
Human-Friendly Line Routing for Hierarchical Diagrams

Tobias Reinhard, Christian Seybold, Silvio Meier, Martin Glinz, Nancy Merlo-Schett
Department of Informatics, University of Zurich, Switzerland

reinhard, seybold, smeier, glinz, schett @ifi.unizh.ch

Abstract

Hierarchical diagrams are well-suited for visualizing the
structure and decomposition of complex systems. However,
the current tools poorly support modeling, visualization and
navigation of hierarchical models. Especially the line rout-
ing algorithms are poorly suited for hierarchical models:
for example, they produce lines that run across nodes or
overlap with other lines.

In this paper, we present a novel algorithm for line rout-
ing in hierarchical models. In particular, our algorithm pro-
duces an esthetically appealing layout, routes in real-time,
and preserves the secondary notation of the diagrams as far
as possible.

1 Introduction
With the advent of UML 2.0 [9], there has been renewed

interest in hierarchical models and their effective visual-

ization. However, current modeling tool implementations

rather poorly support modeling, visualization and naviga-

tion of hierarchical models (see [13] for a survey). The typ-

ical way of visualizing hierarchically structured models is

by explosive zooming: when looking at the details of a par-

ticular node, the diagram with the details either replaces the

previously displayed diagram or a new window is opened

which supersedes the previously viewed one. In both cases,

the context of the zoomed node is lost. This is bad because

humans typically want to see their focus of interest in detail

together with its surrounding context.

The problem of lost context in the visualization of hier-

archical models can be mitigated by using fisheye zooming.

Fisheye zoom algorithms show the foci of interest more de-

tailed, whereas their context is shown with less details. In

our previous work we have developed a logical fisheye vi-

sualization technique [14, 6, 2] which enables filtering, ab-

straction and easy navigation in hierarchical models.

However, navigating in a model by hiding or showing

elements as well as generating views with fisheye zoom-

ing change the layout of the model. For the sake of model

understandability, the generated layout should resemble the

original layout drawn by the modeler as far as possible.

This is important because a modeler builds a cognitive

map [1] which is reflected in the so-called secondary no-

tation [11]. The secondary notation consists of layout in-

formation which is reflected in the positioning, the size and

other user defined and visualized properties of the model.

Therefore, fully automated layout algorithms are not well-

suited.

The layouting problem can be roughly divided into (a)

the positioning of nodes (classes, states, activities, etc.) and

(b) routing lines that connect nodes (associations, state tran-

sitions, port connections, etc.). Problem (a) has been inves-

tigated in our previous work [6, 14] where we implemented

the visualization and navigation techniques described above

in the ADORA tool. In this paper, we deal with problem (b):

we describe a novel algorithm for routing lines in hierarchi-

cally decomposed models. Our algorithm has four distinc-

tive properties: (i) it routes in real time whenever a mod-

eler changes the layout of a model by navigating, creating a

view or editing; (ii) it generates a graphically appealing lay-

out (no collisions or overlaps, short paths); (iii) it preserves

the secondary notation as far as possible, and (iv) it allows

a modeler to modify the generated layout of a line route and

preserves this modification as a new secondary notation of

the connection.

The presented algorithm for line routing has been imple-

mented in our ADORA tool [14, 13]. However, our algo-

rithm works on any hierarchical box-and-line language, for

example, UML 2.0 composite structure diagrams, activity

diagrams or state machine diagrams.

The remainder of the paper is organized as follows. In

section 2, we describe our line routing algorithm. Related

work is discussed in Section 3. In Section 4, we summarize

our results, discuss advantages and limitations and sketch

our future work.

2 Line Routing for Hierarchical Elements

To maintain the readability of a diagram, it is desirable

that a line between two nodes does not pass through any

other nodes or overlap with other lines. As fisheye naviga-

tion requires the generation of a new diagram layout in ev-

ery navigation step, automatic and fast (i.e. real-time) line

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

routing is essential. Furthermore, when editing a diagram,

the tedious task of good line routing should also be done au-

tomatically so that the modeler can concentrate on her goal

of creating or modifying a model.

In contrast to other domains such as VLSI design, dia-

gram esthetics plays an important role in the modeling do-

main. The lines in a diagram have to be easy to follow and

add a clear meaning to the diagram. But there is only lit-

tle information available about what is a “good” line [12].

In most areas that use diagrams for visualizing information,

a preferred style or consensus has emerged, e.g. rectilinear

lines in circuit diagrams.

We are focusing on diagrams that are incrementally cre-

ated by a human user and not on diagrams that are automat-

ically created for visualizing an existing structure. Hence,

we cannot compute diagram layouts (including line routing)

from scratch as done in graph drawing [4] or reengineering

visualization (e.g. [5]). Instead, we must be able to adapt a

given layout incrementally, preserving the secondary nota-

tion as far as possible.

In the following subsections we give a short descrip-

tion of our line routing algorithm. A detailed discussion

of the algorithm (including a performance test) and the cor-

responding background work can be found in [13].

2.1 The routing problem

As an initial simplification, we consider routing of indi-

vidual lines around nodes that represent obstacles; without

any regard to existing lines. This is an instance of the well-

known routing problem.

The routing problem has been studied extensively in

VLSI design to automatically layout the wires that connect

the circuit components. The first and perhaps best known

routing algorithm for VLSI design is Lee’s algorithm [7],

which is an application of Dijkstra’s breadth-first shortest

path search algorithm [3] to a uniform grid. Lee’s algo-

rithm is based on the expansion of a diamond-shaped wave

from the source point that continues until the target point

is reached. The shortest path can be found in a second

step by going back from the target point to the source point

while selecting the neighbored grid cell with the lowest dis-

tance value (see [13] for a detailed description of Lee’s al-

gorithm). The algorithm always finds a solution if one ex-

ists, and ensures an optimal solution. The major drawback

of this approach is that its space and runtime complexity is

O(mn) for a grid with m ∗ n cells.

2.1.1 Data structure

Instead of a uniform grid we use the corner stitching struc-

ture [10] as the underlying data structure for line routing.

The corner stitching structure has originally been developed

as an efficient storage mechanism for VLSI layout systems

and has two important features: (i) All the space, whether

occupied by a node or empty, is explicitly represented in the

structure, and (ii) the space is divided into rectangular areas

that are stitched together at their corners like a patchwork

quilt.

The corner stitching structure for the four nodes in Fig. 1

is shown by the dashed lines. The space is divided into a

mosaic with rectangular tiles of two types: space tiles and

solid tiles. The space tiles are organized as maximal hor-

izontal strips, i.e. no space tile ever has another space tile

immediately to its right or left.

The advantage of a corner stitching structure with max-

imal horizontal strips over a uniform grid structure is its

linear space complexity: while the number of cells in a uni-

form grid is determined by the size and the resolution of

the grid, the maximum number of space tiles in the corner

stitching structure only depends on the number of nodes.

In a diagram with n nodes, there will never be more than

3n + 1 space tiles (see [10] for a proof).

2.1.2 White space computation

Our line routing approach is divided into two completely

decoupled steps: The first step computes one or multiple

sequences of space tiles through which the shortest path has

to pass. The second step computes the line itself, i.e. the

bend points in a polyline or the curves of a spline inside the

white space tiles that have been calculated in the first step.

For computing the path(s) of space tiles through which

the line has to pass, we apply the fundamental wave expan-

sion idea of Lee’s algorithm to the corner stitching structure

instead of a uniform grid structure.

During its expansion phase, our algorithm computes a

distance value for the space tiles of the structure. Due to the

non-uniform tile size of the corner stitching structure, it is

not possible to use the distances from the source point to the

tiles as distance values, because there may be multiple dif-

ferent values for one tile. We therefore use a combination

of the source distance and the distance to the target point

which are both measured in the Manhattan distance1. Fur-

thermore, for each tile the algorithm computes the point P
inside the tile where the distances are actually measured.

For the actual search, an ordered data structure (e.g. heap,

priority queue) denoted as Ω is used. Below, we present an

informal description of the algorithm:

1. Construct the corner stitching structure and determine

the tile Tstart that contains the source point s and the

tile Tend that contains the target point t.

2. Set the point P for Tstart to the source point s, the

source distance of Tstart to 0 and the distance of Tstart

1The Manhattan distance, also known as the L1-distance, between two

points P and Q is defined as the sum of the lengths of the projections of the

line segments onto the coordinate axes: λ(P, Q) = |xP −xQ|+|yP −yQ|

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

to the Manhattan distance between P and the target

point t. Insert Tstart into Ω.

3. As long as Ω contains tiles: Remove the tile T with

the lowest distance value from Ω. If this tile is the

tile Tend, a path has been found. Otherwise, calculate

for each neighboring space tile Tnext the point Pnext,

i.e the point inside Tnext closest to the point P of the

current tile T . Compute for each of these neighboring

tiles two distance values: The source distance σ is cal-

culated by adding the Manhattan distance between the

point P and the point Pnext to the source distance of

T . The distance δ is calculated by adding the Manhat-

tan distance between Pnext and the target point t to σ.

Equations 1 and 2 show the calculation of the source

distance σ and the distance δ for the tile Tnext relative

to the tile T , whereas λ(P1, P2) denotes the Manhattan

distance between the points P1 and P2:

σ(Tnext) = σ(T) + λ(P, Pnext) (1)

δ(Tnext) = σ(Tnext) + λ(Pnext, t) (2)

Check whether the calculated distance value for Tnext

is lower than a previously calculated value for Tnext. If

so, update the distance δ and source distance σ values

of Tnext. Insert the tile Tnext into Ω.

4. The sequence(s) of space tiles that constitute the short-

est path can be found, in analogy to Lee’s and Dijk-

stra’s algorithm, by moving back from Tend to Tstart

by repeatedly selecting a neighbored tile that has the

same distance value δ. If multiple neighbors have the

same value, there exist multiple solutions and the cur-

rent tile is a branch.

Fig. 1 shows the corner stitching structure after the sec-

ond iteration through step 3 of the algorithm. The current

tile T corresponds to T6 and the distance values σ and δ for

the tiles T4, T5 and T7 are calculated. According to equa-

tion 1, the source distance σ for T7 is equal to the sum of

the source distance of T6 (which is zero in this case) and the

Manhattan distance between the points P and Pnext in T
and Tnext, respectively, which is 36. The distance δ is cal-

culated by adding the Manhattan distance between the point

Pnext and the target point t, which is 576, to the source dis-

tance σ.

2.1.3 Line routing

The algorithm for finding the space tiles that the shortest

path has to pass through is completely decoupled from the

algorithm that does the actual routing (i.e. computes the

coordinates for drawing the line). Hence, different algo-

rithms that produce different styles of lines can be imple-

mented on top of the algorithm described in Section 2.1.2.

Fig. 2 shows three different line routing styles: a rectilinear

Figure 1. Routing algorithm

polyline (which we have currently implemented), an uncon-

strained polyline and a spline.

Figure 2. Different line routing styles

2.2 Line crossings

By extending the corner stitching structure and the algo-

rithm of Section 2.1.2, we can avoid line crossings during

the routing of a line. We extend the corner stitching struc-

ture by a third tile type: the line tile. Line tiles are space

tiles weighted by a constant cost factor α. The algorithm

now calculates cost values instead of distance values for the

tiles. A higher cost factor α of a tile increases the costs for a

line to pass through this tile. We are therefore transforming

the source distance σ and the distance δ into a source cost
ω and a cost γ. Equations 3 and 4 show the extension of

equations 1 and 2 with the cost factor α:

ω(Tnext) = ω(T) + α ∗ λ(P, Pnext) (3)

γ(Tnext) = ω(Tnext) + λ(Pnext, t) (4)

2.3 Preserving Secondary Notation

In connection with line routing, the secondary notation

has two aspects: The routing algorithm has to tolerate some

user influence, i.e. the line should not be routed completely

automatically. And once defined, the secondary notation of

a line has to be preserved in case of layout changes.

The algorithm that has been described so far lets the user

select where the source and target points are anchored on

the source and target node. Furthermore, by varying the

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

cost factor α, the user can define to what extent the algo-

rithm should avoid line intersections. If there exist multiple

shortest paths, it is also possible to let the user select a path

manually or add a selection function to the algorithm.

But the definition of the secondary notation by the user

does not necessarily end with the application of the routing

algorithm. The user may change the line that has been pro-

posed by the routing algorithm by moving the segments of

a rectilinear line or the bending points of a unconstrained

polyline. These changes can be preserved when the line has

to be rerouted in a later layout modification step by using

the geometric information (e.g closest neighbor) stored in

the corner stitching structure (see [13] for the details).

3 Related Work
The existing approaches to visualizing and editing hi-

erarchical models are very limited concerning node posi-

tioning and employ rather primitive line routing techniques

only [13]. Significant work on line routing, however, has

been done in domains other than modeling where line rout-

ing is a major concern. In the field of automatic graph draw-
ing the routing of the edges that connect the nodes is an in-

tegral part of the node placement algorithm (e.g. [4]). There

is no need for incremental layout adaptation or preservation

of a layout produced by a human. The wire routing problem

that occurs inVLSI design has to deal with a fixed placement

of the circuit components and therefore is similar to our line

routing problem. The most important routing algorithms in

this domain are those developed by Lee [7] and Soukup [15]

and their variants. Due to their runtime complexity, wire

routing algorithms cannot be computed in real time on a

personal computer. The geometric shortest path problem in

computational geometry has many applications in robotics,

geographic information systems and diagram drawing. The

best known approach constructs a visibility graph [8] and

computes the shortest path on this graph according to Dijk-

stra’s approach [3]. The avoidance of line crossings can’t

be integrated directly into the visibility graph and therefore

has to be done in a second step after the routing.

4 Conclusions
We have presented a novel line routing algorithm which

is based on the idea of using Lee’s algorithm on a corner

stitching data structure. To achieve our goals of appeal-

ing layout and preservation of secondary notation, we have

adapted and extended the basic algorithm. All presented

algorithms have been implemented in our ADORA model-

ing tool written in Java, which is able to generate views

from hierarchical models. We have applied our algorithm

to example models with encouraging results, both concern-

ing usability and routing speed.

A performance test [13] has demonstrated that our algo-

rithm is fast enough to route a large number of lines in real

time (up to 150 lines per diagram) even though we have im-

plemented the algorithm without special optimizations.

Currently, our line routing algorithm is limited to recti-

linear routing. Splines may be an alternative. However, de-

termining intersections is more complex for splines. Label

positioning is also not implemented yet. In our ongoing re-

search, we want to investigate to what extent nicer esthetics

justify a more complex routing algorithm.

References

[1] D. V. Beard and J. Q. Walker II. Navigational Techniques

to Improve the Display of Large 2-D Spaces. Behaviour &
Information Technology, 9(6):451–466, 1990.

[2] S. Berner, S. Joos, M. Glinz, and M. Arnold. A Visualization

Concept for Hierarchical Object Models. In Proceedings
of the Thirteenth IEEE Conference on Automated Software
Engineering (ASE ’98), pages 225–228, 1998.

[3] E. W. Dijkstra. A Note on Two Problems in Connexion with

Graphs. Numerical Mathematics, 1:269–271, 1959.
[4] P. Eades. A Heuristic for Graph Drawing. Congressus Nu-

merantium, 42:149–160, 1984.
[5] M. Eiglsperger, M. Kaufmann, and M. Siebenhaller. A

Topology-Shape-Metrics Approach for the Automatic Lay-

out of UML Class Diagrams. In SoftVis ’03: Proceedings of
the 2003 ACM Symposium on Software Visualization, pages

189–198, 2003.
[6] M. Glinz, S. Berner, and S. Joos. Object-Oriented Modeling

with ADORA. Information Systems, 27(6):425–444, 2002.
[7] C. Y. Lee. An Algorithm for Path Connections and its Ap-

plications. IRE Transactions on Electronic Computers, EC-

10(3):346–365, September 1961.
[8] N. J. Nilsson. A Mobile Automaton: An Application of Arti-

ficial Intelligence Techniques. In Proceedings of the First In-
ternational Joint Conference on Artificial Intelligence, pages

509–520, 1969.
[9] OMG. Unified Modeling Language: Superstructure Ver-

sion 2.0. Document formal/05-07-04, Object Management

Group, 2005.
[10] J. K. Ousterhout. Corner Stitching: A Data-Structuring

Technique for VLSI Layout Tools. IEEE Transactions on
Computer-Aided Design CAD, 3(1):87–100, January 1984.

[11] M. Petre. Why Looking Isn’t Always Seeing: Readership

Skills and Graphical Programming. Communications of the
ACM, 38(6):33–44, 1995.

[12] H. C. Purchase. Which Aesthetic Has the Greatest Effect

on Human Understanding? In Proceedings of the 5th In-
ternational Symposium on Graph Drawing, pages 248–261,

1997.
[13] T. Reinhard, C. Seybold, S. Meier, M. Glinz, and N. Merlo-

Schett. A Novel Algorithm for Line Routing in Hierarchi-

cal Diagrams. Technical Report ifi-2006.08, University of

Zurich, 2006.
[14] C. Seybold, M. Glinz, S. Meier, and N. Merlo-Schett. An Ef-

fective Layout Adaptation Technique for a Graphical Mod-

eling Tool. In Proceedings of the 25th International Confer-
ence on Software Engineering, pages 826–827, 2003.

[15] J. Soukup. Fast Maze Router. In Proceedings of the 15th
Conference on Design Automation, pages 100–102, 1978.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

