
Controlled Natural Language Can Replace First-Order Logic

Norbert E. Fuchs, Uta Schwertel
Department of Computer Science
University of Zurich, Switzerland
ffuchs, uschwertg@ifi.unizh.ch

Sunna Torge
Department of Computer Science
University of Munich, Germany

torge@informatik.uni-muenchen.de

Abstract

Many domain specialists are not familiar or comfortable
with formal notations and formal tools like theorem provers
or model generators. To address this problem we developed
Attempto Controlled English (ACE), a subset of English that
can be unambiguously translated into first-order logic and
thus can conveniently replace first-order logic as a formal
notation. In this paper we describe how ACE has been used
as a front-end to EP Tableaux, a model generation method
complete for unsatisfiability and for finite satisfiability. We
specified in ACE a database example that was previously
expressed in the EP Tableaux language PRQ, automatically
translated the ACE specification into PRQ, and with the
help of EP Tableaux reproduced the previously found re-
sults.

1. Introduction

Though formal methods promise improved quality of
software and partial automation of the software develop-
ment process they are not readily accepted by domain spe-
cialists. The reasons are twofold — formal notations, e.g.
formal specifications or integrity constraints, are hard to un-
derstand and difficult to relate to the concepts of an appli-
cation domain, and consequently formal tools like theorem
provers or model generators are not easily accessible to peo-
ple unfamiliar with formal notations.

We are directly addressing both problems by substituting
obviously formal notations by Attempto Controlled English
(ACE), a subset of full English that can be deterministically
translated into first-order logic [5]. Here we show that ACE
can conveniently replace first-order logic as input language
of the model generation method EP Tableaux [3].

The combination of EP Tableaux with an ACE front-
end allows domain specialists to express, verify and validate
their problems in familiar natural language without having
to translate the problems into an unfamiliar formal notation.

In section 2 we introduce the model generation method

EP Tableaux that in section 3 is used to solve a data base
problem expressed in first-order logic. Section 4 contains a
brief introduction into ACE. In section 5 we reformulate the
data base problem in ACE and show its automatic transla-
tion into the input language PRQ of EP Tableaux. In section
6 we conclude and point to some open issues.

2. The Model Generation Method EP Tableaux

In several application domains — e.g. diagnosis, plan-
ning, database schema design and data base view updates
— problem solving can be reduced to the systematic search
for models of first-order logic specifications [3]. These ap-
plications have in common that the models being sought for
have to be finite.

As an example we considerdatabase schema design.
Several database issues can be formalized seeing databases
as models of finite sets of first-order formulae that express
either static integrity constraints, views, updates, or dy-
namic integrity constraints [4].

With this formalization, the question whether static in-
tegrity constraints are correctly designed in the sense that
there exist databases enforcing them can be expressed as a
finite satisfiabilityproblem. Therefore a model generation
method to be applied should not only be complete for un-
satisfiability but also for finite satisfiability.

In [3] a deduction method called Extended Positive
Tableaux method (short EP Tableaux method) is proposed
for verifying the finite satisfiability of finite sets of range re-
stricted formulae. The method performs a systematic search
for models of the considered formulae in the fashion intro-
duced by thetableaux methods[8]. The EP tableaux method
proceeds by decomposing the considered formulae until
only literals remain. Branches in the expanded EP tableau
that do not contain the formula? represent a model of the
given set of formulae.

The input language PRQ of EP Tableaux is a fragment of
first-order logic that has the same expressive power as full
first-order logic.

As an example, we give an EP tableau forS =



fp(a); 8x(p(x) ! r(x) _ 9yq(x; y)); r(a) ! ?g, where
the rightmost and the middle branch represent models ofS.

p(a)
8x (p(x) ! r(x) _ 9y q(x; y))

r(a) _ 9y q(a; y)

jjjjjjj VVVVVV

r(a) 9y q(a; y)

hhhhhhhh GG

? q(a; a) q(a; cnew)

The EP Tableaux method has the following properties:
soundness for unsatisfiability, soundness for satisfiability,
andcompleteness for unsatisfiability. Additionally, the EP
Tableaux method enjoyscompleteness for finite satisfiabil-
ity, i.e. if the given set of formulae has a finite minimal
model (a model ofS is minimal if no proper subset of the
ground atoms it satisfies represents a model ofS), then
this model will be generated by an application of the EP
Tableaux method. Thus the EP Tableaux method is not only
complete for either unsatisfiability or finite satisfiability, but
for both of them. This property of EP Tableaux is essential
with regard to the applications mentioned above.

The EP Tableaux method is implemented in Prolog [2].

3. A Database Example in Logic

A database example from [2] — slightly modified — is
stated to demonstrate the use of the EP Tableaux method
during the design of integrity constraints.

The following formulae are database integrity con-
straints, formalized in first-order logic. Negation will be
handled as implication, i.e. instead of:� the formula� !
? is written.

(1) 8A (department(A) ! (employee(A)! ?))
8A (employee(A)! (department(A) ! ?))

(2) 8A 8B ((manager(A) ^ department(B) ^
of(A;B)) !

(employee(A) ^member(A) ^ of(A;B)))

(3) 8A 8B ((member(A) ^ department(B) ^
of(A;B)) ! 8C ((manager(C) ^

of(C;B)) ! work for(A;C)))

(4) 8A (employee(A)!
9B (department(B) ^member(A) ^ of(A;B)))

(5) 8A (department(A) ! 9B (employee(B) ^
manager(B) ^ have(A;B) ^ of(B;A)))

(6) 8A (employee(A)! (work for(A;A) ! ?))

These integrity constraints are ill-defined in the sense
that they are satisfiable, but only by meaningless mod-
els like the empty model. In fact, application of the EP
Tableaux method yields the empty model. But if e.g. the
formula

(7) employee(anne)

is added, the set of formulae is unsatisfiable which will be
detected by applying the EP Tableaux method. The reason
is that for every department a manager is required who is
an employee at the same time (5). Since every member of a
department is working for the manager (3) and since nobody
is working for her/himself (6), we obtain a contradiction.
This means that as soon as any employee is inserted into
the database the integrity constraints are violated, or — in
other words — there is no database of employees that will
enforce the given integrity constraints.

To use one of the Prolog implementations of the EP
Tableaux method like the interactive prototype SIC [2] the
input formulae must conform to the PRQ format:

� Every formula is represented asaxiom() .

� Implications are handled as universally quantified for-
mulae without quantified variables. If there are no
or more than one universally quantified variables, the
variables will be represented in a list. E.g. formula (1)
is represented as

axiom(all(A,department(A) =>
all([],employee(A) => false))).

� Conjunctions are represented by commata and disjunc-
tions by semicolons. E.g. formula (4) becomes

axiom(all(A,department(A) =>
exists(B,(department(B),

member(A),of(B,A))))).

Clearly, this syntax is not very accessible to domain spe-
cialists unfamiliar with formal notations. In section 5, the
same example will be formulated in Attempto Controlled
English, a language that allows domain specialists to ex-
press formal specifications in the familiar terms of their ap-
plication domain.

4. Overview of Attempto Controlled English

Attempto Controlled English (ACE) is a controlled natu-
ral language specifically constructed to write specifications
[5]. ACE allows users to express specifications precisely,
and in the terms of the application domain. ACE specifica-
tions are computer-processable and can be unambiguously
translated into first-order logic. This means that users can
work solely with ACE without having to take recourse to
the internal logic representation. Though ACE seems per-
fectly natural, it is a formal language with the semantics
of the underlying logic language. ACE needs to be learned.
We claim, however, that learning ACE needs less effort than
learning an obviously formal language. Initially developed
as a specification language, ACE has since been used for



other purposes, e.g. as input language of a program synthe-
sizer. Here we introduce ACE as a front-end to EP Tableaux.

What exactly does it mean that ACE is a controlled nat-
ural language?

ACE is a subset of standard English, i.e. every ACE sen-
tence is correct English though not every English sentence
is allowed in ACE. ACE uses a domain-specific vocabulary,
i.e. predefined function words like determiners, preposi-
tions and conjunctions, and user-defined content words like
nouns, verbs, and adjectives. Users can extend and modify
the lexicon via a simple interface requiring little more than
basic grammar knowledge. ACE employs a restricted gram-
mar in the form of a small set of construction and interpre-
tation rules. Construction rules define the form of ACE sen-
tences and state restrictions intended to remove imprecision
and to restrain ambiguities. Interpretation rules control the
semantic analysis of grammatically correct ACE sentences
and resolve remaining ambiguities.

The construction and interpretation rules are realized as
a unification-based phrase structure grammar that is used
by the chart-parser of the Attempto system. The parser de-
terministically translates ACE texts into discourse represen-
tation structures (a syntactic variant of first-order predicate
logic FOL), into the standard form of FOL, and optionally
into clausal form. Furthermore, a paraphrase is generated
that shows the user how the Attempto system interprets the
ACE input. This reflection effectively reinforces the learn-
ing of ACE.

Since the language PRQ of EP Tableaux does not allow
function symbols, we use as a front-end to EP Tableaux a
subset of ACE that can be translated into a function-free
subset of FOL and thus into the language PRQ. In the se-
quel, ACE stands for this subset.

Translating the sentences

A manager of a department is an employee.
He leads the department.

yields the discourse representation structure

[A,B]
manager(A)
department(B)
of(A,B)
employee(A)
lead(A,B)

where the discourse referents[A,B] are existentially quan-
tified variables representing objects of the discourse domain
and the other lines represent atomic conditions for these dis-
course referents. Note that the second sentence is translated
in the context of the first one so that the anaphora (he, the
department) are automatically resolved.

The discourse representation structure is further trans-
lated into the equivalent FOL formula

exists(A,manager(A) &
exists(B,department(B) & of(A,B) &
employee(A) & lead(A,B)))

The translation also generates the paraphrase

A manager of a department is an employee.
[The manager] leads [the department].

where the bracketed noun phrases replace the anaphoric ref-
erences of the second sentence.

There have been several projects with similar aims —
SAFE [1] is an earlier one, while CLARE [6] is more re-
cent — but in most cases the subsets of English were not
systematically and clearly defined, and problems like ambi-
guity not effectively solved.

5. The Database Example in ACE

To demonstrate ACE as a natural language front-end to
the EP Tableaux method we express the database example
from section 3 in ACE. We give the ACE formulation of
each constraint together with its automatic translation into
the PRQ syntax. Internally, ACE sentences are first trans-
lated into FOL formulae and then converted into PRQ for-
mulae requiring just a few systematic transformations ad-
dressed in section 3.

Constraint (1) states that departments and employees are
different entities. In ACE this is expressed using the quanti-
fier no which is logically treated likeevery : : : not.

(1) ACE: No department is an employee.
No employee is a department.

PRQ: axiom(all(A,department(A) =>
all([],employee(A) => false))).

axiom(all(A,employee(A) =>
all([],department(A) => false))).

In constraint (2) the definite noun phrasethe department
is used as an anaphor which refers back to the previously
occurring noun phrasea department. Logically, this means
that the two noun phrases relate to the same variable.

(2) ACE: Every manager of a department is an
employee and a member of the department.

PRQ: axiom(all([A,B],(manager(A),
department(B),of(A,B)) =>
(employee(A),member(A),of(A,B)))).

Constraint (3) contains the full verbwork for both argument
positions of which are universally quantified.

(3) ACE: Every member of a department works for
every manager of the department.

PRQ: axiom(all([A,B],(member(A),
department(B),of(A,B)) =>
all(C,(manager(C),of(C,B)) =>
work for(A,C)))).



Sentence (4) is analogous to sentence (2) without conjunc-
tion.

(4) ACE: Every employee is a member of a department.
PRQ: axiom(all(A,employee(A) =>

exists(B,(department(B),member(A),
of(A,B))))).

Sentence (5) contains a relative sentence that further mod-
ifies the immediately preceding nounemployee. The con-
ditions derived from the relative sentence are conjunctively
added to the formulaemployee(B) .

(5) ACE: Every department has an employee who is
a manager of the department.

PRQ: axiom(all(A,department(A) =>
exists(B,(employee(B), manager(B),
of(B,A),have(A,B))))).

The last constraint expresses that nobody works for her-
self/himself. As ACE does not yet handle reflexive pro-
nouns the constraint is stated as:

(6) ACE: No employee X works for X.
PRQ: axiom(all(A,employee(A) =>

all([],work for(A,A) => false))).

To express reflexivity sentence (6) employs so-calleddy-
namic names(hereX). Dynamic names in ACE distinguish
single instances of the set of objects denoted by the pre-
ceding noun (hereemployee). Dynamic names do not occur
literally in the logical formula; they just guarantee correct
variable bindings. Though sentences may sound less natu-
ral dynamic names are a powerful and necessary means to
express mathematical or logical problems in ACE.

Taking the above PRQ formulae as input to the EP
Tableaux method we can reproduce the results of the orig-
inal formulation in section 3. This shows that the difficult
and unfamiliar formal statement of the database example
can indeed be replaced by a more natural formulation with-
out losing precision.

6. Conclusion

We have shown that Attempto Controlled English (ACE)
can replace first-order logic as input language to the model-
generator EP Tableaux.

As a further test for the productive interplay between
ACE and EP Tableaux we choseSchubert’s Steamroller—
a well-known problem for automated reasoning systems [7].
We rephrased the original natural language version unam-
biguously in ACE and then successfully proved the conclu-
sions with EP Tableaux — thus challenging Stickel’s [7]
warning of “the danger of using natural language to try to
convey problem statements unambiguously”.

Both examples support our claim that domain specialists
who may not be familiar with formal methods can formu-
late their problems in controlled natural language, and can
then verify and validate them with the help of tools like EP
Tableaux.

Though we demonstrated the viability and flexibility of
our approach, there is room for improvement. Concerning
EP Tableaux, the limitation to function-free subsets of first-
order logic should be removed. Introducing types into ACE
and PRQ would allow users to express problems more nat-
urally and more concisely. Furthermore, it should be noted
that ACE is currently being extended to achieve greater ex-
pressivity.

Acknowledgements

We would like to thank Franc¸ois Bry for his support and
for useful discussions, Rolf Schwitter for his contributions
to the development of Attempto Controlled English, and the
anonymous reviewers for their valuable comments.

References

[1] R. M. Balzer. A 15 year perspective on automatic pro-
gramming.IEEE Transactions Software Engineering, 11(11),
1985.

[2] F. Bry, N. Eisinger, H. Sch¨utz, and S. Torge. SIC: Satisfia-
bility checking for integrity constraints. InProc. Deductive
Databases and Logic Programming, Workshop at the Joint
International Conference and Symposium on Logic Program-
ming, 1998.

[3] F. Bry and S. Torge. A deduction method complete for refuta-
tion and finite satisfiability. InProc. 6th European Workshop
on Logics in Artificial Intelligence, LNAI 1489. Springer-
Verlag, 1998.

[4] C. Ceri, G. Gottlob, and L. Tanca.Logic Programming and
Databases. Springer-Verlag, 1990.

[5] N. E. Fuchs, U. Schwertel, and R. Schwitter. Attempto Con-
trolled English — Not Just Another Logic Specification Lan-
guage. In P. Flener, editor,Logic-Based Program Synthe-
sis and Transformation, 8th International Workshop LOPSTR
’98, LNCS 1559. Springer-Verlag, 1999.

[6] B. Macias and S. G. Pulman. A method for controlling the
production of specifications in natural language.The Com-
puter Journal, 38(4), 1995.

[7] M. E. Stickel. Schubert’s steamroller problem: Formulations
and solutions.Journal of Automated Reasoning, 2, 1986.

[8] G. Wrightson, ed. Special issue on automated reasoning with
analytic tableaux – part I, part II.Journal of Automated Rea-
soning, 13(2,3), 1994.


