
Finding the Right Level of Abstraction

Cédric Jeanneret
Department of Informatics, University of Zurich, Switzerland

jeanneret@ifi.uzh.ch

Abstract

Today, modelers must rely on their instinct and expe-
rience to decide how much detail of a system is worth
being modeled. This ad-hoc modeling may result in
models that are either too abstract or too detailed for
their intended use. We propose to investigate objective
measurement of a model’s abstractness and systematic
guidance to attain the right level of abstraction. Such
a contribution has the potential to improve the quality
of models and reduce the amount of time needed for
modeling activities.

1. Motivation and Research Problem

Abstraction plays a central role in Software En-
gineering. It makes possible the separation of the
specification of a software artefact from its realization.
The specification enables both the reuse of a realization
[1] and its testing [2]. In requirements engineering,
abstraction permits the isolation of relevant properties
in a problem domain from the rest, making the problem
more tractable for engineers.

Finding the right level of abstraction for a model is
essential. A model may loose its value if it lacks some
important details. Conversely, the time spent on the
elaboration of irrelevant details is lost purposelessly.
While this issue is general to all kinds of models, it be-
comes very challenging for requirements specifications
at the boundary of the problem and solution domains.
Such models serve for a wide range of purposes and
are interpreted by various project stakeholders.

Today, deciding how much and which details to
mention in a model is based on the modeler’s skill and
experience. As Kramer observes in [3], not every one is
equally endowed for abstract thinking. Improving the
education of abstraction skills can only partially solve
the problem. We think that building models at the right
level of abstraction is too important to depend solely
on the modeler’s skills. Thus, our research project
aims to define objective measurement of a model’s

abstractness and systematic guidance to attain the right
level of abstraction. Albeit much research effort has
been devoted to modeling and abstraction, the state of
the art cannot support modelers in objectively assessing
and systematically improving the level of abstraction
of their models in a satisfactory manner.

Abstraction is a fundamental property of models
[4]. Thus, a large extent of the modeling literature
(including [5], [6], [7]) is devoted to it. Still, our
current understandings of the phenoma is not deep
enough for the definition and validation of a measure.

Several model quality frameworks identify abstract-
ness as a quality criterion for models, often under
different names such as minimalism in [8] or the
right level of detail in [9]. However, none of these
frameworks propose formal measurements for it. Davis
et al. explain in [9] that it is difficult to measure this
criterion, because it is highly dependent of the usage
scenario of the model. Our research is precisely aimed
at overcoming this difficulty.

There exist some guidelines for modeling such as
those presented in [8]. But they are either language
specific, independent of the modeling purpose or not
operationalized. We search for guidelines that can
easily be tailored for any modeling language and any
modeling purpose.

Levels of abstraction are not only useful to assess
and improve model quality. In software product man-
agement, Gorschek et al. [10] propose to sort and
work-up incoming requirements based on their level of
abstraction. To this end, they identified four abstraction
levels (from higher to lower): product, feature, function
and component. These levels form an ordinal scale
for a measure of abstraction. In this approach, a
requirement’s abstractness is subjectively evaluated for
predefined purposes.

The model type system, presented by Steel et al.
in [11], makes model transformations resilient to (mi-
nor) metamodel changes that should not prevent their
execution. We consider this approach as a nominal
scale measurement of a model’s abstractness: either

its metamodel contains the elements required by the
transformation or not.

2. Research Ideas

We draw our inspiration from the seminal work of
Lindland et al. [12] on the quality of conceptual mod-
els. Consider the set U , the infinite set of statements
correctly rooted to the orginial but not necessarily
relevant that could be made about a system or a
problem domain under study. Modeling consists of
picking up some of these statements and making them
explicit in a model m.

Every model is created with a purpose in mind.
Typically, one writes a model to either document an
existing system or specify a system to be built. It
is then possible to infer, maybe mechanically, new
statements about the system under study from the
statements made in m. Possible inferences include
mental understanding, execution simulations, perfor-
mance analysis or any other model transformations. We
call a particular inference procedure an interpretation
operation. When performed, such an operation reads
statements in the model m and outputs a new set of
statements. If a statement is actually read during the
operation’s execution, we qualify it as relevant.

The pertinence of a model can be assessed in a
similar manner as the result of an information retrieval
task. Typical measures include precision and recall:

precision(m, op) =
|m ∩ Aop|

|m|

recall(m, op) =
|m ∩ Aop|
|Aop|

with Aop being the set of all relevant statements in
U for the interpretation operation op.

We believe that these measures are related to the
level of abstraction of a model or its abstractness.
Informally, a model with a precision smaller than
100% contains irrelevant details. In other words, the
model is too detailed for the considered purpose. On
the other hand, a model with a recall smaller than
100% lacks some relevant details and is therefore too
abstract for its intended use.

Thus, the abstractness of a model reflects its capa-
bility to be efficiently used, instead of U , for a given
purpose, represented by an interpretation operation. In
this sense, abstractness is an essential quality criterion
for models. If a model’s abstractness is too high, the
result of the interpretation operation may be inaccurate
or even wrong. If it is too low, excessive time has been
spent on the modeling activity and the processing time

of the interpretation operation may be longer. Also, the
risk of early commitment to incorrect albeit irrelevant
details is not to be neglected.

In the literature, abstractness has already been iden-
tified as an essential property of models [6], [4] or as a
quality criterion for models [9], [8]. But, to the best of
our knowledge, no formal measurement method has yet
been developed to measure the abstractness of models
and, thus, there is no guidelines for its improvement.
As Moody points out in [13], these two elements are
extremely important to objectively evaluate the quality
of a model and successfully improve it.

3. Research Questions

Our primary research goal is to support modelers
with measures and guidelines related to the level of
abstraction of their models, particularly when modeling
requirements. We need first to gain further knowledge
about abstraction. Thus, the first research questions
seek to build a theory about modeling and abstraction.
RQ 1.1: Does abstractness exist?

Admittedly, models are abstract representations of
an original [6]. But any measure relies on a consensus
about the attribute to be measured. With this question,
we are interested in the existence and the strength of
a consensus about the abstractness of a model.
RQ 1.2: What is it like?

We need to identify the main constructs of a the-
ory about abstraction and their relationships. In the
literature, the abstractness of a model is often asso-
ciated with its genericity [14] or the simplicity of its
representation [15]. Incompleteness may also explain
the absence of relevant statements. The theory that we
intend to build shall draw a clear distinction among
these attributes.
RQ 1.3: What are its properties?

Similar to the approach in [16], we intend to build
a set of axioms that encodes intuitions and observa-
tions related to abstraction. These axioms will define
unambiguously the concepts identified by the research
question 1.2. They will form a firm foundation for the
measurement of abstractness.

We are especially interested in axioms that relate
construction operations on models to the change of ab-
stractness they introduce. Such construction operations
include the refinement of a specification element (e.g.,
a black-box component) towards its realization or the
adjunction of a behavioral description to a structural
model.
RQ 2: How can we measure the abstractness of a
model?

As DeMarco put it in [17, p. 3], one cannot control
what one cannot measure. Without proper feedback,
it is difficult to assess and control the adequacy of a
model for a particular purpose. Today, this is achieved
in an ad-hoc manner, based on modelers’ instincts and
experience. Consequently, we are interested in formal
and objective measurement of abstractness.

The research questions 1.x will characterize abstract-
ness and, to some extent, define a measure for it. This
research question addresses challenges related to the
practical measurement of abstractness. One of the main
difficulties resides in determining the set Aop for the
measures we proposed in the previous section.

Furthermore, these measures can only be computed
if they are used on formal models and automated
interpretation operations. However, none of these as-
sumptions hold for common requirements engineering
models and their usages. Although the state of the art in
RE includes some automatic analyses of formal models
[18], specifications are usually interpreted mentally
by stakeholders. Also, few specifications are formal.
Still, techniques exist to build a semi-formal model
from an informal specification [18]. Thus, we seek
for measurements at least applicable to semi-formal
specifications and to mental interpretation operations.

To achieve this, we envisage defining a set of usage
profiles for every major category of modeling purposes
such as specification, documentation, communication
or testing. The result of the measurement process will
be a vector, whose components measure the abstract-
ness of a model for the corresponding usage.

RQ 3: What is an effective strategy to build a model
at the right level of abstraction for a given purpose?

The evaluation of the abstractness of a model is only
a first step. Modelers need to know how they should
elaborate or simplify their models so that they eventu-
ally reach an adequate level of abstraction. Based on
the indications given by our measure, we can provide
them with guidelines or suggestions.

We expect our contribution to be especially valuable
for modeling languages that define several views on a
system such as UML or ADORA [19]. The richness of
these modeling languages exacerbates the problem of
deciding which details need to be modeled for a given
purpose. Thus, we will extend an editor supporting one
of these languages with this novel feature.

4. Research Methodology and Validation

The validation and development of software mea-
surement is still subject to discussion. For this project,
we will follow the methodology presented in [20].

Figure 1. Empirical system for the abstraction
phenomenon

To build our theory (RQ 1.x) and validate our
measure, we will establish an empirical system as
described in [21]. An empirical system is a set of
entities and a set of relationships among them em-
pirically established. In our case, entities are models
and interpretation operations. The relationships we are
interested in are depicted in Figure 1. Experts will clas-
sify pairs of model/operation according to an adequacy
criterion. Furthermore, models and operations will be
ranked according to an abstractness resp. a demand for
details criterion.

We plan to build the empirical system incrementally.
We will add models or operations into the empirical
system as we progress with our theory and identify rep-
resentative entities. Also, the group of surveyed experts
will grow along the research project from our research
group to an international selection of researchers and
practitioners. Because software is intangible and thus
difficult to grasp, we will begin our investigations
with some geographical maps. Such models are more
illustrative than models involved in the development of
software systems. Therefore, they have often been used
as illustrative examples in the literature (e.g. [22], [5]).
We will shift to software-related models once sufficient
insights have been gained.

If ranking and classification emerge consensually,
we will have strong evidence for the existence of
abstractness (RQ 1.1). Technically, the strength of
the consensus can be evaluated with non-parametrical
statistics such as Kendall’s coefficient of concordance
and Fleiss’ kappa [21].

The measure (RQ 2) must satisfy the axioms devel-
oped for RQ 1.3. Our measure will also be validated
against the empirical system. A valid measure is a
measure that respects the representation condition, i.e.,
the measure reflects empirical relations. The degree to
which a measure respects the representation condition
can be measured with the Kendall correlation [21].

Validity, despite its necessity, is not a sufficient qual-

ity for assessment or control purposes. Schneidewind
requires such measurements to present good associa-
tion, consistency, discriminative power, tracking and
repeatability [23]. We will evaluate our measurement
against these criteria on the empirical system.

We intend to validate our guidelines (RQ 3) with
a controlled experiment. Students from our modeling
class will be asked to model a system for a given
purpose. We will consider two treatments: (1) mod-
eling with an extended editor (providing feedback and
guidance) and (2) modeling with the basic editor. The
dependent variables will be both the time elapsed
before the modeler claims to have completed the
modeling task and the adequacy of the resulting model
for the purpose. To mitigate the threat to external
validity posed by the use of students, we plan to survey
experienced modelers with a questionnaire to assess
the pertinence and usefulness of our guidelines.

5. Conclusion

In this proposal, we propose to investigate the ab-
stractness of a model as an aspect of its quality. This
quality does not concern the system being modeled
directly; it rather concerns the ability of the model to
play its role as a description of an original for a given
usage.

Our contribution will allow requirements engineers
to evaluate the adequacy of their models for a given
purpose. In addition, we will provide them with sup-
port to choose which details should be added or re-
moved so that their models present an appropriate level
of abstraction. Our research will also extend scientific
knowledge about modeling and abstraction, especially
by providing a valid measure of the abstractness of a
model.

References

[1] C. W. Krueger, “Software reuse,” ACM Computing
Surveys, vol. 24, no. 2, pp. 131–183, 1992.

[2] W. Prenninger and A. Pretschner, “Abstractions for
model-based testing,” Electronic Notes in Theoretical
Computer Science, vol. 116, pp. 59–71, 2005.

[3] J. Kramer, “Is abstraction the key to computing?”
Communications of the ACM, vol. 50, no. 4, pp. 36–42,
2007.

[4] B. Selic, “The pragmatics of model-driven develop-
ment,” IEEE Software, vol. 20, no. 5, pp. 19–25, 2003.

[5] T. Kühne, “Matters of (meta-) modeling,” Software
and Systems Modeling, vol. 5, no. 4, pp. 369–385,
December 2006.

[6] H. Stachowiak, Allgemeine Modelltheorie. Wien:
Springer, 1973.

[7] J. P. van Gigch, System Design Modeling and Meta-
modeling. New York, NY, USA: Plenum Press, 1991.

[8] R. Schuette and T. Rotthowe, “The guidelines of model-
ing: An approach to enhance the quality in information
models,” in 17th International Conference on Concep-
tual Modeling (ER’98), ser. Lecture Notes in Computer
Science, vol. 1507. Springer, November16–19 1998,
pp. 240–254.

[9] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dan-
dashi, A. Dinh, G. Kincaid, G. Ledeboer, P. Reynolds,
P. Sitaram, A. Ta, and M. Theofanos, “Identifying and
measuring quality in a software requirements specifi-
cation,” in First International Software Metrics Sympo-
sium, May 1993, pp. 141–152.

[10] T. Gorschek and C. Wohlin, “Requirements abstraction
model,” Requirements Engineering, vol. 11, no. 1, pp.
79–101, 2005.

[11] J. Steel and J.-M. Jézéquel, “On model typing,” Soft-
ware and Systems Modeling, vol. 6, no. 4, pp. 401–413,
2007.

[12] O. I. Lindland, G. Sindre, and A. Sølvberg, “Under-
standing quality in conceptual modeling,” IEEE Soft-
ware, vol. 11, no. 2, pp. 42–49, 1994.

[13] D. L. Moody, “Theoretical and practical issues in eval-
uating the quality of conceptual models: current state
and future directions,” Data & Knowledge Engineering,
vol. 55, no. 3, pp. 243–276, 2005.

[14] J. Verelst, “The influence of the level of abstraction on
the evolvability of conceptual models of information
systems,” Empirical Software Engineering, vol. 10,
no. 4, pp. 467–494, October 2005.

[15] L. Saitta and J.-D. Zucker, “Abstraction and complexity
measures,” in Abstraction, Reformulation, and Approx-
imation, ser. Lecture Notes in Computer Science, vol.
4612. Springer, 2007, pp. 375–390.

[16] L. C. Briand, S. Morasca, and V. R. Basili, “Property-
based software engineering measurement,” IEEE Trans-
actions on Software Engineering, vol. 22, no. 1, pp.
68–86, 1996.

[17] T. DeMarco, Controlling Software Projects: Manage-
ment, Measurement, and Estimates. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1986.

[18] B. H. C. Cheng and J. M. Atlee, “Research directions in
requirements engineering,” in FOSE ’07: 2007 Future
of Software Engineering. IEEE Computer Society,
2007, pp. 285–303.

[19] M. Glinz, S. Berner, and S. Joos, “Object-oriented
modeling with ADORA,” Information Systems, vol. 27,
no. 6, pp. 425–444, 2002.

[20] N. Habra, A. Abran, M. Lopez, and A. Sellami, “A
framework for the design and verification of software
measurement methods,” Journal of Systems and Soft-
ware, vol. 81, no. 5, pp. 633–648, 2008.

[21] B. Kitchenham, S. L. Pfleeger, and N. Fenton, “Towards
a framework for software measurement validation,”
IEEE Transactions on Software Engineering, vol. 21,
no. 12, pp. 929–944, 1995.

[22] J. Bézivin, “On the unification power of models,”
Software and Systems Modeling, vol. 4, no. 2, pp. 171–
188, 2005.

[23] N. F. Schneidewind, “Methodology for validating soft-
ware metrics,” IEEE Transactions on Software Engi-
neering, vol. 18, no. 5, pp. 410–422, 1992.

