

A Visualization Concept for Hierarchical Object Models

Stefan Berner, Stefan Joos, Martin Glinz Martin Arnold
Dept. of Computer Science, University of Zurich EDS/FIDES Informatik

Zurich, Switzerland Zurich, Switzerland
{berner, sjoos, glinz}@ifi.unizh.ch martin.arnold@fides.ch

Abstract

Most current object modeling methods and tools have
weaknesses both in the concepts of hierarchical decomposi-
tion and in the visualization of these hierarchies. Some
methods do not support hierarchical decomposition at all.
Those methods which do employ tools that provide explosive
zoom as the only means for the visualization of hierarchies.
In this paper we present an approach for the visualization of
hierarchical object models based on the notion of fisheye
views. This concept integrates local detail and global con-
text of a view in the same diagram and eases navigation in
hierarchical structures without offending the principle of
abstraction. The work presented here is part of an effort to
create a method and language called A

DORA

 that provides
strong support for hierarchical decomposition.

1 Introduction

Graphical requirements models follow a long tradition in
the field of requirements elicitation and specification. The
basic idea is to specify requirements for a software system
through a model that describes structure, functionality and
behavior. Graphical models claim to be easy to understand,
especially for non-specialists, and easy to maintain. There
exists a broad variety of graphical models, e.g. data flow dia-
grams, state transition diagrams and statecharts, petri nets,
entity-relationship models and nowadays object-oriented
models. The purposes of these models range from simple
graphic visualization up to achieving specific effects, for ex-
ample reduction of complexity.

1.1 Model visualization

Using software tools, graphical models can be visualized
by displaying and manipulating the model on a display de-
vice using a graphic notation. A

view

 is a part of a model to
be displayed. Visualization through views requires

naviga-
tion

. Navigation has two aspects, a

cognitive

 and a

mechani-
cal

 one. The cognitive aspect deals with the mental effort to
locate a point of interest (focus) or to move it. The mechani-
cal aspect relates to the mechanical effort (e.g. mouse move-
ment) to achieve a cognitive navigation goal. The cognitive,

non-mechanical effort for navigational activities is called

cognitive overhead

 [1].
A good visualization concept is critical both for under-

standability and ease-of-use of graphical models. A good
concept should: (1) support

orientation

 in the model by visu-
alizing as much local detail as needed without losing the glo-
bal context of the focused elements, (2) minimize the

cogni-
tive overhead

 for navigation, (3) increase

expressiveness

 by
including the semantics of the model in the visualization,
and foster its understandability by supporting the abstraction
mechanisms of the model.

In order to assess the current state of visualization con-
cepts of graphic requirements modeling tools, we have ana-
lyzed several tools [2]. Most tools operating on flat or practi-
cally flat models only support scaling as a means of handling
large models. Few tools have map windows or roam bars [1]
for orientation and navigation. Tools operating on hierarchi-
cal model structures normally visualize a single node with
its direct successors in one view. A few tools visualize all
nodes in one view. Some tools of this kind have scaling pos-
sibilities, map windows or hierarchy-overviews to manage
the complexity of big models. Most tools provide just

explo-
sive zooming

. As a consequence, these tools offer either
views which show

global context without local detail

 or

lo-
cal detail without global context

. Global context and local
detail in one view are realized in very few tools, full flexibil-
ity in scaling and zooming is

not

 offered at all. Compared
with the essential modeling tasks the cognitive overhead in-
creases too much when models become bigger.

1.2 Motivation and basic ideas

We present a visualization concept for an object modeling
language with a strong mechanism for hierarchical model
decomposition and part-of-abstraction. We consider hierar-
chical decomposition of models with the semantics of a part-
of-abstraction to be crucial for the understandability and
maintainability of large models – that means for the normal
case in industrial practice. As none of the existing object-ori-
ented requirements modeling languages fully supports such
a mechanism

1

, we are developing a language called A

DORA

2

which does. Our work on visualization is based on this lan-
guage, but our concepts apply to the visualization of hierar-
chical structures in any graphical ‘box-and-line’ language.

The principal idea of our approach is to apply the notion
of fisheye views [4][8] to the visualization of object models.
We define fisheye views with multiple foci for navigating in
hierarchically clustered networks of objects. View genera-
tion is model-driven. It follows the structure and abstractions
of the model rather than being ‘just’ a geometric projection.
The concept integrates local detail and global context in a
single view, which eases orientation and navigation in the
model, thus minimizing the cognitive overhead.

As our concept allows less interesting elements to be vi-
sualized on an abstract level together with the details of ele-
ments of special interest, we have strong capabilities for sup-
porting the abstraction mechanisms in the object model that
is being visualized and thus foster the expressiveness and
understandability of the model.

2 A brief overview of the A

DORA

2

 language

A

DORA

 is a semiformal, object-oriented method and lan-
guage for modeling requirements and software architecture
which is currently being developed at the University of Zur-
ich. In this section, we sketch the basic A

DORA

 concepts, in
particular, the hierarchical structure of its models.

The basic idea of A

DORA

 is to model the aspects of data,
functionality and behavior in a

single

 hierarchical object
framework. Modeling is based on abstract objects in specific
roles instead of classes. Thus we resolve modeling anoma-
lies that occur in decompositions of class models [7].

Hierarchical decomposition and part-of-abstraction are
key features of A

DORA

. Compositions are not simply clus-
ters with no or weak semantics. A composition in A

DORA

 is
a first class object having full object semantics including
structural relationships and behavior. Structural relationships
and behavior of a composition are true abstractions of the re-
lationships and behavior of its components. The semantics
of behavior decomposition is based on an extension of the
statechart mechanism to objects [5][6].

Figure 1 gives an example of an A

DORA

 model. It shows
a view of a requirements model for controlling a double ele-
vator. This example illustrates some important features of
A

DORA

 models with respect to visualization: (1) The view
contains compositions on various levels of detail. For exam-
ple,

Control Panel

 is shown with all its components.

Left Cage

 is
displayed without components (three dots following the
name denote it to be a composition). (2)

Left Cage

 and

Right
Cage

 are different objects of the same type, having different
roles (this is an advantage over class models, e.g. UML [11],
where this situation cannot be modeled adequately). When
this situation occurs in a view, the type of these objects is an-
notated in square brackets. (3) Relationships are visualized

on the same level of abstraction as their corresponding ob-
jects: e.g. between

Left Cage

 and

Floor

 there is only the ab-
stract relationship

stops at

 visible, because

Left Cage

 is dis-
played without its components. For

Right Cage

, there is also
the component relationship

recognizes

 from

Cage Control

 to

Floor

 visible because

Right Cage

 is displayed in full detail.
We use the same style of visualization for hierarchical be-

havior models. For the sake of brevity, we have omitted be-
havior modeling from our example.

The most important feature of A

DORA

 in the context of
this paper is the notation for nested hierarchical structure in-
cluding the ability to represent objects

and

 their relations on
different levels of abstraction in a single diagram.

3 Navigation in hierarchical models

When we visualize hierarchically structured models, we
differentiate between two distinct types of navigation, a
physical and a logical one.

Physical navigation

 is necessary when the actual visual-
ized model (view) exceeds the size of the available display.
This kind of navigation requires the ability to

scale

 the size
of the visualized model by shrinking or growing the size of
the visualized elements. With

scrolling

 or with the use of a
map window [1] we can change the displayed part of a view.
Physical navigation is well known, as it is the normal way of
navigation in flat models.

As we want to visualize hierarchical models, we must
also be able to navigate through the hierarchy.

Logical navi-
gation

 in a hierarchical structure means finding the actual
position of a local element in the global context of the hier-
archy, or changing the foci of visualized elements. To handle
this kind of navigation adequately, we

zoom in

 or

out

. Zoom-
ing-in means that more details of a deeper hierarchical level
will be visualized. Zooming-out means that a more abstract
view of the selected elements is produced. With

explosive
zooming

, the global context gets lost, while the zoomed node
explodes entirely in the existing or a new window with all its
direct successors.

Fisheye zooming

 produces a local detail
view while preserving the global context in the same view.
The idea is to show local detail – the objects of interest to the

1

Most existing object-oriented modeling languages either do not fully
support a hierarchical model decomposition which employs a

part-of-
abstraction

 at all [10] or they provide only a clustering mechanism
with weak semantics [11]. Few approaches do provide such a decom-
position mechanism [3][12]. However, they encounter modeling anom-
alies which are due to using class models [7].

2

A

DORA

 stands for

Analysis and Description Of Requirements and
Architecture

.

stops at

adjust to

recognizes

drives

opens/
closes

controls

Right Cage [:Cage]
Control Panel

controls

controls

uses

1..✱1..✱

1

moves

1

Fan

1..✱

Button

(n,n)

moves

stops at

1..✱

1

1..✱

1

Cage Control

Current Floor
Display
[:Display]

Inside Door...
[:Door]

Fan
Switch

Reservation
Keyswitch

Security
Keyswitch

Engine System

Left Engine...
[:Engine]

Right Engine...
[:Engine]

Left Cage...
[:Cage]

controls

controls

drives

drives

Object A has a relationship with
n to m objects B; n, m = 0, 1 … ∗

n..mA B

General relation

Set of objects (n,m)
 (n minimal, m maximal number
 of objects)

Abstract objectA

B is a component of AA B

Super Relation

Legend

A (n, m)

Name

Name

Floor

(n,m)

Outside Door...
[:Door]

Current Floor
Display
[:Display]

Call Cage
Button

(1,3)

Figure 1. Example: Model of a dou-
ble elevator system.

user – in full, while displaying successively less detail for in-
formation being further away from this focus.

4 Visualization concept

The tool environment for A

DORA

 (which we are currently
developing) consists of a repository, a graphical model edi-
tor and an animator/simulator. The general architecture is
conventional and straightforward: All functional tool com-
ponents are grouped around a repository. We will not discuss
the general architecture here and concentrate on the visual-
ization concept only.

We analyzed the intended use of the tool and set up navi-
gational scenarios. The three most important ones are: (S1)
The user wants to select one, many or all compositions to be
displayed in more detail, which means their structure has to
be exploded. (S2) The user wants to select one, many or all
exploded compositions to be displayed in less detail, which
means hiding/abstracting from their internal structure. (S3)
The user wants to change the size of the visualized elements
without changing the logic structure of the current view.
This means shrinking or growing all elements.

From these scenarios, we derived core requirements for
our visualization concept, for example: freely selectable de-
gree of detail, local detail and global context in one view, no
overlap of objects, multiple foci. Details are presented in [2].

4.1 Concepts

Our basic idea is to use a model-driven fisheye view
mechanism with multiple foci to generate views according to
the decomposition structure of the model being visualized.
Multiple foci means that we can have multiple regions in the
model that are displayed in detail.

Navigation.

Logical navigation based on explosive zoom-
ing does not meet our requirements, because the global con-
text of an object gets lost when zooming-in on that object.

In our concept, a view always represents the

whole

model, but with varying degree of detail. For any object in
the view, we can freely select the degree of detail to be visu-
alized, independently of the other objects. Thus the global
context of a model is always visible. Details are shown or
hidden according to the current interest of the viewer. For
logical navigation, we use

selective

zooming. We zoom-in
on objects of interest and zoom-out on the others. Addition-
ally, we provide conventional

scaling

 and

scrolling

 naviga-
tion for views which are larger than the display screen. This
is done in the usual way and is not discussed here.

Selective zooming.

Zooming changes the visualized part
of the model structure in a view. Zooming takes advantage of
the hierarchical structure and explicit decomposition of the
model to allow views with different levels of abstraction.
These abstractions are ‘real’ abstractions because they are
not based just on the omission of language elements but on

the utilization of an explicit model decomposition and part-
of-abstraction, respectively.

By

zooming-in

 the user selects a specific element as a
(new, additional) focus meaning that he wants to see the
components of this composition. Zooming-in is a stepwise
uncovering of the underlying structures.

By

zooming-out

 the user removes a specific element from
the set of defined foci meaning that he wants to see less de-
tail than before. Zooming-out of a selected composition
leads to an abstraction of the underlying, internal structure of
this composition.

In any visualized configuration, each composition can be
zoomed-in or zoomed-out independently of the visualized
context surrounding this composition. With this idea we re-
alize

multiple foci.

4.2 Example

Starting point for the illustration of the zooming concept
is the situation presented in Fig. 2: The double elevator sys-
tem (Fig. 1) is visualized with its top level compositions

Floor

,

Left Cage

,

Engine System

 and

Right Cage

 as black boxes.
The objects currently displayed in the view are marked in the
tree on the left hand side of each figure by filled black cir-
cles. The example will illustrate a sequence of zooms. A
magnifying glasses indicates a composition to be zoomed.

In the example, we proceed as follows: We zoom-in until
all objects of the hierarchy are visible (same view as in
Fig. 1) and then perform one zoom-out. The first step is a
zoom-in request on the

Floor

 composition. The

Floor

 composi-
tion will be exploded and its internal structure becomes visi-
ble. Fig. 3 shows the resulting view.

Floor

 is displayed with
its direct successor components

Call Cage Button

,

Current Floor
Display

 and

Outside Door

.

The next step is to set two additional foci; first to the

Right
Cage

 composition and then to the

Control Panel

 composition
inside the

Right Cage

 composition. Fig. 4 shows the view after
a zoom-in on the

 Right Cage

 and the

Control Panel

 composition.

Right Cage

 is shown with its components.

Control Panel

has also
been exploded and its components

Button

,

Fan Switch

,

Reserva-
tion Keyswitch

 and

Security Keyswitch

 are now visible. Now a final

Double Elevator

Floor Left
Cage

Engine System Right Cage

Floor Eng.Syst.

L. Cage

R. Cage

Figure 2. Initial view, new zoom-in request on Floor.

Double Elevator

Floor Left
Cage

Engine System Right Cage

Figure 3. View after Floor has been exploded; new zoom-in re-
quests on Right Cage and Control Panel.

zoom-in request on

Engine System

 will be performed to have
all objects visible (similar to Fig. 1). Thereafter, a zoom-out
request on

Right Cage

 will be performed (see Fig. 5).

4.3 The zooming-algorithm

Below we sketch the algorithm for zooming-in. A de-
tailed description is given in [2]. The algorithm consists of
three main steps: (1) Calculate the new size of the object that
is zoomed-in (depending on the number of details to be
shown). (2) For each surrounding object x on the same hier-
archical level, calculate a vector V

x

 and shift the object by
this vector (Fig. 6). (3) If surrounding compositions have to
be reshaped, reshape them recursively (inside-out), using
steps (1) and (2).

The algorithm works on any given layout, adjusting it in-
crementally and preserving it as far as possible. So a user
may re-arrange a layout without losing these rearrangements
when zooming. This is a distinct feature of our approach.
Existing fisheye view algorithms use automatic layout gen-
eration and do not permit users to re-arrange the layout of
the objects being displayed.

5 Conclusions, state of work

In this paper we have identified selective, fisheye-style
zooming as a capability that is useful for, but is lacking in,
CASE tools that graphically portray hierarchical structures.

We have presented a general concept that transfers the idea
of fisheye views to display object hierarchies in an adequate
way. We applied this concept for the visualization of A

DORA

models and demonstrated a possible realization in [2].
However, our visualization concept can also be used for

the visualization of other hierarchical models, for example
statecharts or ROOM models [9]. Moreover, it should be
adaptable to the visualization of inheritance hierarchies in
object-oriented models, too.

The development of the basic visualization concept for
A

DORA

 models is finished, and a first brief validation has
been promising. Currently, we are working on the details
and are building a prototype model editor which implements
our visualization concept. The usability of selective zooming
will be thoroughly validated by testing our prototype in the
Usability Lab of EDS/FIDES Informatik in Zurich. Based on
the results of this evaluation, we plan to revise and reimple-
ment our concept. In parallel, we are continuing the develop-
ment of the A

DORA

 method and language.

6 References

[1] Beard, D. V., Walker II, J. Q.: Navigational techniques to
improve the display of large 2-D spaces.

Behaviour &
Information Technology

, Vol. 9, No. 6; 1990. (pp. 451-466)
[2] Berner, S, S. Joos, M. Glinz, M. Arnold: Visualizing Adora

Models. TR-98-09, Department of Computer Science,
University of Zurich, 1998.

[3] Champeaux de, D., D. Lea, P. Faure:

Object-Oriented System
Development

. Addison-Wesley, 1993.
[4] Furnas, G. W.: Generalized fisheye views.

Proc. of ACM CHI
86 Conference on Human Factors in Computing Systems

.
Boston, Mass., ACM Press, New York; 1986. (pp. 16-23)

[5] Glinz, M.: Hierarchische Verhaltensbeschreibung in objekt-
orientierten Systemmodellen. In Züllighofen, Altmann,
Doberkat (eds.).

Requirements Engineering 1993: Proto-
typing. Stuttgart: Teubner; 1993. (pp. 175-192) [Hierarchical
description of behavior in object-oriented system models; in
German]

[6] Glinz, M.: An Integrated Formal Model of Scenarios Based
on Statecharts. In Schäfer, Botella (eds.). Software
Engineering - ESEC '95. Proc. of the 5th ESEC. Sitges,
Spain. Berlin, etc.: Springer; 1995. (pp. 254-271)

[7] Joos, S., S. Berner, M. Glinz: Hierarchische Zerlegung in
objektorientierten Spezifikationsmodellen. Softwaretechnik-
Trends, Vol 7, No. 1; Feb 1997. (pp. 29-37) [Hierarchical
decomposition in object-oriented specification models; in
German]

[8] Schaffer, D., et al.: Navigating Hierarchically Clustered
Networks through Fisheye and Full-Zoom Methods. ACM
Transactions on CHI, Vol. 3, No. 2; Jun. 1996. (pp. 162-188)

[9] Selic, B., G. Gullekson, P. T. Ward: Real-Time Object-
Oriented Modelling. John Wiley & Sons; 1994.

[10] Shlaer, S., S. J. Mellor: Object-Oriented Systems Analysis:
Modelling the World in Data. Prentice Hall; 1988.

[11] Booch, G., I. Jacobson, J. Rumbaugh: The Unified Modeling
Language for Object-Oriented Development, Documentation
Set v1.1, Rational Software Corp.; 1997.

[12] Wirfs-Brock, R., B. Wilkerson, L. Wiener: Designing Object-
Oriented Software. Prentice Hall; 1990.

Double Elevator

Floor Left
Cage

Engine System Right Cage

Figure 4. View after Right Cage and Control Panel have been ex-
ploded; new zoom-in request on Engine System and zoom-out
request on Right Cage.

Double Elevator

Floor Left
Cage

Engine System Right Cage

Figure 5. View after Engine System has been exploded and Right
Cage has been imploded.

A B

C

old position/size

new position/size

D

VC

VCVD

VD

VB

VB

Figure 6. Step 2 of the zooming algorithm.

