used to depict hierarchical rela-

tions lends itself to some kind of sophisticated tool support
(like the fisheye zooming and view generation mechanism
described in the previous section) but the need for tool sup-
port, especially for editing, is also significantly larger than
for ordinary (flat) graphs. A change in one part of the dia-
gram is propagated all the way up in the hierarchy until the
root node is reached. The user has to manually adjust the
size of all direct and indirect parent nodes and possibly the
location of their siblings to provide the required space if a
new node is inserted. Other editing operations such as re-
moving or moving a node also result in a lot of tedious man-
ual adjustment work for the user. Thus, a layout technique
which automatically expands or contracts parent nodes if a
node is inserted or removed is highly valuable [17] as it re-
duces the interaction overhead significantly. Extending the
fisheye technique to support the user while editing the di-
agram moves it from a visualization technique to a more
general “layout adjustment strategy” [19, 9]. The SHriMP
approach [19] and the force-scan algorithm [9] provide some
basic editing support. A major advantage of our zoom algo-



rithm is that it can be used for automatic layout adaption if
the diagram is edited for example by inserting or removing
a node [14, 15].

2.3 Automatic Line Routing
The lines that are used to represent relationships between

nodes in a diagram are often as important as the nodes. The
effort needed to recognize relations is largely determined by
the drawing of the lines in the diagram. Crossings and over-
laps between lines and nodes and among different lines have
a negative impact on the readability and understandability
of a diagram. However, manually arranging the lines so that
such overlaps do not occur burdens a lot of additional work
on the user who should be released from these tedious draw-
ing tasks. Therefore, an automatic line router that directs
lines around nodes while trying to keep the lines as simple
as possible is needed.

The routing of the connecting lines in a diagram has not
gained much attention in the modeling field. In contrast,
the routing of lines or wires is an important task in the au-
tomatic graph drawing or circuit design. However, diagrams
of software systems have often different characteristics than
those in these fields (e.g., nodes occupy usually no or only
very little space in abstract graphs) which results in different
requirements for a tool.

We have developed [16] such a routing algorithm that has
the following distinctive properties: (i) it routes in real time
whenever a modeler changes the layout of a model by navi-
gating, creating a view or editing; (ii) it generates a graphi-
cally appealing layout (no collisions or overlaps, short paths)
and (iii) it tries to preserve the secondary notation [13, 10]
of the diagram as far as possible.

2.4 Automatic Label Placement
A problem that is closely related to the line routing one

is the placement of labels that accompany lines. While line
labels are not of much importance in abstract graphs, they
often contain a big part of the information represented in
a diagram of a software system. For example, transition
descriptions in statecharts [6] or Adora models [5] contain
a large fraction of the overall information represented in the
diagram. Because of this large amount of information, line
labels can have a significant size.

Since the characteristics of (big) line labels are similar to
those of nodes, the same problems of overlaps occur. Labels
can overlap with existing nodes and/or other labels. These
overlaps impede the readability of the diagram. Addition-
ally, an inappropriate position of a line label close to other
links can make it hard to determine the line it belongs to.
Thus, deciding on the position of a label entails not only
finding enough white space to avoid overlaps but also select-
ing an appropriate position relative to the line. Additionally,
the position of a label relative to the line is often part of the
secondary notation [13]. For example, the position of asso-
ciation labels in UML [11] relative to the start and end node
determines the association’s direction they describe.

3. LABEL PLACEMENT ALGORITHM
The problem of associating graphical features with text

labels has applications in many fields such as graph draw-
ing and cartography. Even though the “label placement
problem”in cartography is NP-hard and essentially unsolved
[Kakoulis and Tollis, 1997], a large number of heuristic ap-

proaches have been developed (see [3] for a survey of algo-
rithms). While these algorithms use optimization techniques
such as discrete gradient descent or simulated annealing to
find a global optimum, such techniques cannot be used for
an interactive modeling tool because the runtime of a la-
bel placement algorithm is a critical factor if a potentially
very large number of labels have to be placed without a re-
markable delay. Even though these algorithms cannot be
applied directly to the modeling domain, the underlying re-
quirements can be reused.

3.1 Label Placement Rules
Cartographers have been using rules for a good placement

of labels over centuries. These rules can be used as a basis for
an automatic label placement algorithm. For the problem
of placing line labels in a diagram the following rules can be
derived from the basic rules for placing labels on geographic
maps [7, 20]:

1. Line labels must not overlap with other labels or other
graphical features of the layout.

2. Each label can be easily identified with exactly one line
(i.e., the assignment of a label to a line is unambigu-
ous).

3. Each label must be placed in the best possible posi-
tion (among all acceptable positions). The best pos-
sible position is usually defined by a set of aesthetic
preferences such as that a label to the right is always
preferred over one to the left of a symbol.

For diagrams that employ the nested set notation (cf. Sec-
tion 2.1) an additional rule has to be added:

4. Each labels must be fully contained within the parent
node of the line it belongs to. The parent node of a
line is defined as the first common ancestor of the line’s
source and target node.

3.2 Tile-base Label Placement
The basic idea of the label placement approach is to use a

special data structure to calculate the white space that can
be used to place the labels.

3.2.1 Data Structure
The corner stitching structure [12] has originally been de-

veloped as an efficient storage mechanism for VLSI layout
systems and has two important features:

• All space, whether occupied by a node or empty, is
explicitly represented in the structure. This explicit
representation of the empty space makes it possible to
provide fast geometrical algorithms to locate the space
that is available for the placement of labels.

• The space is divided into rectangular areas that are
stitched together at their corners like a patchwork quilt.
These corner stitches allow easy modifications of the
structure and lead to efficient implementations of a va-
riety of geometric operations.

The corner stitching structure for the four nodes of Fig. 2
is represented by the dashed lines. The space is divided into
a mosaic with rectangular tiles of two types: space tiles and
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Figure 2: Corner stitching structure

node tiles. Tiles must be rectangles with sides parallel to the
X and Y axes. The only constraint is that nodes must not
overlap. The space tiles are organized as maximal horizontal
strips: no space tile ever has another space tile immediately
to its right or left. However, there can be another space
tile directly above or below a space tile. This organization
ensures that there is exactly one decomposition of the empty
space into space tiles for each arrangement of node tiles.
Additionally, it results in a clear upper bound for the number
of tiles: In a diagram with n nodes, there will never be more
than 3n + 1 space tiles (see [12] for a proof). Initially, we
have used the corner stitching data structure as the basic
data structure for our line routing algorithm [16].

3.2.2 Algorithm
The calculation of the white space becomes trivial because

the empty space is explicitly represented in the corner stitch-
ing structure. The white space calculation avoids overlaps
of line labels with nodes, existing lines (if they are explicitly
represented in the corner stitching structure [15]) and exist-
ing line labels. Additionally, the use of the corner stitching
structure results in labels that are always contained within
the line’s parent node. A set of potential label positions with
a predefined relative position to the line is then calculated
within this white space. Among these candidate positions
the best one with respect to some predefined criteria is se-
lected. The detailed steps of the algorithm are the following:

1. Iterate over all (vertical and horizontal) line segments.

2. Use the corner stitching structure to calculate the avail-
able free space around the segment: First a reference
point for each label is defined. This point can either
be the midpoint of the segment if the label should be
shown close to the middle of the line or the segment’s
start or end point. The corner stitching structure is
then used to find the tile this reference point lies in
(see [12] for the detailed algorithm to find a tile at a
given location). Finally, the free space is calculated by
vertically extending the boundaries of the tile contain-
ing the reference point. Fig. 3 shows an example of
this step. P1 and P2 are the reference points for the
two line segments of the line connecting nodes A and
B.

A

B

2

1

P1

P2

Figure 3: Calculation of the label space on the cor-
ner stitching structure

The corner stitching structure for this constellation is
shown by the dashed lines. The hatched areas 1 and
2 show the free space that has been calculated for P1

and P2 respectively. In our current implementation the
width of the free space for horizontal line segments is
restricted to the length of the segment (as shown for
the hatched area 1 in Fig. 3). The vertical expansion
of the free space stops as soon as the width of the next
tile above or below is smaller than the current width
of the white space. That’s why the expansion of the
free space 2 stops below node A and above node B.

3. Determine three candidate positions for each line seg-
ment: For a horizontal segment these are above, below
and vertically centered around the reference point. For
a vertical segment they are to the left, the right and
vertically centered around the reference point.

Fig. 4 shows the six candidate positions for a line label
that belongs to the line between nodes A and B. In
our current implementation the label is asked for its
required height given a specific maximal width. This
maximal width is directly taken from the width of the
free space adjusted by the relative position of the la-
bel (i.e., the maximal width of label 6 in Fig. 4 is the
width of the free space to the right of the second line
segment). This is a very basic approach which tries to
make labels as wide as possible. Other more sophisti-
cated approaches that take for example the content of
the label into account to calculate its boundaries can
easily be implemented as part of the label’s internal
size calculation without changing the placement algo-
rithm. For example, in statecharts such an approach
can always try to write each of the components of a
transition description on a separate line.

4. Select one of these candidates: To do so we associate
a score with each candidate position. This score com-
bines a set of a priori preferences with a value that
reflects the severity of the violation of the basic label
placement rules (1) and (2) of section 3.1. The ba-
sic label placement rules can be violated if there is not
enough space for the label at the given position so that
it overlaps with nodes (or other labels) or if the label
is crossed by the line it belongs to.
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Figure 4: Candidate label positions

For the example of Fig. 4, the algorithm selects label
position 1 if it prefers labels above horizontal segments
or position 4 if it prefers labels to the left of vertical
segments. The scoring can, together with a specific
reference point, also be used to prefer positions close
to the source or target node if such a position is an
important part of the secondary notation.

4. CONCLUSIONS
We have presented an approach to automatically place

link labels in a diagram. The presented algorithm has been
implemented as part of the Adora tool. Together with our
previous work on complexity management in diagrams, tool-
supported editing and line routing, this technique brings us
one step further towards our goal of relieving the user from
the tedious drawing tasks that are not an integral part of
actual modeling activity.

Much more sophisticated techniques can be built on top
of our basic label placement approach. The three main ex-
tension points are the calculation of the white space (e.g.,
calculating the free space for each candidate position inde-
pendently), the calculation of the candidate positions (e.g.,
using multiple reference points or different label boundaries
for each segment) and the scoring of the candidate positions.
However, already the presented simple approach can miti-
gate the label problem to a large extend even though it may
not always find the “best” position for a label.
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