The CASA Approach to Autonomic Applications

Arun Mukhija and Martin Glinz
Institut fur Informatik
University of Zurich

CH-8057, Zurich, Switzerland
{mukhija| glinz}@ifi.unizh.ch

Abstract—In today’s world of highly dynamic computing en- preferably dynamically (i.e. at runtime, without requiring

vironments, autonomicapplications are the need of the hour. By to stop and restart the application) atrdnsparently(i.e.
an autonomic application, we mean an application that is able .m0yt requiring user’s intervention).

to adapt to changes in its execution environmentynamically A lication that is able to adant to ch in it i
and transparently CASA (Contract-based Adaptive Software n app |c-a ion that Is a 9 0 adapt to changes "f‘ Its ex
Architecture) provides a framework for enabling the develop- €cution environment dynamically and transparently is called
ment and operation of autonomic applications. CASA helps an autonomicapplication.

in significantly reducing the complexity involved in developing Consider a hypotheticaCollaborative Workingscenario,

autonomic applications by separating the adaptation concemns \yhare a number of participants are collaborating on a
of an application from its business concerns. CASA further . Th tici ¢ b hicall
provides a runtime system for dealing with the adaptation common mission. € parucipants may be geographically

concerns. In order to meet the adaptation needs of a broad distributed, and some of them may even be mobile at any
and diverse set of applications, CASA supports adaptation at given time. For the collaboration to work, each participant
various levels of an application — from lower-level services runs a client module of the collaborative working application,
to application code. In CASA, the adaptation policy of every ynich includes a video display showing other participants, a
application is defined in a so-called application contract, which . . .
is external to the application and is specified using an XML- Sharéd drawing space and a discussion board. Some of the
based language, thereby facilitating changes in the adaptation resources available to a participant, such as communication
policy at runtime. bandwidth and battery power, are likely to vary over time
because of the mobility and other constraints. Similarly, the
contextual information related to a participant (in a meeting,

Mobile wireless computing environments provide imat home etc.) is likely to vary over time. The runtime
menseflexibility and value to users. With the growth of changes in resources and contextual information demand an
these environments, many new and innovative applicatioappropriate and non-disruptive adaptation of the collaborative
are being conceived and developed for such environmentgrking application. For example, in response to a small drop
However, in order to cultivate the benefits offered by thede the bandwidth available to a participant, the application
environments, the applications need to successfully face tin@y reduce the quality of the video display accordingly.
challenge of frequent and usually unpredictable changesWhereas for a large drop in the bandwidth, the application
the execution environment, which are invariably associat@thy remove any video content altogether. A change in the
with such dynamic environments. contextual information may also influence the application

A change in the execution environment can present &ehavior, e.g. only important updates may be sent while the
opportunityor athreatfor a running application. Let us look participant is in a meeting.
at the threat first. A threat is when a change in the executionThe concept of dynamically and transparently adaptable
environment results in a loss of certain resources that a@pplications is not entirely new. Several approaches have
required by an application. This may force the application feeen proposed that try to adapt the lower-level services used
run at a degraded performance or functionality. On the othley an application at the middleware level, and thereby change
hand, a change in the execution environment in the form tfe application behavior. Some other approaches try to adapt
a change in contextual information (such as user's locatiem application by dynamically weaving and unweaving as-
or identity of nearby objects etc.) may present an opportpects into / from an application. The approaches for runtime
nity for an application to provide a more relevant contexsoftware evolution, involving a dynamic recomposition of
dependent service. In either case, the application sho@pgplication components, also are closely related to software
be able to adapt to changes in its execution environmeatlaptation.

However, none of these adaptation techniques are individu-

The work presented in this paper was supported (in part) by the Natioraqy sufficient to meet the adaptation needs of different kinds
Center of Competence in Research on Mobile Information and Communi

Nlz . . .
cation Systems (NCCR-MICS), a center supported by the Swiss Natioﬁ-gl apphcauons. In fact, these technlques C.an Complement
Science Foundation. each other in order to meet the adaptation needs of a

I. INTRODUCTION

Proceedings of the 5th IEEE Workshop on Applications and Services in Wireless Networks (ASWN 2005), Paris, France, June-July
2005, pp. 173-182©2005 IEEE.

broad and diverse set of applications executing in dynamic II. OVERVIEW OF CASA

environments. . o .
For example, if there is a small drop in the available Following the principle ofseparation of concernCASA

bandwidth, an adaptive middleware may use a lower-levifParates the adaptation concerns of an application from its
compression service to compress the data before transnidSiness concems. Separating the adaptation concerns has
sion. But for a large drop, the compression alone may n@f 0bvious advantage of reducing the complexity involved in
be sufficient and a change in application code is required $§VeloPing autonomic applications. Additionally, it facilitates
reduce the throughput of the application. Similarly, dynamf€use and sharing of the adaptation mechanisms among
changes in aspects and components are complementarfRBlications. This, in turn, enables CASA to provide a
each other, depending on whether the crosscutting or tftime system for dealing with the adaptation concerns.
core functionality of an application needs to be changed in EVery computing node hosting autonomic applications is
response to a particular change in the execution environmefg@uired to run an instance of the CASA Runtime System
The adaptation techniques can be classified according(§RS). The CRS has two responsibilities: firstly, it mon-

the level where the adaptation takes place, as follows: itors the execution environment on behalf of the running
« dynamic change in lower-level services applications. Secondly, in case of significant changes in the

« dynamic weaving and unweaving of aspects execution environment, the CRS carries out the adaptation

. dynamic recomposition of application components, ©°f the affected applications. o o
. dynamic change in application attributes. The adaptation policy of every application is defined in

Ideally, an autonomic application should be able to use a so-called applicati_on contract. The a_p_plicati(_)n contract is
combination of the above adaptation techniques, depend ernal to the application qnd IS specified using an XML.'
on its adaptation needs. sed language, thereby facilitating changes in the adaptation

Another challenge facing autonomic applications is th licy at runtime. This ensures that the user / administrator
the development process of these applications has largefy a _contro_l over the adaptation policy, although the adap-
beenad-hoc In particular, the adaptation concerns of alftion is carried out in a user-transparent manner.
application are intertwined with its business concerns. ThisAS illustrated in Figure 1, the CASA adaptation process
increases the complexity involved in developing autonomiBvolves three steps.
applications. We believe that a framework-based approach
for developing autonomic applications can help in coping
with this challenge.

CASA (Contract-based Adaptive Software Architecture)
provides a framework for enabling the development and
operation of autonomic applications. The key features of achangein
CASA are: @ \ executiop environmfant

« Separation of the adaptation concerns of an application consult enanting adaptation

from its business concerns, r_ adaptation
« A runtime system for dealing with the adaptation con-l Application Contracts | Policy CASA Runtime System (CRS)

(1..n)

Execution Environment

cerns, ©
o Support for adaptation at various levels of an applica-

tion, as identified above, dynamic change in dynamic change in
« A contract-based adaptation policy, facilitating changes lower-level Se”iﬁ%@ ® \ asPeC‘;ﬁ;&m‘;f‘e”“/

in the adaptation policy at runtime. ‘
A preliminary version of the CASA framework has been =

. . . Adaptive Middleware
presented in [10]. In this paper, we present the detailed Autonomic
design, working and evaluation of the framework, including Applications (1..n)
several enhancements such as support for more adaptation
mechanisms.

. . . Fig. 1. Working of CASA
The rest of the paper is organized as follows. Section

Il gives an overview of CASA. Section Il discusses the

design of the CASA framework. Section IV describes the Every time the CRS detects a change in the execution
application contract specification. Section V discusses tkavironment (step 1), it evaluates the application contracts
overall working of CASA. Section VI presents some detailsf the running applications with respect to the changed state
of a CASA prototype implementation and its performancef the execution environment (step 2). If the CRS discovers
evaluation. Section VIl gives an overview of related worka need for adapting certain applications, it carries out the
Finally, Section VIII concludes the paper. adaptation of the affected applications, in accordance with

the adaptation policies specified in the respective application
contracts (step 3).

In the following sections, we discuss details of the CASA
framework.

I1l. DESIGN OF THECASA FRAMEWORK Context Context Context

Figure 2 depicts the CASA framework. The entities within e e e
the dotted area represent the CASA Runtime System (CRS).
These entities are responsible for monitoring the execution
environment and adapting applications. In the following, w
discuss details of each of these entities.

Context Analyzer

Fig. 3. Context Monitor

Autonomic Application)
Components Adaptation System (CAS)

3 At the lowest level, a variety of Context Sensors are used
! to acquire the data related to contextual information. At
i the middle level, the acquired data is structured based on

Application Contract Aspects Adaptation System (AAS)

an application domain-specific ontology by a collection of

Context Interpreters, each one responsible for a different
context parameter. At the top level, a Context Analyzer is
used to deduce the contextual information relevant to the
Adaptive Middleware o J application from this data.

Context Monitor (CM)

,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 2. The CASA framework Monitoring resources:For monitoring local and network
resources, several resource monitoring services have been
developed that operate at the platform (operating system,
network) level, where resources can be monitored efficiently
(e.g. Remos [8], Dproc [1]). Therefore, for monitoring local

The execution environment of an application can be dimd network resources, CASA relies on an external resource
vided into: contextual informatior(user’s location, identity monitoring service. The Resource Manger (RM) in CASA
of nearby objects or persons etc.) aedourcegbandwidth, s responsible for interacting with the underlying resource
battery power, connectivity etc.). monitoring service.

Contextual information refers to (purely) theformation For monitoring any remote resources required by an ap-
about the context of an application that may influence thgcation, the RM includes a Remote Resource Coordinator
service provided by the application (such as locational IRRRC) entity. Remote resources can be discovered using
formation, temporal information, atmospherical informatio yariety of means. For example, certain standard data
etc.), while the resources form thghysical infrastructure resources required by an application can be discovered by the
available to the application for providing this service (SUCRRC using a remote resource discovery infrastructure such
as communication resources, data resources, computing4&-jinj [4] etc. On the other hand, any specific specialized
sources etc.). services, provided by some peer applications, can be discov-

. . . , ered explicitly by the application itself and communicated to
Monitoring contextual information:The Context Monitor the RRC

(CM) in CASA is responsible for monitoring contextual

A. Monitoring execution environment

information. , , B. Adapting applications
Monitoring the contextual information relevant to an ap-
plication consists of the following steps: Application adaptation can be realized using one or more

of the following adaptation mechanisms supported by CASA,

« acquiring the data related to contextual information, :) " T
pending on the adaptation needs of a specific application.

« structuring the acquired data based on an applicatigﬁ

domain-specific ontology, and Dynamic change in lower-level servicesower-level ser-
« deducting the final knowledge, i.e. the contextual infor—.y 9

mation relevant to the application, from this data. vices here mean the underlying services required by an appli-

) E_a:Ch of thesle three steps Is 'mpl_em?nted at a Separat@\s discussed later, several adaptive middleware systems have built-in
individual level in the CM, as shown in Figure 3. resource monitoring services that can be made available to CASA.

cation for its execution, e.g. data transmission, compressi@hange in lower-level services is applicable only in limited
caching, video coding/decoding etc. scenarios — limited kinds of applications, execution environ-

An application adaptation through a dynamic change iment conditions, and the amount of variations therein. In
lower-level services is typically required in response to arder to deal with the other scenarios, one or more of the
change in the availability of resources. It is usually in théollowing adaptation mechanisms may be used.
form of a resource vs. resource tradeoff, or a resource vs.
quality of service tradeoff. An example of a resource v&ynamic weaving and unweaving of aspe@®P (aspect-
resource tradeoff is to compress the data being transmit@dented programming) [6] enables separating the crosscut-
over a communication channel (by invoking a lossless ddiig functionality of an application from its core function-
compression service), in response to a drop in the bandwiddity. Many times a change in the execution environment
available on the channel. Compressing the data will resultfi@quires a corresponding change in the crosscutting func-
increased CPU consumption, but at the same time it will al$ignality of an application, without really affecting the core
result in saving bandwidth. Note that the quality of servic&inctionality of the application. Examples of such adaptation
(here, the quality of data) is not affected by this adaptatiofre changing the security behavior of an application when it
An example of a resource vs. quality of service tradeoff ioves from a low-risk area to a high-risk area, changing the
to reduce the frame-rate or resolution of the video beirRgrsistence behavior in response to a loss of connection with
transmitted over a communication channel, in response t@dlata storage etc.
drop in the available bandwidth. Thus, the ability to dynamically weave and unweave

Several adaptive middleware systems have been developsgects into / from an application, generally referred to as
that are capable of adapting an application by dynamicaltynamic AOP, presents a powerful adaptation mechanism.
changing the lower-level services used by the application.For dynamic weaving and unweaving of aspects, CASA
Some of these middleware systems are reflective in naturelies on a dynamic AOP system called PROSE [11], which
i.e. support external regulation of their adaptation strategy, a flexible and efficient Java-based system developed for
and thus can be integrated with CASA. this purpose.

Many of the adaptive middleware systems have a built-in The Aspects Adaptation System (AAS) in CASA is re-
resource monitoring service for monitoring local and networiponsible for interacting with PROSE. The AAS can pass the
resources. Thus, an adaptive middleware system can sesgpropriate aspect details (name and location of the aspect
the dual purpose of monitoring local and network resourceffie) to PROSE at runtime for dynamically weaving the aspect
and dynamically changing lower-level services. into an application. The aspect file contains the information

The RM (Resource Manager) in CASA is responsible faibout the join-points (the execution points where the aspect
interacting with the underlying adaptive middleware systemeeds to be weaved) as well as the actual aspect code to

One such adaptive middleware system that can be udssl executed at these points. PROSE is able to intercept the
for monitoring local and network resources, and dynamicaljgin-points in a running Java application, and invoke the
changing lower-level services is Odyssey [12]. corresponding aspect code at these points. At the end of the

Odyssey is able to monitor local and network resourcesxecution of the aspect code, the control is returned to the
and provide information about the availability of these renext execution point in the application. Similarly, the AAS
sources to the RM. Any runtime changes in the availabilityan instruct PROSE to unweave an already weaved aspect.
of resources can be communicated instantly by Odyssey toHowever, if a change in the core functionality of an appli-
the RM. Resource monitoring is carried out at the operagation is required in response to a change in the execution
ing system level in Odyssey, thus inducing efficiency anghvironment, rather than in the crosscutting one, then the
enabling the RM to respond swiftly to any changes in thigllowing adaptation mechanisms may be used.
availability of resources.

Odyssey is able to further invoke appropriate processififynamic recomposition of application componen#odern
of the application data at the middleware level, according software applications are composed of components, where
the instructions of the RM. Data processing at the middleach component implements a subtask of the application. In
ware level is carried out using specialized code componertsomponent-based application development, the components
called wardens For every type of data processing, variougncapsulate their implementation details and interact with
alternative wardens may be implemented, differing in theach other only through their well-defined interfaces.
data fidelity levels and resource requirements. Depending orThis makes it possible and convenient to dynamically
the current execution environment conditions, the RM maghange the core functionality of an application through
switch between alternative wardens at runtime. dynamic recomposition of application components. A change

CASA can even be integrated with more than one adaptiirethe core functionality is most likely required in response to
middleware system offering different adaptation capabilitiea.change in contextual information, but may also be required

However, an application adaptation through a dynamfor significant variations in resource availability.

For example, if the contextual information related to & Section V. In the next section, the specification of an
Tourist-Guide application changes fronshopping mallto application contract is discussed.
open-air cinemathe application needs to provide relevant
information about the weather conditions and show-timings, IV. THE APPLICATION CONTRACT
in place of the information about the availability of the items . . T , :
: , L . L The adaptation policy of every application is defined in
in the user’s shopping list in the shopping mall. This kind of a o L .

. . : : a so-called application contract. The application contract is

change in the core functionality can be accomplished through o . - .

. s L xternal to the application, and is specified using an XML-
dynamic recomposition of application components. Needless : . .)

I o ; ased language. This facilitates easy modification, extension
to say that the possibilities for application adaptation throu% 2) : .

. " A nd customization of the adaptation policy at runtime. The
dynamic recomposition of application components are enar- . .)
MOUS contract-based adaptation policy also plays a key role in
' . » L separating the adaptation concerns of an application from
For dynamic recomposition of application components. ', siness concerns

CASA follows an indigenous 'approach. . An excerpt of an application contract of Taurist-Guide
_ The Components Adap_tatlon Syster_n_ (CAS) in _CA_S'%ppIication is shown in Figure 4.
is responsible for dynamic recomposition of application

components. A dynamic recomposition of application com- : :
ponents may involve addition, removal and/or replacement ™ coneu tararn o SR

of the components at runtime. The CAS takes care to ensure sparams>. \
.) . R) <par name="vicinity" value="museum"/>
that the consistency of the application is not compromised as </parame>
. e . . <conf1 id="1">
a result of dynamic recomposition. Ensuring the consistency cresources.
involves, among other things, transferring the state of an <res name='banduidth! unit="Kbps" value='56-35"/>
outgoing component to its successor (in case of a dynamic -
. . . - . . </resources>
replacement), and maintaining the integrity of the interac <components .. ./>
tion; ongoing at the time of dynamic r.ecomposition. More e
details on this approach can be found in [9]. , <lservices .../>
. . . . </config>
However, sometimes only a dynamic change in certain <config id="2">
attributes of an application may be required, rather than :
a dynamic recomposition of application components. For </config>

a dynamic change in application attributes, the following
adaptation mechanism may be used.

</context>

</app-contracts>

Dynamic change in application attribute&xamples of ap-
plication adaptation through a dynamic change in application
attributes include changing the value of a certain timeout
period, frequency of data transmission, size of each trans-
mission, or some other threshold parameters affecting anThe application contract is divided intacontext- ele-
application’s behavior in response to a change in resoungents, where each:context- element represents a state
conditions. of contextual information of interest to the application.
For a dynamic change in application attributes, the corfhe parameters characterizing this state are specified within
cerned application needs to provide appropriate callbaekparams- element.
methods that can be called by the RM (Resource Manager) afThe <params- element contains one or motepar> ele-
runtime. This allows the application to decide the appropriateents, with each<par> element corresponding to a distinct
timing and order of changing these attributes. context parameter. Evergpar> element contains a “name”
attribute specifying the name of the context parameter, an
In addition to the above adaptation mechanisms, certaptional “unit” attribute specifying the unit of measurement,
resource-level adaptations are carried out transparentlyasid a “value” attribute specifying the corresponding value of
the level of the RM. Such adaptations involve dynamicallthe parameter. The names of context parameters are standard
negotiating and selecting among the alternative resourcasd unique for the corresponding application domain. Exam-
available. For example, if the availability of a remote reples of the parameter names for ffmurist-Guideapplication
source being used by an application drops, the RRC (Remate “vicinity” (referring to a place of interest nearby), “time”
Resource Coordinator) may dynamically switch to an altefreferring to the time of day) etc.
native remote resource providing the same type of serviceEach<context- element further contains a list of alterna-
but with better availability. tive configurations of the application, suited to the particular
The overall working of the CASA framework is describedtate of contextual information. These configurations vary in

Fig. 4. Application contract

their resource requirements, and are listed in an ordering tlhat omitted from the configuration specification (e.qg. if all
reflects their user-perceived preference. the resources required by an application are guaranteed to

Each <config> element, representing a configurationbe available sufficiently). In this case, everycontext>
specifies the resource requirements of the configuratielement will contain only a single configuration, suited to the
(<resources element), the components and aspects coeerresponding state of contextual information. On the other
stituting the configuration<components and <aspects hand, if an application needs to respond only to the changes
elements), the callback methods to be called for the configy-resource availability, but not to the changes in contextual
uration callbacks> element), and the lower-level servicesnformation, then there will be ne<context- element in
related to the configuration<(lservices> element). the application contract. In this case, the application contract

The <resources element contains a number efres> Will contain a simple listing of the alternative configurations
elements, with eackcres> element representing a distinctof the application, ordered according to their user-perceived
resource. A<res> element may represent a local, networlpreference.
or remote resource required by the corresponding config-Depending on the current state of the execution environ-
uration. Every<res> element contains a “name” attributement (contextual information and resources), the appropriate
specifying the name of the resource, an optional “uni€onfiguration from the application contract is selected and
attribute specifying the unit of measurement, and a “valueittivated by the CRS, as explained in the next section.
attribute specifying the corresponding resource value. The
resource names are standard and unique, i.e. every resource V. WORKING OF CASA
is uniquely represented by a standard resource name. For a
quantifiable resource, the resource value is usually specifiedVhen starting up, an application registers itself with the
in terms of a range of numbers separated by a hyphen, WS (CASA Runtime System). As a part of the registration,
the number on the left being most preferred and the one tire application contract is passed to the CRS and is accessible
the right being least preferred. to all the entities of the CRS.

Resource requirements can also be specified at a high levelNext, the CM (Context Monitor) discovers the contextual
of abstraction such as in terms of throughput and packeformation relevant to the application. The contextual infor-
size, instead of directly specifying them in terms of actuahation discovered by the CM is matched with theontext>
resources such as bandwidth. If the resource requirementselements specified in the application contract, in order to
specified at an abstract level, then the RM needs to convdetermine the currentlyalid <context> element. This is
these into actual resource values to be allocated. done by matching the values of parameters of the discovered

The <components element contains a list of adaptablecontextual information with the corresponding values speci-
application components, i.e. those components that migd in the <params- element of everycontext- element
differ from one configuration to another. The non-adaptabie the application contract.
components, which remain the same across all configurait is possible that more than onecontext- element
tions, are not specified in thecomponents element. In the specified in the application contract is eligible to be valid
same way, thecaspects element contains a list of adaptablesimultaneously. For example, orecontext- element may
aspects. Every component and aspect is specified along vith valid if the user is currently in her office-building, and
its namespace location, as this is required by the CRS (CA$i#e other may be valid if the user is currently in her
Runtime System) for activating a configuration. Similarly, theffice-room. So, if the user is currently in her office-room,
<callbacks> element contains a list of methods to be calledhen both the abovecontext- elements are eligible to be
and the<llservices> element contains a list of lower-levelvalid at the same time. In this case, the ordering of the
services related to the configuration. <context> elements in the application contract is important

All the elements specifying the constituents of a confider determining the currently valigcontext> element, as
uration (i.e. the<components, <aspects, <callbacks- this ordering reflects the relative preference of #wntext>
and <lIservices> elements) are optional. That is, any oflements. That is, the CM identifies the highest listed valid
these elements may or may not appear in a configuratiercontext> element as the currently valietccontext> ele-
specification, depending on the adaptation requirementsoént. Practically, the CM starts searching for the currently
the corresponding application. For example, if an applicatioralid <context- element from the top of the application
has no adaptable components, but only adaptable aspeotsitract, and the search ends as soon as a valhtext>
attributes and lower-level services, then theomponents element is found.
element will not appear in the specification of an application There may be a defaultcontext- element in an applica-
configuration. tion contract that is valid when none of the otherontext>

Similarly, if an application needs to respond only to thelements is valid. This defaukcontext- element is listed
changes in contextual information, but not to the changes the end of the application contract, and need not have a
in resource availability, then theresources element can <params- element.

The information about the currently valiicontext- resource availability makes it impossible for the application
element is passed by the CM to the RM (Resource Managdn. continue with its current configuration, then the RM
Recall that everycontext> element in the application con-allocates resources for a new configuration from the current
tract contains a list of alternative configurations, representettontext> element, based on the changed availability of
by <config> elements, that are suitable for the correspondesources. The existing configuration is then replaced with
ing state of contextual information defined by theontext- this new configuration.
element. As with the ordering of thecontext- elements, A dynamic change in configuration may imply a change in
the <config> elements are also preferentially ordered withitower-level services, aspects, application components, and/or
every <context> element in the application contract. application attributes. These changes are carried out by the

Every <config> element contains aresources element appropriate entities of the CASA framework.
that specifies the resource requirements of the corresponding
configuration. For the discussion here, we assume that CA®A Service notification / negotiations

is integrated with an adaptive middleware that is able to An application executing in a dynamic environment is
monitor local and network resources, as well as dynamicalikely to participate in a distributed software system, i.e.
change lower-level services. collaborate with other applications for a common mission.
The RM allocates resources to the application based pn application participating in a distributed software system
the current availability of resources, as informed by theay need to notify its peer applications before activating
underlying adaptive middleware and the RRC (Remote Reg-particular configuration (both initially and in response to
source Coordinator). Since the configurations are listed & change in the execution environment), so that the peer
a preferential ordering within theccontext> element, the applications may adapt accordingly if required. In some
RM tries to allocate resources for the first configuratiopases, the application may even need to carry out service
listed in the <context- element. If there are not sufficientnegotiations with its peer applications, in order to select
resources for the first configuration then it tries the secomide appropriate configuration to activate. CASA provides
configuration and so on. The resource allocation phase er@@port for service notification and negotiations among peer
as soon as a match between the resource requirementgglications.
a configuration and the current availability of resources is For service notification or negotiations, the concerned
found. application needs to implement a Service Coordinator (SC)
In case of multiple applications contending for the samsomponent. In the following, we describe the changes in the
resources, the RM takes into account the relative prioritiggrking of CASA that are implied by the inclusion of service
(as defined by the user), as well as the adaptation possibilitigstification and negotiations.
of the applications for allocating resources. The details of thewhen service notification is required, the RM informs the
resource allocation algorithm followed by the RM are out o§C about the selected configuration at the end of the resource
scope of this paper. allocation phase. The SC then informs the peer applications
At the end of the resource allocation phase, the Rigbout the changes in the application’s functionality and
instructs the underlying adaptive middleware, the AAS (Agerformance characteristics, which are implied by changing
pects Adaptation System) and the CAS (Components Adap-the new configuration.
tation System) to activate the lower-level services, aspectsThe peer applications need not be developed according
and components related to the selected configuration, respiec-the CASA framework. However, for a CASA-based
tively. The RM also issues any callbacks specified for thiseer application, the information about the functionality
configuration. Recall that the lower-level services, aspectgad performance characteristics of the above application
components and callbacks related to the selected config-forwarded to the RRC (Remote Resource Coordinator)
uration are specified within the correspondirgconfig> of the peer application. This enables the RM (Resource
element. Manager) of the peer application to decide the appropriate
If there is a runtime change in the contextual informatioadaptation based on the changed value of the remote resource
relevant to the application, then this change is detected fye. the functionality and performance characteristics of the
the CM. The CM communicates the negcontext>- element above application). Whereas, for a non-CASA-based peer
to the RM. The RM allocates resources for a new compplication, the peer application itself is responsible for
figuration from the new<context- element, following the deciding the appropriate adaptation based on the change in
same procedure as during the initial allocation. The existimgnfiguration of the above application.
configuration is then replaced with this new configuration. When service negotiations are involved, the resource al-
Similarly, if there is a runtime change in the availabilitjocation phase does not end as soon as a match between
of resources, but not a change in the contextual informte resource requirements of a configuration and the current
tion, then the RM is informed about the change by thavailability of resources is found. Rather, the RM identifies
underlying adaptive middleware or the RRC. If the newll the configurations from the giverccontext>- element

that can be activated in the current availability of resourceB. Runtime changes in the adaptation policy
The RM passes the list of identified configurations to the pg seen from the description of working of CASA, the

SC. The SC sends the information about the functionalipfqering of the<context- elements within an application
and performance characteristics associated with each of & \tract as well as the ordering of theconfig> elements

identified configurations to the peer applications. The pegfinin 4 <context- element, effectively define the adaptation
applications are then required to rank these conflguratloHéncy of an application.

based on the information about their functionality and per- tpq ordering of these elements can be changed by the
formance characteristics, and send the ranked list back to r at runtime. In addition to changing the order, the user
SC. The SC then selects the most appropriate configuratigt}, 5150 remove certaiacontext> or <config> elements

for activation, based on the rankings given by the pegf \ynime. This way the user is able to customize the

applications, and informs the RM accordingly. adaptation policy of the application according to her needs
Different peer applications may be assigned differemir preferences.

weights by the SC, so that the rankings by these applicationsFor customizing the adaptation policy, a graphical user

are treated accordingly for the final selection of a configurinterface for the application contract is provided, which

tion. Any ties for the top-ranked configuration are resolveeiplains the significance of the variouscontext- and

by selecting the configuration listed highest in the applicatioaconfig> elements in user-understandable terms. That is,

contract. instead of displaying the list of parameters characterizing

The peer applications need not be developed according@g<context> element, it displays what the particular state
the CASA framework, but they must provide a componeﬁ{f contextual information means for the user. And instead of
for receiving a list of alternative configurations and rankingisplaying the detailed constituents ofaonfig> element, it
them. If a peer application also needs to be adapted duedigplays the appropriate functionality and performance char-
a change in the configuration of the above application, th@ﬁterlstlc_s gssomated with the corresponding cqnflguranon.
the ranking is decided based on the relative preferences ofn @ similar manner, new context- or <config> ele- _
the corresponding adaptations of the peer application its€fents can be added to an application contract at runtime,
for each of these alternative configurations. which were not foreseen at the time of application develop-

. I ment. And an let ntext- or nfi lement
As an example where service negotiations may be rer d any obsolete-context- or <config> elements

. . o 2 . ' an be removed from an application contract at runtime.
quired, consider an application transmitting high-quality mul
timedia (video + audio) to a number of clients. In response t0\/|. PROTOTYPE IMPLEMENTATION AND EVALUATION
a drop in the available bandwidth, the application may have :
an option either to switch to a configuration that reduc sA prototypeDisaster Cpntrolsystem, .based on ”“? CASA
: . L X) X ramework, has been implemented in Java. This system
the quality of audio but maintains the high quality of video) .
. . . : onsists of two application®©bserverandSupport Observer
or to a configuration that reduces the quality of video bu . o .
. L . 1S responsible for monitoring a disaster-affected area, and
keeps the quality of audio high. Before actually changin O) . i
: . . N .Sending its observations t8upport over a wireless link.
its configuration, the application needs to carry out servi

negotiations with the clients. The clients’ decision, on th upportis, in turn, responsible for coordinating the rescue

other hand, may be governed by the actual content of tﬁgeratlons based on the information received by it. A typical

transmission. For instance, if the transmission is that of éaployment of this system has several instanceSlmerver

. . ar}d one ofSupport Every Observerinstance needs to move
soccer match, the clients may choose to reduce the qua“tyfroequently while surveying the disaster-affected area. Be-

io while maintaining the high quality of video. Wherea: . . .
_audo € maintaining e nigh quaiity o deo ereas ause of the nature of the operation, bandwidth fluctuations
if the transmission is that of a musical concert, the clien SetweenObserverinstances an@ubportare Very common
may choose to reduce the quality of video without disturbin . PP Very co .

. . Observerprovides a number of alternative configurations
the quality of audio.

i o) with varying resource (mainly bandwidth) requirements.
However, service negotiations are not essential for afhese configurations differ in the quality of data sent from

kinds of applications that participate in distributed softwargpserverto Support Among the various alternative qual-
system.s. For instance, if in the abovg example the applicatigRs of data supported by these configurations are: high-
transmits sports events only, then it may have the defaglality video, low-quality video, high-resolution images,
adaptation behavior of switching to the first kind of configoy_resolution images, detailed textual description and brief
uration, without requiring any service negotiations with itgaxtyal description. Depending on the current resource avail-
clients. ability, the appropriate configuration Gibserveris selected

At the time of registering with the CRS, an applicatiorand activated. A change in configuration may involve only a
needs to indicate whether service naotification or negotiatiodgnamic change in lower-level services (e.g. when switching
are required, and pass a reference of its SC componentrtim high-quality video to low-quality video, only the video
the CRS accordingly. coding/decoding service needs to be changed), or it may

involve a dynamic change in application components (e.gortion of the bars indicates the normal execution time (100
when switching from low-resolution images to detailed texns, when no recomposition of application components is
tual description, the concerned application components ndadolved), and the darker portion indicates the overhead due
to be changed). to a one-time recomposition of application components. As

Performance evaluation tests with this prototype hawbserved from this figure, even for a small normal execu-
been carried out, and the results are encouraging. Théisa time of 100 ms, the overhead due to a recomposition
tests were carried out primarily to evaluate the performanoé application components is relatively quite small (please
of our components adaptation approach. The performamete that this overhead is independent of the actual normal
evaluation of the aspects adaptation approach followed byecution time of the application).
PROSE can be found in [11], and that of the lower-level For the data in Figure 6, the components were stateless,
services adaptation approach followed by Odyssey can ib® no state was transferred from an outgoing component
found in [12]. to its successor. However, the overhead due to the state

The detailed performance evaluation of our componertt@nsfer was found to be very small — in the order of a few
adaptation approach is given in [3]. Below are some of thmicroseconds (1Qis for a state with a single parameter to
indicative results. 25 us for 10 parameters).

Figure 5 shows the time CASA requires for responding to The above tests were carried out on Linux, running on an
a change in the execution environment. This time includ@D Athlon XP 1900+ processor machine with 1024 MB
the time spent in (a) selecting the appropriate applicatioRAM. On a much slower machine, the overhead was around
to adapt based on the relative priorities and adaptation p@s4 times higher than the above values.
sibilities of the running applications (including deciding the
appropriate new configurations for the selected applications), :2
and (b) actually changing the configurations of the selected mm m EB .
applications. For the data in this figure, for every change in. '
the execution environment, only a single application needeﬁ
to be adapted and a change in configuration involved g
dynamic replacement of a single application component. € oo~ — — — — — — — — —
Figure 5, the X-axis represents the number of application-§
running, and the Y-axis represents the response time Lg
CASA. The increase in response time with respect to the’ ,, |
increase in number of running applications is due to the

80+ — — — — — — — — —

w+ — — — — — = — —

activity (a) above. T T T
number of components
25
o] Fig. 6. Overhead due to dynamic recomposition of application components
1;; 20 — — —
é -
g1 o S () N B SN N O The overall performance results obtained indicate that the
= overhead due to the CASA framework is tolerable for most
£ 10 - | | | |- practical applications, and that the benefits of dynamic and
g transparent adaptation, provided by CASA, far outweigh the
=5 -+ +— — - - performance overhead.
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ VIl. RELATED WORK
1 2 3 4 5 6 7 8 9 10
number of applications Kephart and Chess [5] envision autonomic computing

, _ _ , , systems to be able to deal with increasing software and
Fig. 5. Response time by CASA for a change in execution enwronmer‘wgnvironment complexity, thanks to the self-managing char-
acteristic of these systems. Recently some approaches have
Figure 6 shows the increase in execution time of dpeen proposed with the aim to turn this vision into reality.
application because of dynamic recomposition of application White et. al. [17] propose an architectural approach to
components. In Figure 6, the X-axis represents the numberdsveloping autonomic systems. In this approach, an auto-
components to be replaced during a dynamic recompositinamic system is made up of autonomic elements, where each
(time for components addition and removal was found to lBitonomic element is self-managing in its own behavior as
lower than that for replacement), and the Y-axis represem®ll as in its interactions with other elements. This work
the total execution time of the application. The lightedescribes the requirements to be satisfied by autonomic

elements and systems, but it does not give the details pbvides a runtime system for dealing with the adaptation
carrying out self-management. concerns. With a view to provide a general framework that is
Liu et. al. [7] present a component-based framework fable to comprehensively meet the adaptation needs of a broad
autonomic applications, where the behaviors and interacticgsd diverse set of applications executing in dynamic environ-
of application components can be adapted dynamically. Theents, CASA integrates a number of adaptation mechanisms
adaptation decisions here are governed by the rules assémi-supporting adaptation at different levels of an application.
ated with every application component. However, in this ag-he contract-based adaptation policy, in addition, facilitates
proach, the number of rules for controlling the behavior anthanges in the adaptation policy at runtime.
interactions of every application component can potentially The implementation and evaluation of a CASA prototype
be quite large, inducing significant performance overhead dbave been discussed in this paper. The implementation of a
to the execution of these rules at runtime. real-world application based on CASA is a work planned for
David and Ledoux [2] present an approach for runtimeear future.
adaptation of applications by activating and deactivating

certain meta-level components associated with the normal
1] S. Agarwala, C. Poellabauer, J. Kong, K. Schwan and M. Wolf.

appl!catlon ?omponems’ in response to changes in the eg(- System-Level Resource Monitoring in High-Performance Computing
ecution environment. However, the scope of adaptation is EnvironmentsJournal of Grid Computing1(3), 2003.
restricted here, as the meta-level components are limited {dl P. David and T. Ledoux. Towards a Framework for Self-Adaptive

. . . Component-Based ApplicationBroc. of 4th International Conference
domg some kind of pre or post processing that can be adapted on Distributed Applications and Interoperable Syste2G03.

dynamically. [3] A. Gygax. Studying the Effect of Size and Complexity of Components
Several other approaches have been proposed for adapting on the Performance of CASkhiternship Report, Institutif Informatik,

. . . University of Zurich, 2004.
the lower-level services used by applications at the middle- . /xww.ifi.unizh.chireg/ftp/papersicasa-perf.pd

ware level. Some of these approaches are reflection-based, Jini Network Technology. http://www.jini.org/
and thus can be integrated with CASA by applying suitabldd] J.0. Kephart and D.M. Chess. The Vision of Autonomic Computing.

. . | i h h IEEE Computer36(1), 2003.
instrumentation. Examples of such approaches are Odyss@}’ G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M.

[12], InfoFabric [13], QuO [18] etc. Loingtier and J. Irwin. Aspect-Oriented ProgrammitRyoc. of 11th
Some more work has been done in the area of context European Conference on Object-Oriented Programmi@p7.

L H f th h h b H. Liu, M. Parashar and S. Hariri. A Component Based Programming
monitoring. However, most of the approaches have be Framework for Autonomic ApplicationsProc. of 1st International

tightly coupled with the applications for which they have Conference on Autonomic Computir2p04.
been developed. For example, some Systems Such as Act[§b B. LOWekamP, N. Ml”er, R. Ka.rrer, T. Gross and P. Steenkiste. D_eSI_gn,
. . , . Implementation, and Evaluation of the Remos Network Monitoring
Badge [15] and ParcTab [16] identify the user’s location and System.Journal of Grid Computing(1), 2003.
activity etc., and use this information for providing context-[9] A. Mukhija and M. Glinz. Runtime Adaptation of Applications through
dependent services to the user. Dynamic Recomposition of Componengoc. of 18th International
. . . Conference on Architecture of Computing Syste2@5.

The Context Toolkit [14] provides general mechanismgo; A Mukhija and M. Glinz. CASA — A Contract-based Adaptive

for context monitoring to aid the development of context- Software Architecture Frameworkroc. of 3rd IEEE Workshop on

aware applications. It employs the conceptohtext widgets Applications and Services in Wireless Network803.
pp ploy P 9 1] A. Nicoara and G. Alonso. Dynamic AOP with PROSFoc. of 1st

that can be used bY an applicatior.] for acquiring the d?-a International Workshop on Adaptive and Self-Managing Enterprise
related to contextual information. This way, the context wid- Applications 2005.

ets insulate an application from the mechanics of contd*?] B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn
9 PP and K.R. Walker. Agile Application-Aware Adaptation for Mobility.

sensing. The _CM (Conte_)_(t Monitor) in CASA may use the poc. of 16th ACM Symposium on Operating Systems Pringip8gy.
Context Toolkit for acquiring the data related to contextugl3] C. Poellabauer, K. Schwan, S. Agarwala, A. Gavrilovska, G. Eisen-

information, before interpreting and analyzing this data to hauer, S. Pande, C. Pu and M. Wolf. Service Morphing: Integrated
System- and Application-Level Service Adaptation in Autonomic

arrive at the contextual information relevant to an application. SystemsProc. of 5th International Workshop on Active Middleware
Services 2003.
VIIl. CONCLUSION [14] D. Salber, A.K. Dey and G.D. Abowd. The Context Toolkit: Aiding
. . the Development of Context-Enabled Applicatiori&oc. of ACM
CASA provides a framework for enabling the development Conference on Human Factors in Computing Systeti89.

and operation of autonomic applications. In this paper, th] R. Want, A. Hopper, V. Falcao and J. Gibbons. The Active Badge

: : : Location SystemACM Ti ti Information System€(1),
design of the CASA framework and its overall working were — 7ggo @ 2o fansactions on nformation Syster9(1)

discussed. [16] R.Want, B.N. Schilit, N.I. Adams, R. Gold, K. Petersen, D. Goldberg,

The complexity involved in developing autonomic appli— J.R. EIIi_s and M._Weiser. An Overview of the_Pa_rcTab Ubiquitous
. . L . . Computing ExperimeniEEE Personal Communicationg(6), 1995.
cations is significantly reduced using CASA, by virtue 0{17] S.R. White, J.E. Hanson, I. Whalley, D.M. Chess and J.O. Kephart.

separation of the adaptation concerns of an application from An Architectural Approach to Autonomic Computin@roc. of 1st
its business concerns. The decoupled architecture of CASA, International Conference on Autonomic CompufiagO4.

. icul h b d ad . l foll e[ag] J.A. Zinky, D.E. Bakken and R.E. Schantz. Architectural Support for
In particular the contract-based adaptation policy tollow Quality of Service for CORBA Object§heory and Practice of Object

by CASA, makes this separation possible. CASA further Systems3(1), 1997.

REFERENCES

