Adding leg mass to the SLIP: The M-SLIP model

Frank Peuker

Locomorph Summer School 2012 Odense, Denmark

RUNNING

2

KINEMATICS orientation of runner

DYNAMICS ground reaction forces (GRF)

Two phases per cycle:

flight phase: falling

stance phase: redirect fall motion by legground interaction

CAPTURING RUNNING BEHAVIOR IN MODEL

SLIP MODEL

Is stable in forward simulations !!

Powerful idea: evolution developed towards intelligent mechanics

SLIP = spring-loaded inverted pendulum

SLIP reproduces GRF and CM motion of running humans and animals

steps-to-fall map

TRANSFER TO ROBOTS

WHAT FEATURE TO ADD?

6

leg mass

Human legs are made by

1/3 of total body mass

Clauser et al., 1969

Owaki, 2008 use leg mass to predict PDR gaits

MECHANICS

Two follow-up features of adding leg mass:

1) ENERGY CHANGES

2) SWING-LEG DYNAMICS

CONTROL

	SLIP v	s. M-SLIP
hip control to approach leg angle φ_0	DEF	$ \begin{array}{c} \hline \\ \hline $
swing phase	leg retraction $\varphi_0 = \alpha_0 + \omega(t - t_{apex})$	
stance phase	no control 8	$\begin{array}{c} \text{compensate} \\ \text{damping losses} \\ \varphi_0 = 120 \ \text{deg} \end{array}$

SOLUTIONS

human reference: 80 kg, 20 kN/m, initial 3 m/s, ω =50 m/s systematic search: 0.75 kNm/rad (hip), 1 kNm/rad (knee), critical damping

INHERITANCE OF SLIP RUNNING STABILITY

BONUS MATERIAL

<u>Bipedal M-SLIP model</u> <u>can do many things:</u>

External perturbations: Up and down stairs without adjustment

Run-walk transitions: by changing rest angle of hip spring in stance

11

FUTURE WORK

Gerrit Kollegger (LL) Marc Deisenroth (IAS) Zi Yun Zhon (LL+IAS)

Implementation of M-SLIP model

Currently: Already snaps to stable walking !

Goal: Behavior predictable by model

M-SLIP GUI

- Playing around with parameters in Matlab
- <u>Unfortunately</u>: You have to compile the M-SLIP kernel:
 - > mex -setup (in Matlab 2012a the flag is different)
 - > mex mslip.c
- Picked only some of them:
 (1) Stiffness values (Hip, knee and leg)
 (2) Leg axial damping
 (3) Control, i.e.: Rest angle of hip spring in stance and flight
 (4) Initial values (height and speed)