
Institute of

Computational Linguistics

University of Zurich

Link2Tree: A Dependency-Constituency Converter

Lizentiatsarbeit der Philosophischen Fakultät der Universität Zürich

Referent: Prof. Dr. Michael Hess

Stefan Höfler

shoefler@cl.unizh.ch

Zürich, April 2002

Stefan Höfler

Wiesenbachstrasse 7a

CH-9015 St. Gallen

+41 71 / 310 16 65

shoefler@cl.unizh.ch

Abstract

Link2Tree is a dependency-constituency converter written in PROLOG and developed

for Link Grammar and ExtrAns. This thesis describes its architecture and functionality

in detail. It demonstrates what constraints on link structures make them equivalent to

constitent structures. This equivalence makes Link2Tree a deterministic converter, since

a linkage corresponds to exactly one constituent tree. However, the linkages may need

some preprocessing, which is called ‘relinking’ in Link2Tree, to ensure their equivalence

to a particular form of constituent structure. The development and implementation of a

conversion algorithm is described.

Link2Tree is a flexible program, which enables users to specify the form of X-bar theory

they desire for the constituent structure delivered by the converter. Furthermore, users

can freely choose the features they want to use in the constituent output. The possibilities

of Link2Tree make it applicable to Government & Binding as well as PSG structures. If its

rule set is tuned accordingly, Link2Tree is able to preserve all information that is stored in

linkages for the constituent structures it returns.

The thesis is divided into three parts: Part I states the basic theoretical concepts of

dependency, and link grammar in particular, as well as constituency. Part II describes the

conversion algorithm as well as the architecture and functionality of the converter. Part

III explains how users can develop their own rule set for the converter.

A note to the reader

This thesis comprises the theoretical background as well as a documentation of the Prolog

program Link2Tree. If it is read from beginning to end, I strongly encourage the reader to

have the program code at hand, especially when reading parts II and III. If this paper is

used as a manual to Link2Tree, I recommend using the predicate index at the end of the

thesis as a starting point for specific problems. If a particular predicate is not found in the

predicate index, one may search for the predicate which calls it.

The implementer wanting to integrate Link2Tree into a larger system is referred to

section 4 for the most basic program specifications, and to section 5 for a general overview

of the program. A description of the installation and startup of Link2Tree is provided in

appendix A.

II

Contents

1 Introduction 1

1.1 ExtrAns and Link Grammar . 1

1.2 Aim and scope . 2

I Concepts 5

2 Link grammar and dependency grammar 7

2.1 Dependency grammar . 7

2.1.1 Binary dependency . 7

2.1.2 Directionality: the notion of head 8

2.1.3 Dependency types . 9

2.1.4 Notation . 9

2.2 Link grammar . 10

2.2.1 The link grammar formalism . 10

2.2.1.1 Lexicality . 11

2.2.1.2 Linking requirements . 11

2.2.2 Differences between link grammar and dependency grammar 12

2.2.2.1 Labeled links . 12

2.2.2.2 Undirected links . 12

2.2.2.3 Word order and projectivity 13

2.2.2.4 Root word . 13

2.2.2.5 Cycles . 13

2.3 Explanation of the Link Grammar output 13

2.3.1 Tokens, tags and walls . 14

2.3.2 Links and direction . 14

2.3.3 Link types and subscripts . 15

3 Constituency grammar 16

3.1 Constituency . 16

3.2 Tree diagrams . 17

3.3 Feature structures . 17

3.4 Complex feature structures . 18

3.5 The Head Feature Principle . 19

III

3.6 X-bar theory . 20

3.7 Bare phrase structure . 22

3.8 Syntactic representations . 23

II The converter 27

4 Program specifications 29

4.1 Program requirements . 29

4.2 Input, internal representation and output 29

4.3 The interface to other programs . 33

5 General architecture 35

5.1 A brief survey of the modules . 36

5.1.1 link2tree.pl . 36

5.1.2 linkage2links.pl . 36

5.1.3 merge2tree.pl . 36

5.1.4 features.pl . 36

5.1.5 nicetree.pl . 37

5.1.6 linkinfo.pl . 37

5.1.7 linkfeatures.pl . 37

5.2 A step by step example . 37

5.2.1 Input . 37

5.2.2 Reformatting and relinking . 38

5.2.3 Conversion . 40

5.2.4 Word order . 40

5.2.5 Post-processing . 41

5.2.6 Output . 42

6 The module link2tree.pl 44

6.1 The main predicates . 44

6.1.1 linkage2constituents/4 . 44

6.1.2 link2tree/3 . 45

6.2 Option handling . 45

6.2.1 echo option/1 . 46

6.2.2 chopt/1 . 46

IV

6.3 Graphical display . 46

6.3.1 display tree/1 . 46

6.3.2 use draw/1 . 46

6.4 Post-Processing . 47

6.4.1 postprocess/2 . 47

6.4.2 tree2id/2, tree2lp/2, add sentnr to features/1 47

7 The module linkage2links.pl 48

7.1 Preparation of the reformatting . 48

7.1.1 retract all dynamics/0 . 48

7.1.2 get xth result/3 . 48

7.1.3 get lists/3 . 49

7.2 Reformatting . 49

7.2.1 transform link/2 . 50

7.2.2 linkinfo:split linktype/3 . 50

7.2.3 assert links/1, assert tokens/1 50

7.3 Relinking . 51

7.3.1 do relinking/0 . 51

7.3.2 An example of relinking . 52

7.4 Re-Arranging Links . 53

8 The module merge2tree.pl 55

8.1 Types of projection . 55

8.1.1 A basic conversion operation . 55

8.1.2 Conversion operations extended and generalized 56

8.1.3 Recursiveness: stacked vs. flat structures 57

8.1.4 Obligatory vs. optional projection types 58

8.1.5 Ranking of the projection types . 59

8.1.6 linkfeatures:treelevel/5 and toplevel/1 60

8.1.7 Projection types vs. link types . 61

8.2 The conversion . 61

8.2.1 The algorithm . 61

8.2.2 The root link (linkfeatures:rootlink/2) 63

8.2.3 Starting the conversion (merge2tree/2) 64

8.2.4 The core of the conversion (projection/3) 65

V

8.2.5 Projection in Link2Tree (project/3) 65

8.2.6 Recursive projection types (recursive projection/4) 66

8.2.7 Moving on in the ranking (next projection/3) 66

8.3 Trace links (trace/1) . 66

9 The module nicetree.pl 68

9.1 Linear precedence (wordorder/2) . 68

9.1.1 Token positions . 68

9.1.2 Recursive quicksort . 68

9.2 Labeled trees (nodelabels/2) . 69

10 The module features.pl 71

10.1 Simple feature structures in Link2Tree . 71

10.1.1 create matrix/2 . 71

10.1.2 update feature/2 . 71

10.1.3 add featurelist to matrix/2 . 72

10.2 Outlook: complex feature structures in Link2Tree 72

III The rule set 75

11 The rule set and its interface 77

12 Conversion rules 78

12.1 Tag features . 78

12.1.1 tagfeatures/2 . 78

12.1.2 get tagfeatures/3 . 79

12.2 Link features . 79

12.2.1 typefeatures/4 . 80

12.2.2 subsfeatures/4 . 80

12.2.3 split linktype/3 . 81

12.2.4 linkfeatures/5 . 81

12.3 Projection definitions . 81

12.3.1 rootlink/2 . 81

12.3.2 treelevel/5 and toplevel/1 . 82

12.3.3 projectable/1 . 83

VI

12.3.4 headfeature/1 and footfeature/1 83

13 Program Options 85

14 Relinking rules 86

14.1 The syntax of relinking rules . 86

14.1.1 Conditions . 87

14.1.2 Removing and adding tokens, links and features 88

14.1.3 Finding remote tokens . 88

14.1.4 Calculating new token positions . 90

14.1.5 Summary of the relinking syntax 94

14.2 Link types that violate structural constraints 94

14.2.1 Link types violating the directionality constraint 95

14.2.2 Link types violating the root word constraint 96

14.2.3 Link types violating the single head constraint 97

14.2.4 Link types violating the circularity constraint 98

14.2.5 Link types violating the projectivity constraint 99

14.2.6 Complex relinking . 100

14.2.7 Summary . 101

15 Conclusion 103

IV Appendices 105

A Installation and startup 107

B Addendum: linkfeatures.pl split up 109

B.1 Module linkfeatures.pl . 109

B.2 Module linkfeatures-basic.pl . 110

C Listings of Link2Tree 114

C.1 Module link2tree.pl . 114

C.2 Module linkage2links.pl . 120

C.3 Module merge2tree.pl . 135

C.4 Module nicetree.pl . 142

C.5 Module features.pl . 147

VII

C.6 Module linkinfo.pl . 149

C.7 Module linkfeatures.pl . 157

References 158

Index 160

VIII

1 Introduction

1.1 ExtrAns and Link Grammar

The subject of this thesis is situated in the ExtrAns research project at the University of

Zurich. ExtrAns is a Prolog implementation of a practical Answer Extraction (AE) system.

Answer Extraction systems retrieve phrases in textual documents to directly answer natural

language questions.The domain of ExtrAns is the Unix manpages. Answer Extraction over

technical manuals requires detailed linguistic analysis.

[ExtrAns] uses full parsing, partial disambiguation, and anaphora resolution to gen-

erate minimal logical forms of the documents and the query. The search procedure

uses a proof algorithm of the user query over the Horn clause representation of the

minimal logical forms. Remaining ambiguities in the retrieved sentences are dealt

with by graded highlighting.

(Mollá et al., 2000b:1)

For the syntactic analysis of document sentences and user queries, ExtrAns uses the Link

Grammar parser as presented (and developed) in Temperley et al. (2000). The Link Gram-

mar (LG) system consists of a fairly fast parser and a dependency-related grammar of

English. This particular implementation was chosen for ExtrAns because it is fast enough

for the on-line processing of user queries and because it is able to handle unknown words

and to skip unanalyzable parts of a sentence. For more information on the choice of the

Link Grammar parser for ExtrAns, readers are referred to Mollá et al. (2000a,b).

The Link Grammar parser returns sets of labeled links which are called linkages. Each

link describes a dependency relation between two words of the sentence. The link labels

distinguish different types of relations (e.g. verb-object or noun-determiner). For later

processing steps, ExtrAns adds a direction to every link. The reader is referred to sec-

tion 2 for a more detailed description of the LG output and the notion of directionality in

dependency grammar.

The disadvantage of using the Link Grammar parser in ExtrAns is, that it is strongly

lexicalist and its output is Link Grammar-specific. A more generally used and broadly

accepted representation of syntactic structure is preferable. Though the concepts of de-

pendency can be applied to presumably any language, the Link Grammar system is specific

to English. The current design of ExtrAns is based on the output returned by the Link

Grammar parser and is therefore interspersed with Link Grammar-specific constructions

1

and exceptions. This is detrimental to its understandability, the clarity of its design and

its adaptability to new problems and tasks. In its current state it is not yet possible to

replace the Link Grammar parser in ExtrAns with another parser. Thus, a separation of

the actual ExtrAns system from the LG parser would be desirable.

1.2 Aim and scope

It is the goal of this thesis (and the Link2Tree project1) to supply a constituency-based

interface for the Link Grammar parser in ExtrAns. With the help of such an interface the

design of ExtrAns can be adapted to a more general representation of syntactic structure

without being urged to dispense with the good results of the Link Grammar parser for the

moment. A first attempt in this direction was made by the makers of the Link Grammar

parser. For release 4.1 of the Link Grammar system, Temperley et al. (2000) created the

Link Grammar Phrase Parser, which supplies a simplified constituency output along with

the linkages.

This thesis discusses the conversion of Link Grammar linkages into constituency-based

tree structures. The development of a conversion strategy and its implementation in Prolog

(henceforth called Link2Tree) is commented on. Schneider (1998b:168ff.) may be seen as

the starting point to this project:

This subchapter [on converting linkages to constituency] would also merit a separate

finals paper. In the short space given here I can only give some hints, without making

practical texts or attempting an automatic conversion.

(Schneider, 1998b:168)

The first part of this thesis briefly presents the concepts of dependency grammar, link

grammar and constituency grammar, as far as they are relevant for this project. As for

constituency grammar, features specific to Government & Binding theory (GB), General-

ized Phrase Structure Grammar (GPSG) and Head-Driven Phrase Structure Grammar

(HPSG) are discussed in particular. Nevertheless, this paper does not intend to be a com-

prehensive introduction to constituency grammar or one of its specific grammar theories

respectively. Readers are referred to Haegeman (1994), Cook and Newson (1996), Radford

1I will speak of the ‘Link2Tree project’ when I mean the thesis and its practical component (i.e. the
Prolog program Link2Tree) as a whole.

2

(1997) for an introduction to Government & Binding Theory, to Gazdar et al. (1985), Ben-

nett (1995) for an introduction to GPSG and to Pollard and Sag (1994), Sag and Wasow

(1999) for an introduction to HPSG.

Part II explains the general architecture of the Link2Tree parser and gives a detailed

description of its algorithm, functionality and modules. The third part of the thesis pro-

vides the description of the syntax of the Link2Tree rule set and discusses a selection of

individual link types in more detail.

The source code of the program as well as some instructions for its installation and

startup are provided in the appendices at the end of the thesis.

3

4

Part I

Concepts

5

6

2 Link grammar and dependency grammar

It is the task of the Link2Tree project to find and implement an algorithm that converts

the linkages returned by the Link Grammar Parser to constituent structures. To be able

to do this it is necessary to have a general idea of the theoretical background of the Link

Grammar Parser. The theoretical framework in which it is situated is link grammar. Link

grammar is related to dependency-based theories of grammar as Schneider (1998b:1f.)

points out right at the beginning of his thesis: “Link Grammar structures are – as the

name suggests – links between the words of a sentence. Link grammar is very closely

related to dependency grammars” This is also stated by the authors of Link Grammar:

Mélčuk’s[2] definition of a dependency structure, and Gaifman’s[3] proof that depen-

dency grammar is context free imply that there is a very close relationship between

these systems and link grammar. This is the case.

(Sleator and Temperley, 1993:12)

Nevertheless there are also striking differences between dependency grammar and link

grammar, which will be presented later. First, a brief survey of the basic concepts of

dependency grammar is given before moving on to link grammar and the Link Grammar

Parser in particular. As the theoretical linguistic background of the Link Grammar Parser

is not the primary focus of this thesis, giving a concise introduction to either dependency

theories of grammar or to the Link Grammar system is not intended. The features of link

grammar and dependency are discussed as far as they are relevant for the conversion into

constituency structure. Readers are referred to Fraser (1996), Weber (1997), Tarvainen

(1981) for the former and to Sleator and Temperley (1993), Temperley et al. (2000) for the

latter and to Schneider (1998b) for a detailed discussion of their interrelation as well as for

a linguistic comparison of constituency, dependency and link grammar.

2.1 Dependency grammar

2.1.1 Binary dependency

Modern dependency grammar was introduced in Tesnière (1959). A first rule formalism

was given to the theory by Hays (1964) and Gaifman (1965). The latter shows that

2Mélčuk (1988)
3Gaifman (1965)

7

dependency grammar is context-free.4 Bröker and Kruijff (1999) describe the general idea

of dependency as well as its basic distinction from constituency:

Dependencies are always relations between two parts of a larger whole, never between

the whole and one of its parts. The latter relation is constituency. Since dependencies

are considered basic in DG, constituency relations are secondary; they can always

be inferred from the dependencies, and it is a matter of debate whether or not they

need to be recognized formally.

Dependency grammars (DG) are to be seen as grammatical theories that assume syntac-

tic structure to consist of (i) lexical nodes (representing words) and (ii) binary relations

between them (dependencies).

2.1.2 Directionality: the notion of head

Bröker and Kruijff (1999) state that “[i]nformally and roughly put, a dependency-based

perspective is constituted by distinguishing a head/dependent asymmetry, and describ-

ing the relations between a head and its dependents in terms of semantically motivated

dependency relations.” Dependency relations connect two words, of which one is the gov-

ernor (or head) and the other is the dependent. The governor conditions the occurrence

and/or the form of the dependent. Covington (1994) offers a concise description of the

head/dependent relation in dependency grammar:

The fundamental relation of DG is between head and dependent. One word (usually

the main verb) is the head of the whole sentence; every other word depends on some

head, and may itself be the head of any number of dependents. The rules of the

grammar then specify what heads can take what dependents (for example, adjectives

depend on nouns, not on verbs).

(Covington, 1994:1)

It will be demonstrated later that the notion of head in dependency grammar is central

in the developed conversion algorithm. A first hint for this idea can be found in Hudson

(1990):

4Schneider (1998b:18) points out that “Järvinen and Tapanainen (1997:3) stress, however, that only
the model used by Gaifman and Hays is context-free, and that this does not apply for all formalisms.”

8

A further point of contact between dependency theory and modern syntactic theories

[i.e. constituency-based theories] is the central place of the notion ‘head’ in X-bar

theory – which indeed could be defined as a version of phrase structure grammar in

which every phrase is required to have a lexical head, where ‘head’ is used in almost

the same way as in dependency theory.

(Hudson, 1990:111f.)

Schneider (1998b:38-53) offers a detailed discussion of the notion of head in dependency as

well as constituency theory. Readers are referred to his references for a more comprehensive

insight into different argumentations on the notion of head in syntactic theories.

2.1.3 Dependency types

As it will be shown later, a third feature of dependency not discussed so far plays a role in

the conversion of dependency structure into constituent structure: a dependency relation

can be typed to distinguish different types of dependencies. Dependency types can contain

morphologic, syntactic and semantic information. This is discussed in section 2.2.

2.1.4 Notation

Dependency grammar lacks phrasal nodes and since one word form depends on the other,

individual words can act either as terminal or as non-terminal in a dependency-tree. This

induces us to have a look at the notation of dependency structures. Sleator and Temperley

(1993) describe dependency structure as defined by Mélčuk (1988) as “a set of planar

directed arcs among the words that form a tree. Each word (except the root word) has

an arc out to exactly one other word, and no arc may pass over the root word.” Apart

from system-specific ways of notation like the Link Grammar linkages (see subsection 2.2)

mainly two notational conventions are used to represent dependency structures. Tesnière

(1959) favors the notation displayed in (2) to express dependencies, which is the so-called

stemma notation. In recent publications, above all in those related to the Link Grammar

system and to ExtrAns, the notation used in (3) is predominant. To avoid mixing up with

notations of constituency – especially those of bare phrase structure (see section 3.7) – it

will usually be declared, when the stemma notation is used.

(1) Peter loves Mary.

9

(2) loves
b
b

"
"

Peter Mary

(3) Peter loves Mary
� W

In (1), Peter and Mary both depend on loves. (2) is the stemma notation for (1). If the

terminology of constituent trees is applied to the above dependency trees Peter and Mary

act as terminals whereas loves is a non-terminal.

Dependency trees are usually construed as projective, i.e. without crossing branches.

Nevertheless some instances of dependency grammar lift this limitation.

2.2 Link grammar

Link grammar (or ‘Link Grammar’ respectively, see below) is a formal grammatical system

related to dependency grammar (and to categorial grammar, see Sleator and Temperley

(1993:12f.)) developed by Temperley et al. (2000). Apart from the formalism, Temperley

et al. (2000) have implemented a parser and a grammar for English using link grammar:

We can roughly divide our work on link grammars [sic!] into three parts: the link

grammar formalism and its properties, the construction of a wide-coverage link gram-

mar for English, and efficient algorithms and techniques for parsing link grammars.

(Sleator and Temperley, 1993:2)

In this thesis, lower-case is used when referring to the formalism in general and upper-case

when referring to the Link Grammar system consisting of the Link Grammar Parser and

a link grammar dictionary for English implemented and documented by Temperley et al.

(2000). The reasons why the Link Grammar system was chosen for ExtrAns have already

been commented on (section 1).

2.2.1 The link grammar formalism

In the abstract to their report Sleator and Temperley (1993) give a brief introduction to

the basic idea of link grammar:

We define a new formal grammatical system called a link grammar. A sequence of

words is in the language of a link grammar if there is a way to draw links between

10

words in such a way that (i) the local requirements of each word is satisfied, (ii) the

links do not cross, and (iii) the words form a connected graph. [...] The formalism is

lexical and makes no explicit use of constituents and categories.

(Sleator and Temperley, 1993:1)

2.2.1.1 Lexicality The first point mentioned above gives evidence for the lexicality of

link grammar: In link grammar each word is given a definition – a set of so-called connectors

(see below) – describing how it can be used in a sentence, i.e. to what other words it can

be linked. Therefore the actual grammar is distributed among the words. Such a system

is said to be lexical. Sleator and Temperley (1993:3) suggest there are several advantages

in a lexical system: (i) The grammar can easily be constructed incrementally and (ii)

the grammar for irregularly behaving words can be expressed more easily since there is a

separate definition for each word. Furthermore they state that (iii) lexicality allows the

construction of useful probabilistic language models. Lexicality also implies that there is

no explicit notion of constituents or categories in link grammar. Sleator and Temperley

(1993:3) say that “constituents can be seen to emerge as contiguous connected collections

of words attached to the rest of the sentence by a particular type of link.” Though this is

not the way they perceive link grammars, this perspective may give us some information

about the conversion of link grammar structures to constituent structures.

2.2.1.2 Linking requirements As it has been shown so far, a link grammar consists

of a set of words, each of which has a linking requirement. These linking requirements

are expressed with connectors (i.e. a formula of connectors). Connectors can be seen as

plugs (or sockets respectively) that are satisfied by a match with a compatible connector

(an appropriate socket/plug). The word the would be assigned a D+ connector, whereas

worm among others would be assigned a D−. the thus requires a D− connector i.e. a D

connector to its right, and worm requires a D+ connector. The linking requirements of

the and worm in (4) can thus be satisfied by matching their D+/D− connectors.

(4) the[D+] worm[D-] ate the apple.

D

The reader is referred to Sleator and Temperley (1993:1f.) for a visualized explanation

of the concept of connectors. Sleator and Temperley (1993:5) propose five meta-rules for

11

a sentence to be of the language defined by the link grammar: (i) satisfaction (the links

satisfy the linking requirements of each word in the sequence), (ii) planarity (links do not

cross), (iii) connectivity (the links suffice to connect all the words of the sequence), (iv)

ordering (when the connectors of a formula are traversed from left to right, the words they

connect proceed from near to far) and (v) exclusion (no two links may connect the same

pair of words).

2.2.2 Differences between link grammar and dependency grammar

It has been pointed out above that there is a strong relationship between link grammar

and dependency grammar. There are, however, some important differences between the

two theories. Schneider (1998b:125ff.) provides a detailed discussion of the comparison of

link grammar and dependency grammar. His observations are followed in the rest of this

subsection. He points out that there are five areas of difference between link grammar and

classical dependency grammar: (i) labeled links, (ii) undirected links, (iii) word order and

projectivity, (iv) root word, and (v) cycles.

2.2.2.1 Labeled links Link grammar links are – unlike in dependency grammar – la-

beled. Temperley et al. (2000) have developed a sophisticated labeling system for their

link grammar of English. Schneider (1998b:125) remarks that “[t]his is not really a differ-

ence, as many variants of dependency grammar, perhaps the majority [...] also use labeled

links.” He furthermore points out that Covington (1994) introduces labeled links, indi-

cating whether the dependent is complement, adjunct or specifier to its head. As it will

be shown later, this will be crucial to our conversion of linkages to constituent, especially

X-bar structures. Schneider (1998b:125) summarizes that “[i]n this sense, labeled links

should facilitate a mapping from link structures to X-bar structures or to a functional or

theta-role structure.”

2.2.2.2 Undirected links One – if not the – major difference between link grammar

and dependency grammar is that link grammar abandons the concept of directed links.

Since its links are undirected, there is no specification of head and dependent in the original

Link Grammar output. Schneider (1998b:127), however, points out that “it seems hardly

possible to do semantics without a specification of direction....” This was probably one of

the main reasons why directionality has been added to Link Grammar linkages in ExtrAns

(see 2.3.2). The notion of head is crucial to the Link2Tree conversion algorithm of linkages

12

to constituent structures, whereas Temperley et al. (2000) have developed a simple Link

Grammar Phrase Parser disregarding this concept.

2.2.2.3 Word order and projectivity The +/- signs on connectors mark whether

the word to be linked is expected to occur before (-) or after (+) the word in the lexical

entry. Such rules do not occur in classical dependency grammar where word order is not

relevant.

2.2.2.4 Root word Since the notion of head has been abandoned in link grammar, it

is not self-evident to mark an element as the top head (root word) of a sequence. Most

sentences, however, have a so-called wall link from an artificial word before the beginning

of the sentence (the wall) usually to the subject. The idea of root word or root link

respectively is discussed later in sections 8.2.2 and 12.3.1.

2.2.2.5 Cycles Since circularity in linkages is only introduced by the anaphoric binding

link for the relative pronoun (B) it does not cause much problem to a conversion algorithm.

Nevertheless, from a theoretical point of view, the possibility of circularity in link grammar

is a fundamental difference to dependency grammar, where cycles are not allowed. Sleator

and Temperley (1993) defend their approach for practical reasons:

If we restrict ourselves to acyclic linkages, we run into another problem. This is that

there is an exponential blow-up in the number of rules required to express the same

grammar. This is because each disjunct of each word in the link grammar requires a

separate rule in the dependency grammar.

(Sleator and Temperley, 1993:12)

2.3 Explanation of the Link Grammar output

Taking a Link Grammar linkage as in (5) a few more concepts have to be commented on in

addition to what has already been explained above. Generally speaking, the information

contained in a Link Grammar linkage returned by ExtrAns is stored in the following ele-

ments: the links, the direction of the links, the link types and their subscripts, the tokens

(including walls) and their tags. The linkage in (5) is what one receives if the Link Gram-

mar parser is invoked from ExtrAns, using the predicates start_parser/0, parse/2 and

13

print_links/1 (Mollá, 2000:49).5 In (5) the directionality of the links can not be made

out, therefore one has to work with the actual Prolog structure returned by parse/2,

which is illustrated in (6).6 The whole linkage is represented as a Prolog list containing

two elements: a list of tokens and a list of links.

(5) +-------------------Xp------------------+
| +-------Op-------+ |
+--Wd--+----Ss---+ +---Dmc-+ +-RW+
| | | | | | |

///// cp[?].n copies.v042 the.d files.n2s . /////

(6) [[[[/////, cp[?].n, copies.v042, the.d, files.n2s, ., /////],

[[0,5,h(nil),Xp], [0,1,h(l),Wd], [1,2,h(r),Ss], [2,4,h(l),Op],

[3,4,h(r),Dmc], [5,6,h(nil),RW]]]]]

2.3.1 Tokens, tags and walls

Tokens are listed in the first element of the Prolog linkage list. They are numbered in the

order they appear in this list. The mark [?] after a token indicates that the token is not

known in the lexicon. One main advantage of the Link Grammar parser is, that it is able

to handle unknown words.

In ExtrAns, tags are added to the tokens. Schneider (1999) has developed and described

a system of tags for different categories and word classes. For a detailed description of the

singular tags, readers are thus referred to Schneider (1999).

Walls are dummy tokens at the beginning and end of every sentence. They are repre-

sented by ///// in ExtrAns linkage structures. Walls take their own link types and have

their own lexical entry. Because of the connectivity rule, it is necessary for the wall to

be linked to the rest of the sentence in order for the sentence to be valid. As mentioned

in 2.2.2.4, Link Grammar walls can be seen as a substitute for the root word of common

dependency grammar.

2.3.2 Links and direction

The linking information of a Link Grammar linkage is stored in the second element of the

linkage list. Every link in itself is a Prolog list consisting of four elements, the first two

of which are the numbers of the linked tokens, the third indicating the direction and the

fourth containing the type and subscripts of the link.

5Information on the ExtrAns system in this report refers to release 1.7 and to Link Grammar version
4.1.

6To increase readability empty spaces have been inserted after commas where necessary.

14

Direction is expressed in ExtrAns linkages in respect to the word order, or to the order

of the tokens in the first element of the linkage list, respectively. The predicate h/1 denotes

the head of the link: h(l) indicates that the left token is the head, h(r) indicates that

the right token is the head. If no head, i.e. no direction, is assigned to a link type, this

is expressed by h(nil). It has already been pointed out that there is no directionality

in original link grammar links. Directionality thus was added by the creators of ExtrAns.

The directions for the singular link types are defined by the predicate add dep info/5 in

the file link grammar.pl of the ExtrAns source directory.

2.3.3 Link types and subscripts

Temperley et al. (2000) have developed an elaborate system of link types for English. It is

the advantage of this system that it can deal with many idiomatic constructions of English

and thus has a wide coverage. It is this feature of the Link Grammar system, however, that

makes it rather language-specific. Temperley et al. (2000) provide an extensive description

of their link types. Readers are referred to the former description for detailed information

on specific link types.

Apart from link types, which are equivalent to the connectors described above (2.2.1.2),

Temperley et al. (2000) make use of yet another system to differentiate constructions and

include additional information in their analysis. Subscripts are used along with link types.

They are lower-case letters (connectors or link types, respectively, consist of one or more

upper-case letters) following the connector name. Depending on the link type they specify,

subscripts can provide morphologic, syntactic or semantic information.

15

3 Constituency grammar

Probably the most influential branch of constituency grammar has been evolved by Noam

Chomsky. In Chomsky (1957), he introduces an approach to syntax known as Transfor-

mational Grammar (TG). Since then, TG has constantly been further developed. The

most prominent theory in this tradition is Chomsky’s Government & Binding theory (GB),

which was first presented in Chomsky (1981) and revised in Chomsky (1986a). The most

recent development is Chomsky’s so-called Minimalist Program (Chomsky, 1995), which

abandons many of the concepts of the earlier theories.

A major alternative to the theories of the Chomskian tradition is Phrase Structure

Grammar. In fact, Phrase Structure Grammar consists of two different but related ap-

proaches: Generalized Phrase Structure Grammar (GPSG) and Head-driven Phrase Struc-

ture Grammar (HPSG). GPSG was developed and presented in Gazdar et al. (1985) and

HPSG in Pollard and Sag (1987, 1994). Note that the term ‘Phrase Structure Grammar’

can be either used in the above sense denoting the branch of constituency grammar repre-

sented by GPSG and HPSG, or it can be used as a synonym for constituency grammar as

a whole. In this thesis, it is used in the former sense.

This section is intended to give a brief survey over the concepts shared by all theories of

constituency grammar rather than a detailed description of the features of one particular

theory.

3.1 Constituency

Bröker and Kruijff (1999) have been quoted as they state the most basic difference between

dependency and constituency in general: “Dependencies are always relations between two

parts of a larger whole, never between a whole and one of its parts. The latter relation

is called constituency.” It can thus be said that the basic notion of constituency is, that

two (or more) units compose a larger unit. Constituency grammar assumes about sentence

structure “that it is organized hierarchically into ‘phrases’ (hence ‘phrase structure’), and

that grammatical relations such as ‘subject’ and ‘object’ are redundant.” (Sag and Wasow,

1999:421). This distinctively American contribution to the theory of syntax analysis was

suggested by Bloomfield (1933).

16

Bloomfield suggested that sentences should be analyzed by a process of segmentation

and classification: segment the sentence into its main parts, classify these parts, then

repeat the process for each part, and so on....

(Sag and Wasow, 1999:421)

Borsley (1997:41-49) and Burton-Roberts (1997:15-18) provide a set of tests to check

whether a particular part of sentence is a proper constituent or not.

3.2 Tree diagrams

Constituent structures are usually represented by either tree diagrams (7) or labeled brack-

ets (8). Both notational systems are equivalent.

(7) S
PPPP
����

NP
Q
Q

�
�

Det

The

N

worm

VP
HHH

���
V

ate

NP
QQ��

Det

the

N

apple

(8) [S[NP [DetThe][Nworm]][V P [V ate][NP [Detthe][Napple]]]]

In a tree diagram, a sequence of elements is represented as a constituent if there is a node

that dominates all these elements and no others. A node X is the ‘mother’ of two other

nodes Y and Z, if either Y and Z is immediately dominated by X. Y and Z in turn are called

‘daughters’ of X and ‘sisters’ to each other. Nodes are usually labeled with ‘categories’ (see

below). Nodes bearing lexical categories, such as e.g. Det, N and V, are called ‘terminal

nodes’. The term ‘leaf’ refers to the word attached to a terminal node in a tree diagram.

3.3 Feature structures

In (7) above, nodes are labeled with grammatical categories. Such labels stand for com-

plexes of properties.

Instead of associating words in the lexicon with a single atomic category, a lexical

category can be treated as a complex of grammatical properties. To model such

complexes, we use the notion standardly referred to as feature structure.

(Sag and Wasow, 1999:48)

17

Linguistic properties are commonly expressed by feature-value pairs. Several feature-value

pairs of an entity can be combined to a feature structure. Bennett (1995:39) uses the

notation given in (9) for such feature structures. (9) denotes the properties of a plural

noun such as worms. The +/− notation is used for features that take Boolean values.

(9) {[+N], [BAR 0], [+PLU]}

Another common way of representing feature structures are so-called ‘attribute-value ma-

trices’ (AVM).7 This is the notation that is most commonly used in HPSG. (10) illustrates

the general pattern of such attribute-value matrices. (At the bottom left corner of the

matrix, the so-called ‘type’ is indicated. This is not relevant for our purposes.8)

(10)

type



feature1 value1

feature2 value2

...

featuren valuen



3.4 Complex feature structures

Phrase structure grammar provides a method to express agreement in grammar rules. An

index (variable) linking two feature values forces two distinct nodes in a tree admitted by

a rule to have identical values for the given feature. (11) gives a simple rule for agreement

of number and person between the noun and its determiner in an NP. Tags as in (11)

can only occur in the unresolved feature structures (feature structure descriptions) of a

grammar rule. Unresolved feature structures have to be distinguished from resolved feature

structures, which are the result of parsing a particular sequence of words, where variables

are instantiated.

7The terms ‘feature structure’, ‘attribute-value matrix’, ‘feature matrix’ can be used synonymously.
8Sag and Wasow (1999) define the term ‘type’ in the glossary of their book:

Elements of any collection can be sorted into types, based on similarities of proper-
ties. [...] Particular features are appropriate only to certain types of entities, and
constraints on possible feature-value pairing are also associated with some types.
The types of linguistic entities are arranged in an inheritance hierarchy. The type
hierarchy is especially important for capturing regularities in the lexicon.

(Sag and Wasow, 1999:445f.)

18

(11)

phrase


pos N

num 1

per 2


→

word


pos Det

num 1

per 2


word


pos N

num 1

per 2


The notation of (11) can be simplified by introducing complex values for features, that is,

feature structures within feature structures as illustrated in (12).

(12)

phrase

pos N

agr 1

→
word

pos Det

agr 1


word


pos N

agr 1

num

per




3.5 The Head Feature Principle

Sag and Wasow (1999) describe the notion of ‘head’ in constituency grammar:

[T]he phrases of human language usually share certain key properties (nounhood,

verbhood, prepositionhood, etc.) with a particular daughter within them – their

head.

(Sag and Wasow, 1999:47)

They further point out that “[t]he term is used ambiguously to refer to the word that

functions as head of the phrase and any subphrase containing that word.” (Sag and

Wasow, 1999:436).

Sag and Wasow (1999) define a feature head for every constituent, containing the so-

called ‘head features’, and say that “in any headed phrase, the head value of the mother

and the head value of the head daughter must be unified.” (Sag and Wasow, 1999:63). In

HPSG, this is called the Head Feature Principle and expressed in rule (13), where the H

in front of the feature structure denotes the head daughter.

(13)
phrase

[
head 1

]
→ H

[
head 1

]
...

By definition, head will always take the part of speech of the constituent as one of its

values.

The idea of ‘head features’ is also common to GPSG, although they are not combined

into one feature with a complex value. The principle stated above is called Head Feature

Convention (HFC) in GPSG: “A node and its head must share the same head features.”

19

(Bennett, 1995:55). In addition to this, GPSG also knows the notion of ‘foot features’,

i.e. features shared by the mother node and one of its daughters. GPSG defines the so-

called Foot Feature Principle (FFP), which says that “any foot feature instantiated on

a daughter in a local tree must also be instantiated on the mother in that tree and vice

versa.” (Bennett, 1995:105).

3.6 X-bar theory

A model of syntax that makes extensive use of the idea of ‘head’ is X-bar theory. X-bar

theory is applied widely within Government & Binding theory, as well as GPSG. One of

the guiding principles of X-bar theory is, that phrases are to be seen as ‘projections’ of

their lexical head. This means that the category (part of speech) of the phrase matches

that of its head. As it was shown above, HPSG defines the same principle as it states that

the complex value of the feature head always takes the part of speech as one of its values.

Bennett (1995) comments on the use of heads in X-bar theory:

This emphasis on heads makes X-bar theory closer to dependency grammar, but it

remains different in that it still makes use of phrases and so of constituents larger

than a word.

(Bennett, 1995:15)

“[X-bar theory] insists that phrases must be ‘endocentric’: a phrase always contains at

least a head as well as other possible constituents.” (Cook and Newson, 1996:135). X-bar

theory introduces X-bar levels to distinguish different kinds of projections. In GPSG, this

is represented as a feature bar taking the values 0–2.9 X-bar theory states principles

for every level of projection. Cook and Newson (1996:147) summarize these principles in

(14–17).

(14) A phrase always contains a head of the same type.

(15) A two-bar category consists of a head that is a single-bar, a specifier position, and a

possible specifier:

X” → specifier X’

9X” is alternatively represented as X, XP or X2, X’ as X or X1, and X as X0.

20

(16) A single-bar category contains a head with no bars and possible complements10:

X’ → X complement(s)

(17) A single-bar category can also contain a further single-bar category and an adjunct:

X’ → X’ adjunct

Bennett (1995:15) points out that “GPSG adopts a rather unrestrictive version” of X-bar

theory and represents its principles in formula (18), where the first value of each tuple

indicates the category and the second value of the tuple indicates the bar level. The

value max stands for ‘maximal projection’, i.e. bar level 2. (18) is the simplified notation

commonly used in GPSG.

(18) [X,n] → [Y, max]* [X, m] [Y, max]*

(where m = n or m = n–1)

Chomsky (1986b:81) states on the notion of ‘complement’ that “phrases typically consist

of a head [...] and an array of complements determined by the lexical properties of the

head.” One says that a lexical item ‘subcategorizes’ for its complement(s). The transitive

verb love, for instance, subcategorizes for an NP-complement. In HPSG, this is expressed

within the feature structure of the lexical item as illustrated in (19). (20) is the common

GPSG notation for the same feature structure.

(19) 〈
love,

head V

comps <NP>

〉

(20) V [SUBCAT <NP>]

Principles (15–17) mean that in X-bar theory the minimal structure of a phrase is the one

presented in (21). Any number of adjuncts can be added to this basic tree, each time

inserting another single-bar level as illustrated in (22).

(21) XP
aaaa
!!!!

specifier X’
H
HH

�
��

X complement
10Double objects, however, may occur in English (see also 8.1.3).

21

(22) XPhhhhhhhh
((((((((

specifier X’
XXXXX
�����

X’
XXXXX
�����

X’
H
HH

�
��

X complement

adjunct

adjunct

The occurrence of complements in an X-bar constituent structure depends on the subcate-

gorizing of the lexical head. Specifiers, however, always open a slot, the specifier position,

even if there is no specifier overtly present. In GB, empty specifier positions serve as land-

ing sites for moved constituents. Movement is briefly discussed in section 3.8. Adjuncts

are optional. Readers interested in tests for distinguishing complements from adjuncts are

referred to Matthews (1981:ch. 6) and Somers (1984). Note that specifiers, complements

and adjuncts are themselves maximal projections, i.e. two-bar categories (23).

(23) XP
aaaa
!!!!

ZP
b
bb

"
""
specifier

X’
HHH

���
X YP

aaaa
!!!!

complement

GPSG, however, claims that certain word-classes (e.g. Det) do not project to higher-level

phrases. Bennett (1995:18) uses the term ‘minor categories’ for such classes and expands

(18) to (24).

(24) [X,n] → {[Y, max]|minor}* [X, m] {[Y, max]|minor}*
(where m = n or m = n–1)

3.7 Bare phrase structure

In his recent work, the Minimalist Program, Chomsky abandons X-bar theory as a fun-

damental principle. In Minimalist grammar, the basic operation to build trees is Merge.

Merge combines two elements, words or phrases, and selects one – the head – , which

provides the properties for the combined set and is taken as its label. The sequence the

worm is merged to (25) in Minimalist grammar. This form of representation is called ‘Bare

Phrase Structure’.

22

(25) worm
QQ��

the worm

Note that using ‘worm’ as the category label does not imply that this constituent is to be

represented by the word worm. The elements of tree (25) are feature structures which are,

for simplicity, represented by the orthographic form of their lexical head. In Minimalist

grammar, the sentence The worm ate the apple is represented as a Bare Phrase Structure

tree like (26).

(26) ate
PPPP

����
worm
QQ��

the worm

ate
HHH
���

ate apple
Z
Z

�
�

the apple

Nevertheless, X-bar theory can still be derived from this structure: Maximal projections

are simply the furthest an element projects, single-bar categories are those projections

which are neither words nor maximal. Therefore, complements, specifiers and adjuncts are

definied as well, as they are defined structurally rather than functionally in constituency

grammar, anyway. Complements are sisters to lexical items, specifiers are non-head daugh-

ters of maximal projections – both demanded by subcategorization of the head.

Note that in the recent, commonly accepted DP-hypothesis the would have been taken

as the head of the worm, forming a determiner phrase (DP).

Obviously, Bare Phrase Structure is reminiscent of dependency structures. Schnei-

der (1998b:69–75) thoroughly describes the relation between the Minimalist Program and

dependency grammar. He states that, as a derived concept, constituents also exist in de-

pendency, in that “[a] dependency constituent consists of a head and all its dependents.”

(Schneider, 1998b:168).

3.8 Syntactic representations

One basic difference between the theories of the Chomskian tradition on the one side

and GPSG and HPSG on the other side is the number of levels of syntactic representation.

Whereas GPSG and HPSG assign just one single syntactic representation to a sentence and

are therefore labeled ‘monostratal’ theories, TG and GB assume that sentences have two

levels of syntactic representation: ‘D-structure’ (deep-structure) and ‘S-structure’ (surface-

structure).

23

D-structure

This level encodes the lexical properties of the constituents of the sentence. It

represents the basic argument relations in the sentence.

S-structure

This level reflects the more superficial properties of the sentence; the actual ordering

of the elements in the surface string, and their case forms.

(Haegeman, 1994:304f.)

The two levels of representation are interrelated with each other by means of movement

transformations. D-structure represents the underlying form of the sentence before move-

ment. S-structure describes the related form of the sentence after movement: elements

which originate in some positions at D-structure may have moved elsewhere at S-structure.

In order not to loose syntactic and semantic information, however, the original positions

of the moved elements are indicated at S-structure. The places from which elements have

moved are marked by ‘traces’, symbolized as t.

Movement implies that appropriate ‘landing sites’ for the elements to be moved are

provided in D-structure. Therefore, empty constituents play an important role in GB. The

example in (27–29) may illustrate two types of movement: (i) ‘head-movement’, which is the

movement of auxiliaries from I (inflection) to C (complementizer), and (ii) ‘wh-movement’,

the movement of wh-constituents to the specifier of CP. Both types of movement imply

the existence of functional categories such as I and C, who may not be overt in a sentence.

(28) gives the D-structure for (27), (29) is its S-structure including the traces of the moved

constituents.11

(27) Whati willk the worms tk eat ti?

11Recent approaches would additionally state that the subject has moved from inside the specifier of VP
to its position in IP. This is called the VP-internal subject hypothesis. For evidence that subjects originate
in the specifier of the VP, readers are referred to Radford (1997:318ff.).

24

(28) CP
PPPP
����

Spec C’
PPPPP
�����

C IP
PPPP
����

NP
HHH

���
the worms

I’
aaa
!!!

I

will

VP
HHH
���

Spec V’
cc##

V

eat

NP
@@��

what

(29) CP
PPPPP
�����

NP

Whati

C’
PPPPP

�����
C

willk

IP
PPPP
����

NP
HHH
���

the worms

I’
HHH
���

I

tk

VP
H
HH

�
��

Spec V’
ll,,

V

eat

NP
BB��

ti

The third movement type defined in GB, which is not illustrated in (27–29) above, is

‘NP-movement’, in which an NP is moved to an empty subject position. NP-movement is

associated with passive constructions.

D-structure is especially interesting for our purposes as it is much closer to semantics

than any other level of syntactic representation.

GPSG and HPSG, however, are monostratal theories, that is, they give only one level

of syntactic representation for a sentence, namely what would be called a surface structure

in GB. The problems faced by movement in TG/GB are solved by defining extra features

in GPSG and HPSG. In GPSG, for instance, the feature slash – represented as /XP –

treats what is called wh-movement in GB, determining a required sister-constituent. The

feature inv is introduced to handle subject-auxiliary inversion; see (30).

25

(30) S
XXXXX

�����
NP
ll,,

What

S[+INV]/NP
XXXXXX��

������
V

will

NP

the worms

VP/NP
ll,,

V

eat

NP
CC��
ε

26

Part II

The converter

27

28

4 Program specifications

4.1 Program requirements

In this part of the thesis, the Link2Tree converter is presented, commented and discussed.

Link2Tree is a Prolog program developed to convert Link Grammar linkages to constituent

structures for ExtrAns. Readers are referred to section 1 for a discussion of its prerequisites.

The program is written in Prolog, applying the conventions of SICStus Prolog 3.8. ISO-

Prolog standards, however, are followed throughout Link2Tree. The program is designed

to work in interaction with ExtrAns 1.7 and Link Grammar 4.1 as described in section 4.3

and appendix A.

4.2 Input, internal representation and output

Link2Tree takes a Link Grammar linkage as its input and returns a constituency structure.

Rules for this process are specified in the module linkfeatures.pl (see part III). (32) is

the graphical display of the linkage which ExtrAns and Link Grammar return for sample

sentence (31). Link2Tree takes the structure of (32) in its Prolog form as its input and

returns the constituency structure graphically displayed in (33).12

(31) cp copies the files.

(32) +-------------------Xp------------------+
| +-------Op-------+ |
+--Wd--+----Ss---+ +---Dmc-+ +-RW+
| | | | | | |

///// cp[?].n copies.v042 the.d files.n2s . /////

12It is evident from the empty functional categories D and I that the rule set in linkfeature.pl has
been defined in a Government & Binding-like style for this sample.

29

(33) i2
|

+----------------------+
d2 i1
| |
| +----------------+
d1 i0 v2
| | |

+-------+ | |
d0 n2 | v1
| | | |
| | | +-------------+
| n1 | v0 d2
| | | | |
| | | | |
| n0 | | d1
| | | | |
| | | | +-------+
| | | | d0 n2
| | | | | |
| | | | | |
| | | | | n1
| | | | | |
| | | | | |
| | | | | n0
| | | | | |
| | | | | |
[] cp[?] [] copies the files

(32) and (33), however, are mere graphical representations for the underlying Prolog struc-

tures. The actual ExtrAns output that is transferred to Link2Tree is the Prolog list in

(34). The graphical display in (33) is built upon the underlying Prolog structures given in

(35–36). (35) is a Prolog list defining the tree structure, where node numbers refer to the

corresponding feature structures. (36) is a set of dynamically asserted terms of the form

feature(NodeNr, Featue=Value), which defines the feature structure for each node in

the tree. As you can see from the extracts in (36), the feature/2 Prolog facts are asserted

in the module features.pl.

(34) [[[[’/////’, ’cp[?].n’, ’copies.v042’, ’the.d’, ’files.n2s’, ’.’, ’/////’],

[[0,5,h(nil),’Xp’], [0,1,h(l),’Wd’], [1,2,h(r),’Ss’], [2,4,h(l),’Op’],

[3,4,h(r),Dmc], [5,6,h(nil),RW]]]]]

(35) [9,[10,[11,[8,[]], [12,[13,[1,’cp[?].n’]]]]],[14,[7,[]],[15,[16,

[2,’copies.v042’],[17,[18,[3,’the.d’],[19,[20,[4,’files.n2s’]]]]]]]]]

30

(36) ...

features:feature(9, cat=i).

features:feature(9, num=sg).

features:feature(9, bar=2).

features:feature(10, position=0.9).

features:feature(10, cat=d).

features:feature(10, num=sg).

features:feature(10, bar=2).

...

To illustrate the structure of the Link2Tree output in a simpler manner, it can be stated

that the Prolog list in (37) and the Prolog facts in (38) correspond to the HPSG-like tree in

(39). Note that the features position and hd, which denote the position of a constituent

in the sentence and the lexical head of a constituent respectively, are not shown explicitly

in (39). Mother nodes have inherited these two features from their head daughters as they

are defined as head features in the rule set.

(37) [4,[1,’the’],[3,[2,’worm’]]]

(38) feature(1, position=0).

feature(1, hd=the).

feature(1, cat=det).

feature(1, num=sg).

feature(2, position=1).

feature(2, hd=worm).

feature(2, cat=n).

feature(2, num=sg).

feature(2, bar=0).

feature(3, position=1).

feature(3, hd=worm).

feature(3, cat=n).

feature(3, num=sg).

feature(3, bar=1).

feature(4, position=1).

feature(4, hd=worm).

feature(4, cat=n).

feature(4, num=sg).

feature(4, bar=2).

31

(39)

cat N

num Sg

bar 2


PPPP
����cat Det

num Sg


the


cat N

num Sg

bar 1



cat N

num Sg

bar 0


worm

This internal representation of tree structures, however, is post-processed before returned.

The final output of Link2Tree consists of three predicates: id/3 to express immediate

dominance relations, lp/3 for linear precedence and feature/3 to represent the feature

structures of the nodes. The first argument of each predicate is the number of the parsed

sentence. The three output predicates can be generally described as id(SentenceNr,

MotherNodeID, DaughterNodeID), lp(SentenceNr, LeftNodeID, RightNodeID) and

feature(SentenceNr, NodeID, Feature=Value). Note that lp/3 only denotes relations

of immediate linear precedence. (40) is the above tree structure in its final output form.

32

(40) id(0, 4, 1).

id(0, 4, 3).

id(0, 3, 2).

lp(0, 1, 3).

feature(0, 1, position=0).

feature(0, 1, hd=the).

feature(0, 1, cat=det).

feature(0, 1, num=sg).

feature(0, 2, position=1).

feature(0, 2, hd=worm).

feature(0, 2, cat=n).

feature(0, 2, num=sg).

feature(0, 2, bar=0).

feature(0, 3, position=1).

feature(0, 3, hd=worm).

feature(0, 3, cat=n).

feature(0, 3, num=sg).

feature(0, 3, bar=1).

feature(0, 4, position=1).

feature(0, 4, hd=worm).

feature(0, 4, cat=n).

feature(0, 4, num=sg).

feature(0, 4, bar=2).

4.3 The interface to other programs

If Link2Tree is to be integrated into ExtrAns, the predicate linkage2constituents/4

is to be used as an interface. The first three arguments define the input of the predi-

cate. In the first argument, the number of the parsed sentence is to be provided. This

number is delivered to the first argument of the three output predicates id/3, lp/3 and

feature/3. The second argument takes the set of Link Grammar linkages returned by

the ExtrAns predicate parse/2. In the third argument, one must specify which linkage

shall be converted. It therefore takes the number of the result linkage to be processed

by Link2Tree. Finally, the fourth argument of linkage2constituents/4 returns the re-

sulting constituent structure in its Prolog list form, like in (35) above. This argument,

however, may usually not be necessary since the resulting constituent structure can be

33

accessed through the predicates id/3, lp/3 and feature/3, which have to be imported

from Link2Tree (i.e. from its module link2tree.pl).

34

initialises AVMs for
nodes (non-terminals)

gets position for
word order

gets feature information
for relinking process

tree structure
arranged

AVMs feature/2

updates AVMs with
information from
linktypes

gets category/bar-level
for node labels

non-arranged
tree structure

gets the information
stored in linktypes

gets information on how
links are to be converted
into constituent trees

link/4
token/2

-� .

- �

�

.�

�
?

?

?

?

?

?

�

?

?

?

?

?

?

linkage2links

link2tree

merge2tree

features

nicetree

draw

(graphical display of the tree)

initialises AVM
for tokens (terminals)*

* position (word order) and information from the tag

gets relinking rules
linkinfo

gets program options

program option value

linkfeatures
(rules set)

(interface
to the
rules set)

linkage2constituents/4

chopt/1

gets tag features

labelled tree

link2tree/3

linkage(s)

id/3, lp/3, feature/3

Figure 1: General architecture of Link2Tree

5 General architecture

Link2Tree is implemented as a module for ExtrAns. It involves itself several modules

written in Prolog. It implies several modules for the actual converter plus one rule set file

as well as the two startup scripts discussed in appendix A and the tree drawing module

draw.pl by Mark Holcomb.

Figure 1 shows the general architecture of the program: Prolog predicates that serve

as program interfaces are printed in tiny letters; solid lines mean data flow in the direction

of the arrow; dashed lines denote dynamically asserted facts to be imported; boxes stand

for modules.

35

5.1 A brief survey of the modules

5.1.1 link2tree.pl

The module link2tree.pl provides the main routine(s). It contains the interfaces for the

user (link2tree/3) and other programs (linkage2constituents/4). While processing a

linkage input it calls the modules linkage2links.pl, merge2tree.pl and nicetree.pl,

as well as Mark Holcomb’s module draw.pl if the result is to be displayed on the screen.

It also does the post-processing, which turns the internal representation of the resulting

constituent tree into sets of id/3, lp/3 and feature/3 facts.

5.1.2 linkage2links.pl

The module linkage2links.pl reformats the linkage input, which is handed over to it from

link2tree.pl. It converts the complex Prolog list representing the linkage into Prolog

terms for links (link/4) and tokens (token/2). These are stored as dynamically asserted

Prolog facts, and a feature structure is initialized for each token, using the corresponding

tools provided by the module features.pl.

Furthermore, linkage2links.pl is responsible for the so-called relinking process. That

is, it changes the structure of the linkage according to relinking rules defined in the rule

set (linkfeatures.pl) to allow a convenient conversion into constituent structures. This

enables the implementer to correct unfavourable Link Grammar links.

5.1.3 merge2tree.pl

The module merge2tree.pl is the actual converter. It does the conversion of the link

structure stored in linkage2links.pl into a constituent structure. During this process, it

makes use of the facilities provided by the module features.pl to initialize feature struc-

tures for nodes or to update those of the tokens respectively. The output of merge2tree.pl

is a non-arranged constituent tree, the nodes of which are the identifiers of feature struc-

tures stored in features.pl. This tree represents dominance only but not necessarily

linear precedence (word order).

5.1.4 features.pl

The module features.pl does the feature handling. It provides tools to build and up-

date feature structures. It stores feature structures as dynamically asserted Prolog facts

(feature/2).

36

5.1.5 nicetree.pl

The module nicetree.pl has two functions: (i) it rearranges the constituents of the tree

structure returned by merge2tree.pl according to the word order of the original sentence,

and (ii) it provides a tool to replace feature structure identifiers in the nodes of the tree

by node labels like N0, N1, N2 (or N, N bar, NP). The first function is accessed through

wordorder/2, the second through nodelabels/2.

5.1.6 linkinfo.pl

The module linkinfo.pl is the interface to the declarative rule set in linkfeatures.pl.

It provides tools to handle and apply the declarations made in the rule set. There is no

direct access to linkfeatures.pl from any module other than linkinfo.pl.

5.1.7 linkfeatures.pl

The module linkfeatures.pl is the declarative database of the program. Its rule set

contains the information how links must be converted into constituents. Furthermore,

the program options are stored in this module. Linguistically motivated alterations or

adaptations need only be made in this file.

If merge2tree.pl was said to be the “parser-part” of the program, linkfeatures.pl

would be its “grammar-part”.

5.2 A step by step example

The following example shall illustrate step by step how a given linkage is transformed into

a corresponding constituent structure.

5.2.1 Input

User query (41) makes ExtrAns and Link Grammar to return the linkage output in

(42). (43) represents the underlying prolog structure of (42), which is handed over to

link2tree.pl and from there to the module linkage2links.pl.

(41) | ?- link2tree("cp copies the files.", 0, Tree).

37

(42) +-------------------Xp------------------+

| +-------Op-------+ |

+--Wd--+----Ss---+ +---Dmc-+ +-RW+

| | | | | | |

///// cp[?].n copies.v042 the.d files.n2s . /////

(43) [[[[/////, cp[?].n, copies.v042, the.d, files.n2s, ., /////],

[[0,5,h(nil),Xp], [0,1,h(l),Wd], [1,2,h(r),Ss], [2,4,h(l),Op],

[3,4,h(r),Dmc], [5,6,h(nil),RW]]]]]

5.2.2 Reformatting and relinking

In the module linkage2links.pl, the linkage is reformatted: links and tokens are stored

in dynamically asserted Prolog facts as illustrated in (44).

(44) linkage2links:token(/////, 0).

linkage2links:token(’cp[?]’, 1).

linkage2links:token(’copies’, 2).

linkage2links:token(’the’, 3).

linkage2links:token(’files’, 4).

linkage2links:token(’.’, 5).

linkage2links:token(/////, 6).

linkage2links:token([], 7).

linkage2links:token([], 8).

linkage2links:link(7, 2, ’INFL’, [s]).

linkage2links:link(3, 4, ’D’, [m,c]).

linkage2links:link(2, 3, ’O’, [p]).

linkage2links:link(7, 8, ’S’, [s]).

linkage2links:link(8, 1, ’D’, [s]).

For each token an AVM is instantiated by linkage2links.pl in the module features.pl.

This AVM so far stores the information on the position of the token in the sentence (begin-

ning with position number 0) as well as the lexical head (word form) and the information

received from the tag of the token (part of speech). (45) gives the AVM for the token files

from the example.

38

(45) features:feature(1, position=4).

features:feature(1, hd=files).

features:feature(1, cat=n).

features:feature(1, bar=0).

(44) above shows that some links have been corrected during the process. The mod-

ule linkage2links.pl has done the so-called relinking along the rules defined in

linkfeatures.pl and has altered the original link structure (46) to a corresponding

link structure (47) which is easier to convert into the desired constituency structure.

Relinking rules can be defined in the rule set of the program; they are not inherent to

the converter. Relinking rules are correction rules for certain link types (or certain link

types in certain environments, respectively). The user may want to define relinking rules

for several reasons: (1) The user may want to correct strange links. Some links or link types

returned by Link Grammar are rather peculiar, i.e. they differ from the common view of

the corresponding syntactic construction. (2) The user may want to remove irrelevant links

(e.g. those to the walls). (3) The user may want to alter links so that they are equivalent

to a specific desired tree output.

In the example, the links are changed so that the conversion returns a tree where

the functional category I (inflection) is present (i.e. a GB-like representation) and where

DP-hypothesis is applied.

(46) ///// cp[?].n copies.v042 the.d files.n2s . /////
W

Wd
�

Ss
�

Dmc
W

RW
W

Op

W

Xp

(47) ε[D] cp[N0] ε[I] copies[V0] the files[N0]
W

Ds
W

INFLs
W

Op
W

Dmc
�

Ss

Note that links without direction (Xp, RW in our example) receive an arbitrary direction

in the linkage2links.pl process, since link/4 can only store directed links. If neces-

sary, this kind of links must be corrected by an appropriate relinking rule stored in the

39

rule set.13 Irrelevant links and tokens have been omitted during the relinking process in

linkage2links.pl.

5.2.3 Conversion

After linkage2links.pl the module merge2tree.pl is called. This module does the ac-

tual conversion of the link structure into a constituent structure. It therefore processes the

information stored in the link types and their subscripts. The output of merge2tree.pl is

a non-arranged constituent tree (48) as well as an updated set of feature structures belong-

ing to the node identifiers of the tree structure. ‘Non-arranged’ means that only dominance

is relevant in the structure but linear precedence (word order) is not yet considered.

(48) [9, [10, [11, [12, [13, [1,‘cp[?]’]]], [8,[]]]], [14, [15, [16, [17,

[18, [19, [20, [4,‘files’]]], [3,‘the’]]], [2,‘copies’]]],

[7,[]]]]

5.2.4 Word order

Finally, the module nicetree.pl rearranges the constituents of the tree so that they follow

the word order of the original sentence and dominance relations are still kept.

The rearranging of the constituents is illustrated below: (49) represents the non-

arranged tree and is thus equivalent to tree structure (48) above, whereas (50) corresponds

to the arranged tree structure in (51).

Note that for reasons of simplicity, only part of speech (category) and bar level are

represented in the node labels of the two trees below.14 The underlying node identifiers,

however, may refer to much richer feature structures.

13For our example, linkage2links.pl returns the following warnings to the screen:

Link type Xp with directionality h(nil) arbitrarily changed into left-head-link!
Make sure that a correction-rule for this link type is provided in
linkfeatures.pl!
Link type RW with directionality h(nil) arbitrarily changed into left-head-link!
Make sure that a correction-rule for this link type is provided in
linkfeatures.pl!

14This is exactly what the predicate nodelabels/2 in the module nicetree.pl does for reasons of
graphical display: The node identifiers in the tree structure are replaced by node labels that express the
category and the bar level of the node.

40

(49) I2̀
````̀

      
D2

D1
ll,,

N2

N1

N0

cp

D0

ε

I1
aaa
!!!

V2

V1
HHH
���

D2

D1
cc##

N2

N1

N0

files

D0

the

V0

copies

I0

ε

(50) I2
PPPP
����

D2

D1
ll,,

D0

ε

N2

N1

N0

cp

I1
aaa
!!!

I0

ε

V2

V1
HHH
���

V0

copies

D2

D1
cc##

D0

the

N2

N1

N0

files

5.2.5 Post-processing

Finally, the format of the constituent structure is altered. id/3 and lp/3 facts are gen-

erated from the list notation (51) of the tree structure and feature/3 facts are asserted,

extending the feature/2 facts by the number of the parsed sentence.

41



5.2.6 Output

The final output of the program therefore consists of a set of id/3, lp/3 and feature/3

facts as (partially) shown in (52). The list notation of the constituent tree (51), how-

ever, is also returned in the last argument of linkage2constituents/4 or link2tree/3

respectively.

(51) [9, [10, [11, [8,[]], [12, [13, [1,‘cp[?]’]]]]], [14, [7,[]], [15,

[16, [2,‘copies’], [17, [18, [3,‘the’], [19, [20,

[4,‘files’]]]]]]]]]

42



(52) link2tree:id(0, 9, 10).

link2tree:id(0, 10, 11).

link2tree:id(0, 11, 8).

link2tree:id(0, 11, 12).

link2tree:id(0, 12, 13).

link2tree:id(0, 13, 1).

link2tree:id(0, 9, 14).

link2tree:id(0, 14, 7).

link2tree:id(0, 14, 15).

link2tree:id(0, 15, 16).

link2tree:id(0, 16, 2).

link2tree:id(0, 16, 17).

link2tree:id(0, 17, 18).

link2tree:id(0, 18, 3).

link2tree:id(0, 18, 19).

link2tree:id(0, 19, 20).

link2tree:id(0, 20, 4).

link2tree:lp(0, 10, 14).

link2tree:lp(0, 8, 12).

link2tree:lp(0, 7, 15).

link2tree:lp(0, 2, 17).

link2tree:lp(0, 3, 19).

...

link2tree:feature(0, 9, position=1.5).

link2tree:feature(0, 9, hd=[]).

link2tree:feature(0, 9, cat=i).

link2tree:feature(0, 9, num=sg).

link2tree:feature(0, 9, bar=2).

link2tree:feature(0, 10, position=0.5).

link2tree:feature(0, 10, hd=[]).

link2tree:feature(0, 10, cat=d).

link2tree:feature(0, 10, num=sg).

link2tree:feature(0, 10, bar=2).

...

43



6 The module link2tree.pl

The module link2tree.pl fulfills three functions. First, as the main module of the pro-

gram, it controls the conversion process, i.e. it takes the input handed over to it by the

user or another program and returns the output after calling the appropriate modules.

As such, it provides the two main interfaces of the program: linkage2constituents/2

and link2tree/3 (see 4.3). Second, it provides the user interface for the option han-

dling (chopt/1 and echo option/1). This allows the user to alter the program op-

tions. Third, link2tree.pl is responsible for the displaying of the result with draw.pl

(display tree/1).

6.1 The main predicates

6.1.1 linkage2constituents/4

The predicate linkage2constituents/4 is the predicate to be called by ExtrAns if the

implementer wants to convert ExtrAns/Link Grammar linkages into constituent struc-

tures. As its first three arguments, it takes (i) the number of the parsed sentence, (ii)

the set of linkages for that sentence in the form in which it is returned by ExtrAns, and

(iii) the number of the linkage that shall be converted. In its fourth argument it returns

the resulting constituent tree in the form of a Prolog list. Listing (53) shows the predi-

cate and the way it calls the relevant predicates from other modules: First the predicate

linkage2links/2 from module linkage2links.pl is called to do the reformatting of the

linkage. Second, get tree of links/1 (module merge2tree.pl) does the actual conver-

sion into a constituent tree, and third, wordorder/2 from module nicetree.pl is called

to arrange the resulting tree according to the original word order of the sentence. Finally,

the format of the resulting constituent tree is altered by postprocess/2.

(53) linkage2constituents(SentNr, Linkages, ResultNr, ConstituentTree):-

linkage2links(Linkages, ResultNr), !,

get_tree_of_links(UnarrangedTree), !,

wordorder(UnarrangedTree, ConstituentTree), !,

postprocess(SentNr, ConstituentTree).

44



6.1.2 link2tree/3

An alternative method to use the converter is to start it up using the startup script as

described in appendix A. This implies that the ExtrAns main module main.pl is consulted

in link2tree.pl and the predicate start parser/0 is called at its beginning (54).

(54) :-consult([main]).

:-start_parser.

If the converter is used in the described way, link2tree.pl is not called from ExtrAns

but ExtrAns is called from link2tree.pl. This may be useful for testing purposes as long

as one does not want the converter to be an integral component of ExtrAns.

The predicate link2tree/3 allows the user to submit queries on the screen in the way

illustrated in (55).

(55) ?- link2tree(‘‘cp copies the files.’’, 0, Result).

Listing (56) represents the predicate link2tree/3. The predicate first makes Ex-

trAns parse the sentence in its first argument by calling parse/2 from main.pl.

print links/2 displays the returned Link Grammar linkage(s) on the screen. After-

wards, linkage2constituents/4 is called to do the conversion as described above. The

number in the second argument of link2tree/3 specifies the linkage to be converted. The

resulting constituent tree is displayed on the screen by display tree/1.

(56) link2tree(String, ResultNr, ConstituentTree):-

parse(String, Linkages), !,

print_links(Linkages), !,

linkage2constituents(0, Linkages, ResultNr, ConstituentTree), !,

display_tree(ConstituentTree),

!.

6.2 Option handling

The module link2tree.pl provides two predicates that allow the user (or parent processes)

to check and/or alter certain program options. These options and their values are stored in

the database file linkfeatures.pl. Two kinds of options are to be distinguished: Options

that take Boolean values (either 0 or 1) and options that take non-Boolean values. In

linkfeatures.pl a standard value is defined for every program option.

45



6.2.1 echo option/1

The predicate echo option/1 can be used to check the current value of an option. It calls

the predicate if option/1 from linkinfo.pl, the interface to the database. Options are

stored in the form option(Option=Value), which means that echo option/1 has also to

be used like echo option(Option=Value). It is described in section 13 what particular

program options are provided by Link2Tree at its current state.

6.2.2 chopt/1

The predicate chopt/1 is used to alter the value of an option on the screen. It can be

called as chopt(Option=NewValue) or as chopt(Option). The former can be used for all

options, the latter form is restricted to options that take Boolean values. It switches their

value from 0 to 1 or from 1 to 0, respectively. In any way chopt/1 calls the predicate

change option/1 from linkinfo.pl.

6.3 Graphical display

6.3.1 display tree/1

The predicate display tree/1 is responsible for graphically displaying the resulting con-

stituent tree on the screen. It is only called if link2tree/3 is called by the user. Then, it

displays the result as described in 4.2.

By calling nodelabels/2, the predicate replaces node identifiers by category labels as

already mentioned in 5.1.5. Finally, use draw/1 is called to apply Mark Holcomb’s module

draw.pl to the tree and induces its graphical display.

6.3.2 use draw/1

The function of the predicate use draw/1 is to reformat the labeled constituent tree so

that draw.pl can deal with it. This means that it has to be converted from a list form like

[np, [det, the], [n, dog]] to a form where the node is the functor, like np(det(the),

n(dog)). To achieve this, the predicate makes use of the built-in predicate “univ”, which is

realized as =../2 in Prolog. The auxiliary predicates recursive univ/2 and list univ/2

redefine it recursive and for list handling. After the conversion use draw/1 calls draw/1

from draw.pl.

46



6.4 Post-Processing

6.4.1 postprocess/2

The predicate postprocess/2 alters the internal representation of the resulting constituent

structure (consisting of a Prolog list denoting dominance and precedence relations and a

set of feature/2 facts for the feature structures of the nodes) into its final output format

(consisting of sets of id/3, lp/3 and feature/3 facts, which are asserted dynamically in

link2tree.pl).

At its beginning, postprocess/2 retracts all previous id/3, lp/3 and feature/3 facts.

This means, that the output facts of a conversion have to be imported in the parent module

before the next conversion is started.

The actual conversion of the format is done by the predicates tree2id/2, tree2lp/2,

add sentnr to features/1. After these predicates have been called, the newly asserted

facts are listed on the screen by calling the built-in predicate listing/1 for them.

6.4.2 tree2id/2, tree2lp/2, add sentnr to features/1

The predicates tree2id/2 and tree2lp/2 go recursively through a constituent tree in the

form of a Prolog list and generate dynamically asserted id/3 and lp/3 facts to describe all

the relations of immediate dominance (ID) and linear precedence (LP) in that tree. Note

that lp/3 only denotes immediate linear precedence. Three sister nodes A, B, C are thus

grouped as lp(SentNr, A, B) and lp(SentNr, B, C).

The predicates tree2id/2 and tree2lp/2 take the number of the parsed sentence as

their first and the constituent tree in the form of a Prolog list as their second argument.

The sentence number is delivered to the first argument of the id/3 and lp/3 facts.

The predicate add sentnr to features/1, the only argument of which is the number

of the parsed sentence, generates a feature/3 fact for each of the feature/2 facts stored

in the module features.pl. The first argument of the newly generated fact contains the

sentence number, the second argument the node identifier and the third argument the

feature-value pair.

47



7 The module linkage2links.pl

The two main tasks of the module linkage2links.pl are the reformatting of the input

linkage so that it can easily be handled by the converter and the correction of the linkage

in order to make it more suitable for the transformation into constituent structures. As the

main predicate of the module, linkage2links/1 starts the processes to fulfill these tasks.

The first three predicates it calls are concerned with preparatory tasks, the next three

predicates reformat the input linkage and the last predicate starts the relinking process.

7.1 Preparation of the reformatting

7.1.1 retract all dynamics/0

There are three modules in Link2Tree that assert Prolog terms dynamically. These

are the modules linkage2links.pl, features.pl, linkfeatures.pl. The module

linkfeatures.pl stores program options. These may not be retracted at the begin-

ning of each query but rather stay the same during the whole session, if they are not

deliberately altered by the user (or the parent process respectively). The Prolog terms

stored by linkage2links.pl and features.pl, however, belong to the current query

only and must be removed before (or at) the beginning of the next query. As the feature

handling module features.pl stands outside the linear course of the conversion process

but rather provides tools to be called whenever needed, the point where the retraction

must take place can not be defined there. It could be argued that the main module

link2tree.pl was the right place to retract all dynamically asserted terms, namely at

the beginning of linkage2constituents/4. I hold against it that all dynamic terms

would have to be imported into link2tree.pl, NB a module which is close to the

program interface. Therefore, for reasons of programming security, I have decided to do

the retraction of dynamically asserted terms at the beginning of linkage2links/1 by

calling retract all dynamics/0. This entails that the predicates defined as dynamic in

features.pl are imported into linkages2links.pl.

7.1.2 get xth result/3

The Link Grammar output for a sentence can consist of not only one but a whole set of

possible linkages. This set of linkages is returned as a Prolog list, each element of which

being itself a Prolog list representing a possible linkage for the sentence. Given several

48



linkages LG provides certain heuristics for choosing the best parse i.e. the one to output

first. A sophisticated cost system e.g. prefers the linkage in which the total length of links

is lowest. Unfortunately, the survey over their cost system Temperley et al. (2000) provide

in their documentation to Link Grammar is not detailed enough to get any precise insight

of the heuristics applied. It is relevant for our purposes, however, that the LG/ExtrAns

parser/post-processor output the most likely linkage first.

The predicate get xth result/3 is called at the beginning of linkage2links/1. It

extracts the linkage specified by its number (beginning with 0) in the first argument of the

predicate. If there is a negative number in that argument an error message is printed to

the screen and the conversion process is halted.

7.1.3 get lists/3

The predicate get lists/3 prepares the reformatting of the linkage by splitting the input

linkage into a list of tokens and a list of links. Tokens are stored as single elements in

the LG token list, the order of which represents the word order in the sentence. Links are

stored as lists of four elements. The first two of them denote the number of the linked

tokens. The third element indicates if the link is directed to the left (h(r)), to the right

(h(l)) or if there is no direction specified (h(nil)). The last element represents the link

type and its subscripts. The linkage for example (57) is thus split into token list (58) and

link list (59).

(57) worms dig
�

Sp

(58) [’worms’,’dig’]

(59) [[0,1,h(r),’Sp’]]

7.2 Reformatting

The purpose of reformatting is to have an easier and more flexible access to the data stored

in the token and link lists. Both, tokens and links are to be represented as individual Prolog

facts rather than to be packed in a long Prolog list. Links are intended to be expressed

as link(HeadID, DependentID, LinkType, LinkTypeSubscripts). Tokens are to be

stored as token(TokenID, Token).

49



7.2.1 transform link/2

The predicate transform link/2 is called via create list of links/2 from the predicate

linkage2links/1. It changes the format of the link items in the link list from lists to

link/4 terms as shown in (60).

(60) [0,1,h(r),’Sp’] ⇒ link(1,0,‘S’,[p])

The predicate distinguishes three cases concerning the directionality of the link to be

transformed: (i) the head is left h(l), (ii) the head is right h(r) and (iii) the link has no

direction at all h(nil). In the first two cases either the first or the second token identifier

in the list has to become the first argument of the link/4 term. In the third case, if there

is no directionality, one token is arbitrarily taken as the head of the link (since link/4

can only store directed links because the first of its argument is defined as the head of

the link and the second as its dependent). If this case happens a warning is printed on

the screen and the user is asked to make sure that a corresponding correction-rule to be

applied during the relinking process is provided in linkfeatures.pl.

7.2.2 linkinfo:split linktype/3

It is the function of the predicate split linktype/3 to divide the information stored

in the label of the link into two separate terms, namely a term for the link type (in

upper-case letters) and a list of lower-case subscripts. This separation is crucial for the

further processing of the information stored within link types and their subscripts. If

both were melted to one single term a blow-up of the rule set would be the consequence

since a separate rule would be required for every possible combination of link type and

subscript(s).

The predicate split linktype/3 is imported into linkage2links.pl from the module

linkinfo.pl, the interface to the rule set.

7.2.3 assert links/1, assert tokens/1

Whereas links are dynamically asserted by assert links/1 from the new link list in the

form they have assumed in transform link/2, assert tokens/1 calls the separate pred-

icate add token/3, which takes a token and a list of feature-value pairs as its input and

returns the identifier of the AVM it has initialized for that token. Since Link Grammar

assigns identifiers to the tokens by numbering them in the order they occur in the sentence,

50



token identifiers correspond to their positions in the sentence at this stage of the process.15

Therefore, assert tokens/1 puts the position of each token into the feature list handed

over to add token/3 for that token. Apart from the feature position, the feature cat is

initialized at this point. As the value of cat must later be extracted from the tag of the

tokens or the link types it is connected with, cat is initialized with the default value ? at

this point. The initializing of cat for every token is crucial for the proper working of the

converter.

add token/3 creates a new AVM for the token and adds the information it receives from

the tag of the token by calling get tagfeatures/2 from linkinfo.pl. It furthermore adds

the feature hd, which contains the lexical head of the node. The lexical head, i.e. the word

form of a token without its tag, is returned in the third argument of get tagfeatures/3.

The label hd for the feature, containing the lexical head of a node, is program inherent.

This feature must be defined as a head feature (cf. 12.3.4) in order to be transported to

any mother node of which the token is the lexical head.

Last, the predicate add token/3 asserts a Prolog fact denoting the token in the form

token(Wordform, TokenID).

7.3 Relinking

The relinking process is started after the linkage has been reformatted by calling

do relinking/0. It provides a kind of preprocessor to the converter. Relinking corrects

the input linkage according to rules declared in the rule set module linkfeatures.pl.

linkage2links.pl controls the order in which these rules are called. It furthermore

provides the syntax for the relinking rules in linkfeatures.pl. Relinking rules are Prolog

rules the head of which is relink:-. Readers are referred to part III to learn more about

the syntax of relinking rules.

7.3.1 do relinking/0

The predicate do relinking/0 is a failure-driven loop that calls one relink rule after the

other and terminates if there is no rule left to be applied (61). The below example shows

that the same rule is called more than once if there are still links left to which it can be

applied.

15It will change with the relinking process.

51



(61) do_relinking:-

call_rule,

fail.

do_relinking.

7.3.2 An example of relinking

As an example to illustrate what happens when do relinking/0 is called, let us assume

that one wants to integrate DP-hypothesis into the conversion from linkage to constituent

tree.16 A simple sentence like (62) as parsed by Link Grammar is given in (63).

(62) The worm ate an apple.

(63) the worm ate an apple
�

Ds
�
Ss

W

Op

�
Ds

If one wants to follow DP-hypothesis, the fact that the nouns worm and apple should be

dependents of their determiners has to be taken into account. (64) provides a general rule

to correct such linkages in the explained sense of DP-hypothesis. (The letters X, Y and z

denote variables.)

(64) X Noun Det
W

Y
W

Dz

⇒ X Noun Det
W

Y

�
Dz

Rule (64) says that if there is a D link from a noun to a determiner, the direction of this

link must be changed, and if there is a link, the dependent of which is the said noun, it

must be changed so that the determiner linked to that noun is its new dependent. If rule

(64) was called by do relinking/0 it would first be applied to the worm. It would correct

the linkage from (65) to (66) and then fail. By backtracking the same rule would be called

again and be applied to an apple. It would alter the linkage from (66) to (67) and then fail.

When the same rule would then be called again by backtracking it would fail since it could

not be applied to any elements of the sentence anymore. At this stage do relinking/0

would terminate (or move on to the next rule if there were any of them left).

16For explanatory reasons I have to anticipate at this point as it has not yet been stated how a con-
stituency based hypothesis is interrelated with a link structure. This will only become evident in the next
section.

52



(65) the worm ate an apple
�

Ds
�
Ss

W

Op

�
Ds

(66) the worm ate an apple
W

Ds
�

Ss

W

Op

�
Ds

(67) the worm ate an apple
W

Ds
�

Ss

W

Op

W
Ds

The observation of the above example leads to the conclusion that the order in which the

individual correction rules are called can be relevant. This is discussed in part III. As

shown in section 5.2, the relinking rules may also insert new tokens. In the example given

in section 5.2 an empty determiner and an empty inflection are inserted and linked.

7.4 Re-Arranging Links

If a link is added during the relinking process, it is asserted at the end of the link/4 facts:

the predicate add link/4, which is responsible for the adding of links in relinking, makes

use of assertz/1. However, the order in which the links are listed is not irrelevant. Link

Grammar linkages list those links first, the left end of which is further to the left. If two

links have the same left end, Link Grammar takes first the link with the right end further

to the right. After having read the next section, one will understand that this is exactly

the order the Link2Tree converter needs, since it implements a top-down algorithm (see

section 8).

Relinking, however, may interfere with this order since it adds all new links at the end

of the list. This may cause wrong constituent structures, namely structures that are not

projective, i.e. trees with crossing branches (see 14.2.5). It is therefore necessary, that the

aforementioned order is reestablished after the relinking process. This task is performed

by the predicate do linksorting/0, which is called right after do relinking/0.

The predicate do relinking/0 first calls links2lists/1. This predicate reads all

link/4 facts into a list, each element of which is a link, which again is represented by a list

of the form [HeadID, DependentID, Type, Subscripts]. The link/4 facts are retracted

as soon as the link they represent is read into the list. This list of links is then sorted by an

adaptation of the quicksort algorithm: the predicate linksort/2 rearranges the elements

53



of the list in the above-mentioned order. Within this, the predicate linksplit/2 is the

extended pendant to the common split/2 of the quicksort algorithm.

Last, the sorted list of links returned by linksort/2 is turned back into link/4 facts

by the predicate list2links/1.

54



8 The module merge2tree.pl

8.1 Types of projection

8.1.1 A basic conversion operation

In order to come to a strategy for the conversion of linkages to constituent trees, in a first

step, one may check if the notion of constituents is recognized in dependency grammar

at all. Covington (1994:2) states that in DG constituents are a defined rather than a

basic concept: “The usual definition is that a constituent consists of any word plus all

its dependents, their dependents, and so on recursively.” Tesnière (1959) calls such a

constituent a ‘noed’ or ‘nucleus’ respectively. This works like in constituency: Nuclei have

heads and can consist of nuclei themselves. From this concept one can imply a first most

basic conversion operation (68).

(68) X Y *
W W

⇒ X’
ll,,

X Y’
@@��

Note that in the above example, the convention of using a triangle to represent a constituent

(subtree), the internal structure of which one is not concerned with, has been adopted. In

the same way, an arc directed to the wild card ∗ has been chosen to denote a sub-linkage,

or – in the terms of the above definition – a word plus all its dependents, their dependents,

and so on recursively.

The basic operation in (68) implies that linkages are trees themselves (dependency

trees). The condition that linkages must be trees places several constraints on the structure

of the linkages: (i) there must be a root word in the linkage, from which every token of

the linkage can be reached, (ii) the linkage has to be directed, (iii) acyclic, (iv) projective,

and (v) every dependent can only have one head. These constraints for Link Grammar

linkages have been discussed in section 2.

On the basis of (68) Covington (1994:3) interprets dependency grammar as equivalent

to a particular strict form of X-bar theory in which (i) there is only one non-terminal

bar level (i.e. X and X’, but not X”); (ii) apart from bar level, X and X’ (immediately

dominating X) cannot differ in any way, because they are “really” the same node; (iii)

there is no stacking of X’ nodes (an X’ node cannot dominate another X’ with the same

head).

55



It will be demonstrated later how Link2Tree can be made to return constituent trees

that comply with these restrictions. Operation (68) converts the linkage of sentence (69)

to the constituent tree in (70).17

(69) cp copies files
�
S

W
0

(70) V’
PPPP��
����

N’

N

cp

V

copies

N’

N

files

8.1.2 Conversion operations extended and generalized

Covington (1994) shows the difficulties of the above interpretation of dependency gram-

mar as a particular strict form of X-bar theory. Dependency trees cannot preserve the

distinction between X, X’ and X” which GB theory and GPSG use to distinguish between

complements, adjuncts, and specifiers. Covington (1992:3) proposes “that complement,

adjunct, and specifier be treated as three kinds of dependency, and labeled as such in

the D-tree [dependency tree].” By following Covington’s proposal, one can extend the

conversion operation to (71–73).18

(71) X Y *
W

Spec
W
⇒ X2

Q
Q

�
�

Y2
@@��

X1
@@��

(72) X Y *
W

Adj
W
⇒ X1

Q
Q

�
�

X1
@@��

Y2
@@��

17Note that the subject of the sentence is in its VP-internal position in (70), which corresponds to the
recent assumption made by the so-called ‘VP-internal subject hypothesis’.

18Note that for reasons of accuracy the bar level is indicated by numbers rather than bars now. As
for the order of constituents in the above examples, it is – although irrelevant for our current purpose –
adapted to English word order.

56



(73) X Y *
W

Compl
W
⇒ X1

Q
Q

�
�

X0
@@��

Y2
@@��

In addition to rules (71–73) one may even want to define a rule for the treating of compound

nouns, like (74).

(74) X Y *
W

Compd
W
⇒ X0

Q
Q

�
�

Y2
@@��

X0
@@��

To summarize the above conversion operations one can say that the operations defined for

the converter must follow a most generalized form, given in (75).

(75) X Y *
W

T
W
⇒ Xn

b
b

"
"

Xm
@@��

Ymax
@@��

where T=〈m, n〉

8.1.3 Recursiveness: stacked vs. flat structures

Covington (1994) states that one particular weakness of the most basic interpretation of

dependency grammar given in 8.1.1 is its restriction to non-stacked structures, i.e. a node

cannot dominate another node with the same head and bar level. One may, however, want

to allow stacked structures, e.g. for multiple adjuncts or for compounds, like in (76).

(76) N1
PPPP
����

A2
@@��

huge

N1
PPPP

����
A2
b
bb

"
""
complex

N0
H
HH

�
��

N2
ZZ��

Prolog

N0

listings

On the other hand, one may also want to provide the facilities for a flat analysis, e.g. for

double objects like in (77).19

19The scope of this section is the discussion of functionality. Readers interested in the pros and cons
of particular analyses are referred to part III. For a introductory discussion of the sense of intermediate
categories and stacked structures readers a referred to Covington (1994:4ff.) and Schneider (1998a:21ff.).

57



(77) V2
PPPP

����
N2
AA��

he

V1
PPPP��
����

V0

gave

N2
JJ



her

N2
HHH
���

a present

To do the conversion, it must thus be known if the type of projection produces stacked

or flat structures or if it is not recursive at all. This information must be contained in

the dependency type. Therefore, (78) is proposed. r stands for the aforesaid information

on the recursiveness of the projection type. It takes either the value stack if the type

produces stacked structures, or flat if it allows flat structures, or nil if it is not recursive

at all, i.e. if it produces binary structures and cannot be stacked.

(78) X Y *
W

T
W
⇒ Xn

b
b

"
"

Xm
@@��

Ymax
@@��

where

T = 〈r, m, n〉
r ∈ {stack, flat, nil}

8.1.4 Obligatory vs. optional projection types

One can distinguish obligatory from optional projection types. In common GB theory

specifiers and complements are obligatory whereas adjuncts are optional. This means that

an X1 node is inserted even if there is no complement present or that an X1 must be

projected to an X2 node even if there is no overt specifier, like in (79). As shown in 3.6,

the slots opened by empty specifiers serve as landing sites for certain moved constituents.

On the other hand, no extra X1 node has to be inserted if there is no adjunct, like in (80).

(79) N2

N1
ZZ��

A2
TT��

old

N1

N0

ideas

58



(80) N2
aaa
!!!

Det

the

N1
aaa
!!!

N0

idea

PP
PPPP

����
of optionality

In (81) the set represented by T in (78) above is extrended by an element o, which indicates

optionality.

(81) T = 〈r, o, m, n〉
where

r ∈ {stack, flat, nil}
o ∈ {obligatory, optional}

8.1.5 Ranking of the projection types

Covington (1994:7) gives a sketch of a reinterpretation of dependency grammar, which is

consistent with current X-bar theory. It can be recognized as a prototype of a conversion

algorithm:

Given a head (X) and its dependents, attach the dependents to the head by forming

stacked X nodes as follows:

1. Attach subcategorized complements first, all under the same X node. If there

are none, create the X anyway.

2. Then attach modifiers, one at a time, by working outward from the one nearest

the head noun, and adding a stacked X node for each.

3. Finally, create an X node at the top of the stack, and attach the specifier

(determiner), if any.

(Covington, 1994:7)

From this description one can gain insight into the behavior of the algorithm for

flat/obligatory projection types (complements), stacked/optional ones (modifiers) and

for non-recursive/obligatory ones (specifiers). Furthermore, it is evident that in an algo-

rithm another feature is relevant for projection types: their ranking. The above algorithm

59



knows that it has to process the links in the order of the ranking of their projection types:

complements first, then modifiers, specifier last.

So as to allow the user to define the form of X-bar theory applied to the tree output

of Link2Tree, it is not useful for the ranking of projection types to be inherent to the

conversion algorithm. It should rather be added to the definition of projection types. Two

new elements for T are defined: t, which represents the identifier of the type, and s, which

denotes the next lower projection type, i.e. the next projection type to process by a top-

down algorithm. The element m for the bar level of the head-subtree is no longer needed

since it is already defined indirectly by s. The revised conversion operation is given in (82).

(82) X Y *
W

T
W
⇒ Xn

b
bb

"
""

Xn(s)
@@��

Ymax
@@��

where

T=〈t, r, o, s, n〉
r ∈ {stack, flat, nil}
o ∈ {obligatory, optional}

8.1.6 linkfeatures:treelevel/5 and toplevel/1

In Link2Tree the form of X-bar theory that is applied to the conversion can be defined

by the user in the rule set. The predicate treelevel/5 corresponds to set T from (82).

Its first argument is the identifier (name) of the projection type. The second argument

denotes its recursiveness (stack|flat|nil) and the third its optionality (obligatory|optional).

The fourth argument is the identifier of the next lower projection type. The last argument

is a list of features, which are added to the node of the projection (e.g. the bar level), i.e.

features that do not necessarily comply with the corresponding features of the head.

The restricted form of X-bar theory described in 8.1.1 would only need definition (83).

(83) treelevel(projection, flat, obligatory, [], [bar=1]).

The more common form of X-bar theory which is represented in rules (71–73) above or in

Covington’s algorithm, quoted in the previous subsection, requires the three Prolog terms

given in (84). To add the conversion rule for compound constructions, (74) above, the

definition would have to be revised to (85).

(84) treelevel(specifier, nil, obligatory, adjunct, [bar=2]).

treelevel(adjunct, stack, optional, complement, [bar=1]).

treelevel(complement, flat, obligatory, [], [bar=1]).

60



(85) treelevel(specifier, nil, obligatory, adjunct, [bar=2]).

treelevel(adjunct, stack, optional, complement, [bar=1]).

treelevel(complement, flat, obligatory, compound, [bar=1]).

treelevel(compound, stack, optional, [], [bar=0]).

It will be shown in section 8.2.1 below that the conversion algorithm applied in Link2Tree

is a top-down algorithm. To facilitate the conversion process, the projection type which

is topmost in the ranking, is defined in the separate predicate toplevel/1 in the rule set.

For example (85) above, specifier must be defined as the topmost projection type, like

in (86).

(86) toplevel(specifier).

8.1.7 Projection types vs. link types

Note that in Link2Tree, projection types are not equivalent to link types. Every link type

has a projection type, but many link types can have the same projection type. As already

shown, projection types define the way a link (or a sub-linkage respectively) is converted to

a subtree. Link types, on the other hand, contain much more information than just their

projection type. They also provide information to be assigned to the AVMs of their head

and dependent. Link types are stored in the rule set by the predicates typefeatures/4,

the last argument of which denotes its projection type, and subsfeatures/4. They are

accessed via the predicate linkfeatures/5 in the module linkinfo.pl.

8.2 The conversion

8.2.1 The algorithm

The extensions and generalizations to Covington’s conversion algorithm made in the previ-

ous section let us formulate a conversion algorithm for Link2Tree. The algorithm describes

the way a linkage (or a sub-linkage respectively) is converted to a constituent tree, begin-

ning with its root word.

Given a head (X) and its dependents, attach the dependents to the head as

follows:

1. Begin the conversion with the topmost projection type.

61



2. Look for a link of the aforesaid projection type, the head of which is the

aforesaid token. If there is more than one such link take the one the

dependent of which is furthest from the head.

If the projection type is not overt, i.e. if there are no links of this projection

type from a token in the linkage, do either

(a) if the projection type is obligatory, project the token according to

the projection type and then convert the remaining sub-linkage, i.e.

the sub-linkage the root of which is the aforesaid token, to a subtree,

beginning with the next lower projection type (2ff.), and attach the

subtree to the projection of the token, or,

(b) move on to the next lower projection type, if the projection type is

optional.

3. Project the head according to the definition of the projection type.

4. Convert the dependent sub-linkage, i.e. the sub-linkage the root word of

which is the dependent of the aforesaid link, to a subtree (1ff.) and attach

this to the projection of the head.

5. If the projection type is recursive, i.e. if there can be more than one link of

this projection type from the same head, convert the remaining dependent

sub-linkages to subtrees (1ff.) and do either

(a) attach them directly to the projection of the head, if the projection

type is determined to produce flat structures, or,

(b) if the projection type is determined to produce stacked structures,

attach them to the projection of the head, one by one, by working

inward from the one furthest from the head, and adding a stacked

projection of the head for each.

6. Convert the head sub-linkage, i.e. the sub-linkage the root of which is the

head of the aforesaid link, to a subtree, beginning with the next lower

projection type (2ff.), and attach the subtree to the aforesaid projection

of the head.

If there is no lower projection type, attach the head as a leaf to its aforesaid

projection.

62



8.2.2 The root link (linkfeatures:rootlink/2)

As stated in section 2.2.2.4, because of the lack of directionality in original Link Grammar

linkages there is no self-evident root word. Nevertheless, it has become evident that one

implication of the conversion operations developed above is that the linkage has the form

of a tree, which again implies that there must be a root node, from which every leaf in the

tree can be reached. In ExtrAns linkages, walls can serve as such root nodes. But since

they are dummy elements (denoting the boundary of the sentence) rather than syntactically

motivated, the concept of walls is abandoned for the conversion and the root word is chosen

on a syntactic basis. Link2Tree defines the root word as the head of a so-called root link

type. The user can define such root link types in the rule set. An S (subject) link might

be the most common root link type to choose. If the user wanted to convert single noun

phrases rather than whole sentences, other link types may be defined to denote the root

word. The predicate rootlink/2 in the module linkfeatures.pl takes a link type as its

first and a list of required subscripts to the link type as its second argument. If one sticks

to the subject link as root link, the appropriate Prolog fact might look like (87).

(87) rootlink(’S’, AnySubscripts).

The possibility that multiple links of the root link type may be present in a more complex

sentence must be considered. This potential problem can be solved in two ways: One

possibility is to make sure that the link, the head of which is intended to be the root word,

is the one processed first, i.e. the first link of this link type in the link list. Linkages list

those links first, the left end of which is further left, and, if two links have the same left

end, the one the right end of which is further right. If one supposes that S is to be the root

link type, this method works for linkage (88), which is represented in a simplified way in

(89), where subscripts and irrelevant links are not shown. Suppose, S was defined as root

link type, the S link between I and join would be taken as the root link according to the

aforementioned heuristics. As for the choice of the root link, linkage (89) does therefore

not cause any problems.20

(88) +---------------------Xp---------------------+
| +------MVs----+ |
+-Wd-+-Sp*i-+---Ox--+ +-Cs-+---Sp--+ +-RW+
| | | | | | | | |

///// I.p join.v061 you.p if.c you.p come.v011 . /////

20It is evident, that there is at least one other difficulty with linkage (89), however, since the token come
cannot be reached from the root word join. One would therefore have to define a relinking rule which
would make come the dependent of the C link.

63



(89) I join you if you come
�
S

W
O

W

MV

W
C
�

S

The method fails, however, for linkage (90). The S link of the subsidiary clause would be

taken as the root link, instead of the one in the main clause. Such complications can be

avoided by making sure that no other links of the same type occur in a linkage by defining

appropriate relinking rules. The S link of a subsidiary clause may thus obtain another

label in the relinking process to guarantee that the finite verb of the main clause is taken

as the root word of the linkage, as shown in (91).21

(90) If you come I join you
W

C
�
S

W

CO

�
S

W
O

(91) If you come I join you
W

C

�
SS

�

CO

�
S

W
O

The module merge2tree.pl is started up by the call of get tree of links/1, which

returns the constituent tree. This predicate extracts the root word of the linkage by

calling linkinfo:get rootlink/2 and checking if there is a link of the root link type in the

linkage. If this is the case, the predicate hands the head of this link over to merge2tree/2,

which in turn returns the resulting tree structure to it.

8.2.3 Starting the conversion (merge2tree/2)

The predicate merge2tree/2 initializes the conversion of a (sub-)linkage to a tree. If the

category of the root word delivered to it is projectable, merge2tree/2 determines the

topmost projection by calling get toplevel/1 from the module linkinfo.pl according

to step 1 of the algorithm in 8.2.1 and initializes step 2. As pointed out at the end of

section 3.6, some constituency theories like GPSG claim the existence of non-projectable

categories. In Link2Tree, the user can define which category is projectable by applying the

predicate projectable/1 in the rule set. In merge2tree/2 the projectability of a token is

21Note that also the problematic CO and C links have been relinked from (90) to (91). This has nothing
to do with the finding of the correct root link.

64



checked by calling cat is projectable/1. This predicate tries to locate the category of

the token in its feature matrix, and if there is no feature cat present in the AVM, tries to

extract the category information from the topmost link the head of which is the aforesaid

token. After having found the category of the token, it checks its projectability via the

interface predicate is projectable/1 from module linkinfo.pl. The predicate fails, if

no category can be found for the token. Non-projectable tokens are turned into a leaf, i.e.

into a tree consisting of a preterminal and a terminal, by the predicate add leaf/2, in the

form of [MinorCategory, Word].

In addition to this, if the category is projectable, merge2tree/2 calls the predicate

trace/1, which removes links, the head of which is the root word, and the projection type

of which is trace. This is explained in more detail in 8.3. Trace links are a way to solve

the problem of cyclic link types (like B links) and to represent movement.

8.2.4 The core of the conversion (projection/3)

The predicate projection/3 is called at the end of the first merge2tree/2 predicate. It

distinguishes three cases, which comprise step 2 of the algorithm. The first case is called

if a link of the demanded projection type and with the demanded head exists. The fea-

tures from its link type and subscripts to be added to the head and the dependent of

the link are extracted from the rule set via linkfeatures/5 from module linkinfo.pl.

The lists of features are added to the AVMs of the head and the dependent token by

add features to both/4 and the link is removed. projection/3 then triggers step 3

(project(HeadNr, ProjType, ProjNr)) and step 4 (merge2tree(DepNr, DepTree)) of

the algorithm: a projection of the head is created and the dependent sub-linkage is con-

verted to a subtree. Foot features are added to the AVM of the projection by apply ffp/2.

Finally, recursive projection/4 is called, which corresponds to step 5 of the algorithm.

The other two cases of projection/3 are called if no link of the demanded projection

type exists. They stand for steps 2a and 2b of the algorithm.

8.2.5 Projection in Link2Tree (project/3)

The predicate project/3 creates a projection of a token according to the specified pro-

jection type. It first fetches the list of features defined in the projection type definition.

It then projects the AVM of the token, creating a new AVM identifier and assigning

copies of all head features and foot features of the token to it by calling apply hfp/2

and apply ffp/2 respectively. Features are defined as head features or foot features in

65



the predicates headfeature/1 and footfeature/1 in the rule set. Last, the AVM of the

projection is updated by the features defined for it in the projection type definition, e.g.

the bar level is adapted in this way. Note that if there is a dependent subtree attached to

the projection, the Foot Feature Principle (see also 3.5) is applied by calling apply ffp/2

in the parent predicate projection/3.

8.2.6 Recursive projection types (recursive projection/4)

The predicate recursive projection/4 deals with recursive projection types, i.e. with

projection types that can be realized more than once for the same head. It distinguishes

three cases, the first two of which correspond to step 5 of the conversion algorithm. The

reader is referred to section 8.2.1 for a description of their function. The third case of

recursive projection/4 is the break condition of the predicate, which is called if no

more links of the projection type exist or if the projection type is not defined as recursive.

It calls next projection/3.

8.2.7 Moving on in the ranking (next projection/3)

At the point where all dependent subtrees of a head (the links of which are of the same

projection type) have been treated, the conversion goes on with the link(s) of the next

lower projection type. This happens in steps 2a, 2b and 6 of the algorithm. To move on

to the link(s) of the next lower projection type, next projection/3 is called. It takes the

previous projection type and the head as its first two arguments and returns the remaining

subtree of the head in its third argument. next projection/3 makes use of the forth

argument of treelevel/5 to receive the information of the next lower projection type. It

calls the interface predicate get treelevel/5 from linkinfo.pl.

If the bottommost projection type has already been reached, i.e. if the forth argument

of treelevel/5 is the empty list [], the predicate attaches a leaf subtree (the word and

its preterminal node) by calling add leaf/2.

8.3 Trace links (trace/1)

Section 8.2.3 explained that there is a program inherent projection type called trace.

Links of this projection type are treated in a special manner: They are removed before the

actual conversion of the sub-linkage they belong to. The head and the dependent of such a

66



link obtain an additional feature trace=TraceIndex and remain interrelated in this way.

Trace links can be used to solve the problem of the cyclic B links.

B serves various functions involving relative clauses and questions. It connects tran-

sitive verbs back to their objects in relative clauses, questions, and indirect questions

(“The DOG we CHASED”, “WHO did you SEE?”); it also connects the main noun

to the finite verb in subject-like relative clauses (“The DOG who CHASED me was

black”.)

(Temperley et al., 2000)

Certain link types can thus be defined as trace links in order to exclude them from the

conversion, since they violate the constraints of the dependency tree, but still preserve the

information of the connectedness of their head and dependent.

The B link in (92), for instance, is an obstruction to the conversion of the sub-linkage

according to the algorithm as it introduces circularity to it. However, one may want to

keep the information on the relation the link expresses. The user may therefore define

a relinking rule for B links in such environments that changes (92) into (93) during the

relinking process.

(92) The file I copied exists.
�

B

(93) The file I copied [] exists.
W�

T[trace]

The predicate trace/1 is called to treat all the trace links of a head which is the argument

of the predicate. It succeeds if no trace link exists with the given head. If there are trace

links, they are removed, the features defined in the link type definition are added to the

AVM of the head and the dependent. A new trace index is created and the special feature

trace=TraceIndex is also added to both the AVM of the head and of the dependent.

Note that the program inherent keyword trace must not be used to denote a user defined

projection type in treelevel/5, neither can it be used for a user defined feature.

67



9 The module nicetree.pl

The constituent tree delivered by the conversion module merge2tree.pl represents dom-

inance relations but does not consider linear precedence. Therefore, one function of the

module nicetree.pl is to rearrange the constituents in the tree so that their order com-

plies with the word order of the original sentence. The other function of the module is to

provide a tool for the replacement of node identifiers by labels for category and bar level.

Trees labeled in this way are used for the graphical displaying by draw.pl.

9.1 Linear precedence (wordorder/2)

The predicate wordorder/2 takes the unsorted constituent tree delivered by the conversion

module merge2tree.pl as its input in the first argument. It returns the sorted tree as the

second argument. It sorts the constituents of the tree according to their feature position.

This feature is thus inherent to the program rather than user defined. As it will be shown

below, in most cases it is generated automatically, and even where it is added by the

user, namely if additional tokens are inserted by relinking rules, its value is calculated by

Link2Tree.

9.1.1 Token positions

The feature position is assigned to the AVM of a token by the predicate assert tokens/1

in linkage2links.pl (cf. 7.2.3). The position of tokens of the original input corresponds

to the token identifier, which is generated by numbering the tokens in the order of their

occurrence in the token list of the linkage, which is equal to their order in the sentence.

Since position is defined as a head feature in the rule set, every projection of a token

obtains the position of its head. Like this, the relative order of sister constituents can be

guaranteed throughout the tree.

The position of tokens inserted by a relinking rule, however, must be carefully calculated

to preserve the linear order of constituents. The module linkage2links.pl provides a set

of predicates for the definition of the position of such a token in the correction rules in the

rule set.

9.1.2 Recursive quicksort

The predicate wordorder/2 first cuts the node (i.e. the first element) from the tree list

it is given and sorts the remaining elements (the daughters of the node) according to the

68



value of their feature position.

For the sorting of the constituents the quicksort algorithm is applied. Its common

Prolog realization has been adapted to the situation in Link2Tree: The comparison of two

elements of the list to be sorted (here, the sisters of a local tree) is extended as shown in

listing (94) since the position of the constituents rather than their node identifiers need to

be compared.

(94) split(_X, [],[],[]).

split(X, [Y|Tail], [Y|Small], Big) :-

% common variant: X > Y, !, split (X, Tail, Small, Big).

X=[XID|_], Y=[YID|_],

feature(XID, position=PositionX),

feature(YID, position=PositionY),

PositionX > PositionY, !,

split(X, Tail, Small, Big).

split(X, [Y|Tail], Small, [Y|Big]) :-

split(X, Tail, Small, Big).

Since the daughter elements of a tree list can be tree lists themselves, the sorting has

to be executed recursively. An auxiliary predicate recursivesort/2 is implemented to

introduce this recursion to the sorting process.

9.2 Labeled trees (nodelabels/2)

The predicate nodelabels/2 recursively works through the tree structure given to it, simi-

lar to wordorder/2 above. It replaces the identifier of the node of a tree by a label, and does

so for the nodes of all its daughter trees, and so on recursively. nodelabels/2 is only called

from link2tree/3 in link2tree.pl and serves the graphical display by display tree/1

only. It is not relevant for the further processing of the Link2Tree output. The predi-

cates matrixnr2label/2 and recursivelabels/2 control the recursive execution of the

labeling, similar to quicksort/2 and recursivesort/2 in the sorting above.

The predicate add catbar2label/2 extracts the value of the features cat and bar for

every node and composes them to a node label. If the program option bar is set to 1, the

bar numbers are transferred into letters as defined in bar/2 by barnr2barletter/2: X2

becomes XP, X1 becomes Xbar and X0 becomes X. If the program option display traces

is set to 1, the trace indices of the nodes are extracted and added to the label by

69



add trace2label/3. A labeled tree with visible traces output by display tree/1 may

thus look like the extract shown in (95).

(95) d2.t0
|
|

d1.t0
|

+-----------------------+
d0.t0 n2

| |
| |
| n1
| |
| +--------------------+
| n0 c2
| | |
| | |
| | c1
| | |
| | +----------------+
| | c0 i2
| | | |
| | | +------------+
| | | d2 i1
| | | | |
| | | | +-----------+
| | | d1 i0 v2
| | | | | |
| | | | | |
| | | d0 | v1
| | | | | |
| | | | | +-------+
| | | | | v0 d2.t0
| | | | | | |
| | | | | | |
| | | | | | d1.t0
| | | | | | |
| | | | | | |
| | | | | | d0.t0
| | | | | | |
| | | | | | |
the file [] I [] copied []

If the program option display nodeid is set to 1, the node identifiers are shown in

front of the node labels in the tree. They are added to the label by the predicate

add matrixnr2label/3.

Note that if the user wants to make use of the graphical screen displaying supported by

nodelabels/2, the features for category and bar level have to be called cat and bar in

the rule set. Otherwise, they are not recognized by add catbar2label/2 and blank labels

will be produced.

70



10 The module features.pl

The module features.pl is responsible for initializing, storing and updating the feature

structures of the nodes in the constituent tree. It stores the features and their values as

dynamically asserted Prolog facts feature/2, where the first argument is the node identifier

and the second argument the feature-value pair. Feature-value pairs are represented as

Prolog Terms of the form Feature=Value. All instantiations of feature/2 that have the

same node identifier in their first argument form together the AVM of that particular node.

10.1 Simple feature structures in Link2Tree

At its current state, Link2Tree only deals with simple feature structures. Simple feature

structures take only non-complex values, i.e. values that are not feature structures them-

selves (cf. section 3.4). The values are intended to be simple Prolog terms – either atoms

or numbers. Apart from storing the feature structures, the module features.pl provides

a set of tools to initialize and update AVMs.

10.1.1 create matrix/2

The predicate create matrix/2 initializes a new AVM. It first produces a new node iden-

tifier by calling make new matrixnr/1. This auxiliary predicate stores the last used node

identifier in the predicate last matrixnr/1. If it is called, it increases this number by 1

and returns it. The old number is replaced by the increased one in last matrixnr/1. If

there has been no node identifier used so far, the predicate initializes one with the value 0.

create matrix/2 returns the node identifier of the newly initialized AVM in its second

argument. In its first argument it takes a list of feature-value pairs. These are added to

the new AVM via calling add featurelist to matrix/2.

10.1.2 update feature/2

The predicate update feature/2 takes the node identifier of the AVM where a feature shall

be updated as its first and the feature-value pair to be updated as its second argument.

If the feature already exists in the AVM (which is usually the case, since the predicate is

only called under such circumstances), update feature/2 replaces the existing value of

the feature by the value in its second argument. If the feature does not exist yet, it is

added to the AVM.

71



10.1.3 add featurelist to matrix/2

The predicate add featurelist to matrix/2 adds the list of feature-value pairs specified

in its second argument to the AVM specified by the node identifier in its first argument.

It checks whether each feature of the list already exists in the AVM. If it does, the value

of the feature is updated by calling update feature/2. If the feature does not yet exist in

the AVM, a new feature/2 fact with the specified node identifier and feature-value pair

is asserted dynamically.

10.2 Outlook: complex feature structures in Link2Tree

It may be desirable to provide facilities to handle complex feature structures in Link2Tree.

Complex feature structures in constituent trees (cf. 3.4) are especially welcome in relation

to unification based grammar theories, like HPSG, GPSG, and others. Gazdar and Mellish

(1989:228) propose a broadly accepted Prolog notation for complex feature structures. For

implementation purposes, they represent a feature structure as a list of feature-value pairs

whose tail is left open as a variable. Müller (1998:143), who has adopted the method of

Gazdar and Mellish (1989), points out that the open tail is important: it allows further

feature-value pairs to be added without the necessity to create a completely new Prolog

structure. In general, an AVM is represented as a Prolog list, the tail of which is a

variable. Feature-value pairs are bundled into a single Prolog structure that can appear as

an element of a list. Features and their values are connected by the operator “:”, whose

syntactic properties may be defined as op(500, xfy, :).22 Values that are simple are

represented by a Prolog atom. Complex values are represented as a list of feature-value

pairs with an open tail themselves. Feature structure (96) is therefore represented as (97).

(96)

pos N

agr

num Sg

pers 3




(97) [pos:n, agr:[num:sg, pers:3| ]| ]

The integration of such facilities to Link2Tree would induce several revisions in the program

code, not only in the module features.pl but also in the rule set, and wherever features

22Note that the predicate :/2 sometimes conflicts with the module system in SICStus Prolog, especially
if used together with Emacs. The use of ::/2 instead is therefore recommended.

72



serve as program inherent keywords (e.g. cat or trace). I suggest to do the following

alterations if the user/implementer wants to expand Link2Tree in such a way.

As they are part of complex structures, features can no longer be represented by a

simple label only. Paths may indicate the exact position of the feature in the AVM.

The former feature-value pair num=pl may thus be represented as [agr:[num:pl| ]| ].

Feature lists given in the current rule set (cf. part III) would have to be replaced by complex

feature structures. A feature list [num=sg, pers=3] given in a rule would thus be altered

to the AVM [agr:[cat:n, bar:0| ]| ]. Therefore, the interface predicates provided in

features.pl would have to be adopted to the new situation. Adding a feature list to an

AVM would then mean adding an AVM to an AVM. This resembles the notion of graph

unification, which is crucial to the treating of complex feature structures. For the purposes

of Link2Tree, however, an expansion of this notion is necessary, as the unification must

not happen in both directions but only in one, namely the existing AVM being updated

by the AVM given in the rule. Furthermore, conflicting feature-value pairs must not make

the unification fail but the existing value must rather be altered to the value delivered by

the rule.

The core of an adopted module features.pl would therefore be the predicate

dag update/3 given in listing (98), which takes an AVM in its first argument and updates

it by the AVM given in its second argument, delivering the updated AVM in its third

argument.23 Different existing interfaces may be rewritten for it: create matrix/2,

update feature/2, add featurelist to matrix/2.

23The expression ‘DAG’ stands for ‘directed acyclic graph’, which is another description for complex
feature structures.

73



(98) % dag_update(+DagToUpdate, +UpdatingDag, -UpdatedDag)

dag_update(X, X, X):-!.

dag_update([F:V1|R1], [F:V2|R2], [F:V3|R3]):-

!, % do not call next clause if pattern matched

dag_update(V1, V2, V3),

dag_update(R1, R2, R3).

dag_update([G:V1|R1], [F:V2|R2], M):-

!, % do not call next clause if pattern matched

dag_update(R1, [F:V2|_], R3),

dag_update([G:V1|R3], R2, M).

dag_update(_V1, V2, V2).

The predicate dag update/3 updates complex feature structures as demonstrated in (99)

and (100) below. In example (99), features that do not yet exist in the AVM are added

to it. In (100) an AVM is updated by another AVM, which contains features that already

exist in the original AVM. The example shows the projection mechanism, i.e. the changing

of the bar level of a node.

(99) | ?- dag_update([cat:n|_], [agr:[num:pl|_], bar:0|_], UpdatedAVM).

UpdatedAVM = [cat:n,agr:[num:pl|_A],bar:0|_B] ?

(100) | ?- dag_update([cat:n,agr:[num:pl|_],bar:0|_], [bar:1|_], ProjectedAVM).

ProjectedAVM = [cat:n,agr:[num:pl|_A],bar:1|_B] ?

The predicate feature/2 may be kept as an interface predicate to get the value of certain

features. For the storage of the AVMs, however, I propose to define a predicate avm/2,

the first argument of which is the node identifier and the second argument is the complete

AVM of that node.

Wherever feature labels denote features in the existing Link2Tree, they would have to

be replaced by complete path indications: [agr:[num:NUM| ]| ] instead of num=NUM.

74



Part III

The rule set

75



76



11 The rule set and its interface

The module linkfeatures.pl contains the rule set of Link2Tree. It comprises information

on the way linkages must be converted to constituent structures, how they must be pre-

processed (correction rules), and it stores the program options. Linguistically motivated

adaptations, e.g. altering the structure of the output constituent trees, need only be made

in this file.

The module linkinfo.pl provides interfaces to the rule set. The information stored

in linkfeatures.pl can only be accessed through linkinfo.pl. The following sections

describe what tools the interface module provides to handle particular information of the

rule set.

Note that some declarations of the rule set must not be altered. They are relevant for

a proper working of the converter. Labels for features and projection types may be freely

chosen by the user – apart from a restrictred number of program inherent labels that must

be used to guarantee a proper working of the converter. These obligatory labels comprise

the feature labels cat (8.2.3), position (9.1.1), hd (7.2) as well as the projection type

trace (8.3). The three features cat, position and hd are initialized automatically during

the process. The use of the projection type trace depends on the syntactic model one

chooses for the output constituent structure.

The module linkfeatures.pl imports special syntax predicates for relinking rules

from the modules linkage2links.pl and features.pl.

77



12 Conversion rules

12.1 Tag features

In ExtrAns, tags are added to the tokens. The creators of Link Grammar only use tags

to distinguish different lexicon entries for a word, such as run.n and run.v (the first

stands for the noun run, the second for the verb). In Link Grammar, tags are thus only

used if a particular lexicon entry is ambiguous. Schneider has extended this system of

tagging and added word-class based tags to each word in the lexicon (except for multi-word

entries). These tags contain information on the linguistic category and the subcategorizing

of the words. Readers are referred to Schneider (1999) for a detailed description of this

fine-grained tagging system. In Link2Tree, however, the user may not want to loose the

information provided in the word tags. As shown in section 7.2.3, it is added as a set

of feature-value pairs to the AVM of the respective token during the reformatting of the

linkage. The user defines these tag features in the rule set predicate tagfeatures/2.

12.1.1 tagfeatures/2

Tags consist of a string of characters, each of which denotes a sub-category of the category

that is specified by the character to its left. For the purposes of the Link2Tree rule set,

however, they are represented as Prolog lists of atomic terms. The tag .n2s, for instance,

denoting plural nouns ending in s, is represented as [‘n’,‘2’,‘s’]. One may want to

assign to a word with the aforesaid tag the features cat=n for the category, mass=pl ,

in order to express that it is countable rather than a mass or a singular countable noun,

and plend=s to denote its plural ending. One could do so by stating rule (101).

(101) tagfeatures([‘n’,‘2’,‘s’| ], [cat=n, mass=pl, plend=s]).

It is recognizable from (101) above that the first argument of tagfeatures/2 denotes the

list of tags and the second argument is the list of feature-value pairs to be added to the

token. If the user is working with any form of X-bar theory the feature bar=0 can be

added to the list since tags always denote constituents on the lowest bar level. Note that

there is an unspecified rest added to the list of tags. This enables Link2Tree to recognize

subcategorizes of this particular tag class even if the user has not stated them explicitly.

Declaration (102) is applied to words that take .n as a tag, but also to all sub-categories

of this tag class, such as .n2s, .n2x, .n3, .n4, .np and .nt.

(102) tagfeatures([‘n’| ], [cat=n, bar=0]).

78



The order of such declarations becomes relevant if one wants to further specify certain

but not all sub-categories of a tag class. For reasons of Prolog unification, the declaration

for the subclass has to be written first, followed by the more general declaration of the

superclass, like in (103).

(103) tagfeatures([‘n’,‘2’|_], [cat=n, bar=0, mass=pl]).

tagfeatures([‘n’|_], [cat=n, bar=0]).

12.1.2 get tagfeatures/3

The interface for tagfeatures/2 in the interface module linkinfo.pl is the predicate

get tagfeatures/3. It takes a tagged token as its input in the first argument and returns

the list of feature-value pairs for the tag of this token in its second and the word form

without tag in its third argument. The predicate first splits the tagged token into a list of

ASCII numbers for its characters (atom chars/2) and then extracts the characters after

the dot, i.e. the tag, as well as the word form from this list (get tag/3). The ASCII

list of the tag is transformed back to a list of characters such as described in 12.1.1 above

(make chars list/2).

get tagfeatures/3 checks if there is a tagfeatures/2 declaration in the rule set the

first argument of which unifies with the tag character list of the token. It takes the first

declaration that unifies. This is why the order of the declarations is relevant: more specific

declarations must unify first. If the predicate does not find a unifying declaration in the rule

set an empty list is returned, otherwise the feature-value pairs specified in the declaration

is delivered.

The predicate is called to separate the word form from its tag in add token/3 in the

module linkage2links.pl.

12.2 Link features

Link types and their subscripts provide information on the type of dependency between

the head and the dependent of a link. Whereas link types usually store functional infor-

mation, subscripts provide additional morphologic or semantic features. A part of this

various information is transferred to the realization of a projection type for a link type,

the remaining information must be added as feature-value pairs to the AVMs of the head

and the dependent of the link.

79



Link types (Link Grammar connectors) are represented as abbreviations of one or more

upper-case letters. Subscripts consist of lower-case letters, each character being one sub-

script. As certain link types may take multiple subscripts, the rules for link types and

subscripts must be declared separately in linkfeatures.pl. Otherwise a blow-up of the

rule set would be the consequence since the user would have to define a separate rule for

every possible combination of link types and subscripts. A subscript, however, can have

different meanings depending on the link type it is combined with. Therefore, the user

may have to define multiple rules for certain subscripts.

12.2.1 typefeatures/4

Link types are defined in the predicate typefeatures/4 in linkfeatures.pl. The argu-

ments of this predicate are (i) the link type, (ii) a list of feature-value pairs to be assigned

to the head, (iii) a list of feature-value pairs to be assigned to the dependent, and (iv) the

projection type of this link type (cf. 8.1). EA links, which connect adjectives to modifying

adverbs, can thus be defined as in (104).

(104) typefeatures(‘EA’, [cat=a, bar=0], [cat=adv, bar=0], adjunct).

12.2.2 subsfeatures/4

The rule set predicate subsfeatures/4 defines the subscripts to the link types. Its ar-

guments are (i) the subscript, (ii) a list of the link types, in combination with which the

current definition of the subscript is applied, (iii) a list of feature-value pairs to be assigned

to the head, (iv) a list of feature-value pairs to be assigned to the dependent. O links,

for instance, connect verbs and their objects, S links connect verbs and their subjects.

Both link types can be combined with the subscripts for singular and plural, s and p. If a

subject link is said to be singular, the number of both, the verb and the subject, must be

singular. However, if an object link is said to be singular, only the number of the object

is defined. The verb can be either singular or plural. The user must thus formulate two

different declarations for subscript s, as shown in (105).

(105) subsfeatures(‘s’, [‘O’], [], [num=sg]).

subsfeatures(‘s’, [‘S’], [num=sg], [num=sg]).

80



12.2.3 split linktype/3

The interface module linkinfo.pl provides two predicates to deal with link type and

subscript declarations. split linktype/3 takes a link type and its subscripts, and returns

the upper-case letter link type in its second and a list of the lower-case letter subscripts in

its third argument. This operation is required for the accessing of the separate declarations

in the rule set.

12.2.4 linkfeatures/5

The predicate linkfeatures/5 in linkinfo.pl delivers (i) the list of feature-value pairs

to be assigned to the head, (ii) the list of feature-value pairs to be assigned to the de-

pendent, and (iii) the projection type for a link type and its list of subscripts specified

in the first two arguments. It first extracts the feature lists defined for the link type

(get typefeatures/2) and then appends the feature lists defined for the subscripts to

them (add subsfeatures/4).

12.3 Projection definitions

Several rule set predicates define the way links are converted to particular X-bar structures,

i.e. the way their heads are projected. The reader is referred to section 8 for an insight

into what these predicates are used for. Most of them have already been mentioned in that

section.

12.3.1 rootlink/2

Section 8 has shown that one implication of the developed conversion operations is that the

linkage to be converted must be a tree structure itself, which again implies that there is a

root word in this linkage. The predicate rootlink/2 defines the link type (and subscripts)

the head of which can be the root word of the linkage. Usually, the user may only want

complete sentences to be accepted, thus S links might be declared to be the only root link

type. The user may, however, want the converter to process individual determiner phrases

(or noun phrases respectively) if it has not found a whole sentence in the input linkage.

The user may thus add a second declaration to the rule set, which allows the converter

to do so (106). Note that the order of the declarations is relevant in this case, since the

converter is meant to start with a D link only if it has not found an S link.

81



(106) rootlink(‘S’, _AnySubscripts).

rootlink(‘D’, _AnySubscripts).

The second argument of the predicate is a list of subscripts to which the root link is

restricted. Usually, this feature might not be used, like in the example above. The converter

fails if there is no root link defined in the rule set. Note that the predicate rootlink/2

can only succeed once per linkage. If D links were defined as the only root link type, and

the input was a whole sentence containing more than one determiner phrases, Link2Tree

would only convert the first determiner phrase and omit the rest of the sentence.

The interface predicate to rootlink/2 in the module linkinfo.pl is is rootlink/2,

which delivers the two arguments of the former.

12.3.2 treelevel/5 and toplevel/1

The predicate treelevel/5 defines the projection types and thus the form of X-bar theory

to be applied to the conversion. In 8.1, a most basic form of X-bar theory has been met,

which is represented in declaration (107).

(107) treelevel(projection, flat, obligatory, [], [bar=1]).

The first argument of the predicate defines the name of the projection type. Note that

no variables, e.g. AnyProjection, must be used even in this most general case since the

variable would be instantiated with the first projection type met in the typefeatures/4

declarations. Any other projection types would be ignored. It is necessary that the rule

set is consistent, i.e. in this case that the projection types used for the definition of the

link types are defined explicitly in treelevel/5.

The second and third argument of the predicate denote recursiveness and optionality

respectively. Note that the values of these arguments are inherent to the program: only

the predefined keywords are allowed to be used at these places. The possible values for the

second argument are flat, stacked, nil. The third argument can take either obligatory

or optional as its value. Refer to section 8 for a description of the second and the third

argument of the predicate.

The forth argument of treelevel/5 is used to express the ranking of the protection

type: it denotes the next lower projection type. All projection type declarations in the

rule set form a chain of ranking. A projection type which stands outside this chain is

ignored by the converter. The fact that a projection type is part of this chain does not,

of course, mean that it must be overtly present in the tree. An optional projection type

82



may not occur in the tree if there is no corresponding link in the input linkage. The lowest

projection type takes the empty list as its forth argument. Which of the defined projection

type is the topmost projection type is declared separately in the predicate toplevel/1.

The features that are added or updated in the AVM of the projection are declared in

the last argument of treelevel/5 as a list of feature-value pairs. Usually, this refers to

bar level only.

get treelevel/5 and get toplevel/1 are the interface predicates to the above pred-

icates in the module linkinfo.pl.

12.3.3 projectable/1

Each category used in Link2Tree must be defined as projectable or non-projectable. Cat-

egories that are not projectable are added as leafs to the tree directly. As by definition

they cannot be the head of a larger constituent, links with a non-projectable token as head

are omitted. Projectable categories are listed in projectable/1 facts in the rule set. This

special relevance of the category feature induces that cat is not only a program inherent

keyword but is also compulsory. Tokens that do not have a feature cat are treated as

non-projectable.

The corresponding interface predicate in linkinfo.pl is is projectable/1.

12.3.4 headfeature/1 and footfeature/1

The Head Feature Principle (HFP) and the Foot Feature Principle (FFP) propose that

the head features of the head of a tree must be shared with the mother node of that tree,

and the foot features of every daughter of that tree must be shared with its mother node.

In Link2Tree, the predicates apply hfp/2 and apply ffp/2 (called from projection/3

and project/3) in the module merge2tree.pl are responsible for the application of these

principles (cf. section 8.2.5).

Features are defined as head features (and thus transported from head to mother

in the tree) in the predicate headfeature/1. The interface to it is the predicate

is headfeature/1 in linkinfo.pl. Foot features are defined in footfeature/1, the

interface of which is is footfeature/1.

Note that the program inherent features position (9.1.1), hd (7.2) and cat (8.2.3)

must be defined as head features for reasons of proper processing.

The use of foot features, however, has to be considered carefully. As Link2Tree only

provides two feature transporting principles, namely HFP and FFP, no further constraints

83



on feature percolation can be made. In (108) two foot features are defined in a GPSG

manner: slash to denote an absent component and q to denote a question. slash is

satisfied if the component specified by it is met as a sister component to the node it

is assigned to. Both features are transported up the tree in Link2Tree by application

of the FFP. This works fine for q, which is meant to be transported to the top of the

sentence. slash, however, is transported further than it should be. In GPSG various

feature transporting constraints are defined to prohibit such difficulties.

(108) S[q+] *[slash np]
XXXXXX
������

NP[q+]
HHH

���
Det[q+]

What

N

fruits

S[slash np]
XXXXXX

��
������

V

do

NP
ZZ��

worms

VP[slash np]

ll,,
V

eat

NP
CC��
ε

In favor of being most generally applicable to various forms of constituency structures,

Link2Tree does not define further constraints on feature transport. The idea expressed by

slash, however, can be realized by traces as demonstrated in 8.3.24

If the constituency structure in (108) was slightly changed to the structure given in

(109), slash could be defined as a head feature and its transport would stop at the right

point.

(109) S[q+]``````̀��
       

NP[q+]
HHH
���

Det[q+]

What

N

fruits

V

do

S[slash np]
PPPP

����
NP
ZZ��

worms

VP[slash np]

ll,,
V

eat

NP
CC��
ε

As a conclusion one can state that in Link2Tree foot features are transported to the root

of the tree, whereas head features are only transported to the topmost projection of the

node they belong to.

24One possibility to stop the transport of a foot feature slash at the right point is to define a separate
projection type for the link type that connects the head of what fruits to the head of do worms eat, and
to set slash on 0 in the definition of that projection type.

84



13 Program Options

In the current version of Link2Tree three program options can be specified, all of which are

concerned with the graphical display of the resulting constituent tree. Options are stored

in the argument of the predicate option/1 in the form Option=Value.

The option bar indicates if bar level is represented by numbers (N0, N1, N2) or by

letters (N, Nbar, NP). The default value of the option is 0, which stands for the represen-

tation of the bar level by numbers (110).

(110) option(bar=0).

The option display traces adds trace indices (cf. 8.3) to the node labels created by

nodelabels/2 in nicetree.pl. This option is off by default (value 0).

The option display nodeid serves to add the identifiers to the nodes in the tree dis-

played on the screen. This may be useful if one wants to look up the features of particular

nodes. The default value of this option is 0, which means that the node identifiers are not

displayed.

Note that all three options take binary values, i.e. either 1 or 0.

Options are looked up by the predicate if option/1 (linkinfo.pl). They can be

changed by change option/1. If in the argument of this predicate the option name is

indicated only, the value of that option is switched. This is meant to work for binary

options only. If the argument has the form Option=Value, the corresponding option is set

to the indicated value. For the altering of their value, the option/1 facts in the rule set

are retracted and asserted again with their new value. The reader is referred to section 6.2

for a description of the user interface for option handling, which makes use of the above

predicates.

Options are inherent to the program. They need to be defined in the rule set. Their

declarations may not be removed.

85



14 Relinking rules

Before the actual conversion process is started a preprocessor corrects the input linkage

according to rules defined in the rule set. Such rules are called relinking rules in Link2Tree.

They are stated at the end of the module linkage2links. Readers are referred to sections

5.2.2 and 7.3 for a general idea of what relinking does. It has been stated that the user may

want to define relinking rules for several reasons: (i) The user may want to correct strange

links. Some links or link types returned by Link Grammar differ from the common view

of the corresponding syntactic construction. (ii) The user may want to remove irrelevant

links (e.g. those to the walls). (iii) The user may want to alter links so that they are

equivalent to a specific desired tree output.

The actual point of all the aforementioned reasons is to make the input linkage equiv-

alent to the particular form of constituent structure one desires as an output. A Govern-

ment & Binding-like tree output, for instance, might require relinking rules different from

the ones demanded by a GPSG-like constituent structure. What the equivalence of linkages

and constituent trees consists of has been discussed in section 8.1.

Apart from that, some link types need to be corrected for structural reasons. If these

link types are left uncorrected the converting algorithm cannot work properly. Link types

that violate structural constraints are discussed in 14.2.

14.1 The syntax of relinking rules

At first sight one is tempted to create a single predicate to define relinking rules in a merely

declarative way. This is fine for short relinking rules such as “remove links of link type X”

or “change the direction of links of link type Y”. However, as soon as one wants to define

correction rules for more complex situations, the former approach produces Prolog facts of

immense size, containing multiple-line arguments. Declarations of such a size have proven

to be difficult to understand and extremely error-prone. Finally, one runs into severe

problems if one wants to insert new tokens, the positions of which have to be calculated in

relation to existing tokens.

What do relinking rules have to be able to express? They must (i) describe conditions

under which the rule is applied. These conditions may comprise constraints on the existence

or absence of certain links, several of which can be combined, or constraints on the value of

features of certain tokens, which again can be combined with other constraints. Relinking

rules must define what happens if the conditions are fulfilled: (ii) The removing and (iii)

86



adding of links and tokens, (iv) the asserting of features to the AVMs of certain tokens,

(iv) the calculation of the positions of newly added tokens. Finally, relinking syntax needs

to (v) provide facilities to find tokens to which links are re-linked.

The chosen syntax for relinking rules is easy to write and read, extendible, and still

keeps a declarative character. Relinking rules can be split into a multi-step process: “Check

conditions; remove links; insert tokens; add links; add features; a.s.o.”. This has been taken

into account when the decision about the syntax of relinking rules was made. It is desirable

to provide a syntax which is easily understandable and corresponds to the theoretical, i.e.

non-Prolog, representation of relinking rules as clearly as possible.

In Link2Tree, relinking rules are represented by the predicate relink/0. This predicate

is realized by Prolog rules the head of which is relink:- and the body of which consists

of several terms that describe the constraints under which the rule is applied and what

the rule does. These predicates are provided in the module linkage2links.pl. They are

imported into the rule set, together with feature/2 from features.pl, and make up the

syntax for relinking rules.

The module linkinfo.pl provides the interface to the relinking rules: the predicate

call rule/0 (111), which is called from do relinking in the module linkage2links.pl

(cf. 7.3).

(111) call_rule:-

relink.

14.1.1 Conditions

The first part of a relinking rules describes the condition under which the rule is applied.

Three predicates are used to express this condition: link/4, token/2 and feature/2. For

simple conditions, only one of these may be needed: A rule that removes the irrelevant

AA links simply takes condition (112). If the user wanted to include empty determiners

where there were no overt determiners, one might want to look for nouns that are not head

(or dependent, if DP-hypothesis were applied) of a D link and neither dependent of an

AN link, which connects noun-modifiers to following nouns. This would be expressed by

condition (113).

(112) link(HeadID, DepID, ‘AA’, Subscripts)

87



(113) token(_Token, TokenID),

feature(Token, cat=n),

\+link(TokenID, _, ‘D’, _),

\+link(_, TokenID, ‘D’, _),

\+link(_, TokenID, ‘AN’, _)

14.1.2 Removing and adding tokens, links and features

The second part of a relinking rule describes the relinking that is done by executing the rule.

The module linkage2links.pl provides the predicates remove link/4 and add link/4,

which both take the same arguments as link/4, furthermore remove token/2 with the

arguments of token/2, and add token/3, the first argument of which is the token, the

second argument a list of feature-value-pairs to be added to its AVM and the third the

identifier of its AVM. add features/2, finally, adds a list of feature-value-pairs specified

in its second argument to the AVM, the identifier of which is its first argument.

The user may want to have consecutive indices at hand for relinking rules, e.g. for

traces. This facility is provided by new nr/2. The predicate new nr/2 returns consecutive

numbers for the number set specified in its first argument. The user can thus define as

many sets of numbers as needed, each of them starting with 0.

14.1.3 Finding remote tokens

Some link types may need to be re-linked to another token, i.e. obtain another head

and/or dependent. It is not always trivial to find the needed token since the relation

between a known token and the searched token may pass several links. The module

linkage2links.pl provides the predicates remote head/4 and sub root/2 to express

such far distant relations. These two predicates are discussed by the means of the fol-

lowing example. In linkage (114), the BIq link violates the root word constraint: the

subordinate clause cannot be reached from the root word is in the main clause. One may

therefore want to re-link it to killed, giving it a new dependent, as shown in (115).

(114) The question is who killed Kennedy.
�

D
�

S
W

BIq
�
S

W
O

88



(115) The question is who killed Kennedy.
�

D
�

S
W

BIq

�
S

W
O

The relation between the dependent of the BIq link (who) and killed can simply be ex-

pressed by two Prolog facts in a relinking rule (116).

(116) link(Is, Who, ’BI’, [’q’|_]),

link(Killed, Who, ’S’, _)

The searched token (killed in our example) may however be further away from the known

one (who). If the example sentence was The question is which man killed Kennedy, this

would be the case as shown in linkage (117), which is corrected in linkage (118).

(117) The question is which man killed Kennedy.
�

D
�

S
W

BIq
�
D

�
S

W
O

(118) The question is which man killed Kennedy.
�

D
�

S
W

BIq

�
D

�
S

W
O

To avoid the necessity to write another rule to transform linkage (117) into linkage (118)

the predicate remote head/4 is defined. This predicate starts at the token specified in its

first argument and moves up the links until it comes to a link of the type and subscripts

specified in the second and third argument. remote head/4 returns the head of that link.

Prolog fact (119) describes the relation between which and killed in linkage (117) as well

as the relation between who and killed in linkage (114) above.

(119) remote head(WH, ’S’, AnySubscripts, Killed)

The predicate remote head/4 can be used as long as one can specify the type and subscripts

of the topmost head-link explicitly. However, this may not be useful for the described

examples, since the type of the topmost head-link may vary. Linkage (120) shows that not

only S but also P (and probably other) links can serve as the topmost head-link to the

WH-word in the subordinate clause. Linkage (120) is to be corrected to linkage (121).25

25Note that the crossing links in linkage (121) indicate that the linkage violates the projectivity con-
straint. This would result in a wrong word order in the constituent tree – the dominance relations would
be correct, though. This is discussed in section 14.2.5.

89



(120) The question is what Kennedy was killed for.
�

D
�

S
W

BIq
�

S
W

P
W

MV
W

B

(121) The question is what Kennedy was killed for.
�

D
�

S
W

BIq

�
S

W
P

W
MV

W

B

Therefore, the predicate sub root/2 is provided. It takes a token as its input in the first

argument and returns the root word of the sub-linkage that token belongs to. Prolog fact

(122) thus describes the relation between the WH-word and the root of the subordinate

clause killed in all three previous examples (114, 117, 120). Note that the output of the

predicate could also be is. In the relinking rule, the original BIq link would therefore have

to be removed before the calling of sub root/2 in order to guarantee that only the root of

the subordinate clause was returned.

(122) sub root(WH, Killed)

All different cases of BIq links can therefore be treated with one single relinking rule (123).

(123) relink:-

link(BIHead, WH, ’BI’, [’q’|BISubs]),

remove_link(BIHead, WH, ’BI’, [’q’|BISubs]),

sub_root(WH, SubRoot),

add_link(BIHead, SubRoot, ’BI’, [’q’|BISubs]).

14.1.4 Calculating new token positions

Particularly Government & Binding-like forms of constituency representation cause the user

to define relinking rules that insert additional tokens. These tokens are above all non-overt

tokens that represent functional categories, such as I (inflection), C (complementizer) or

D (determiner). Other possible candidates are empty categories, such as the traces of

moved objects in relative clauses or moved auxiliaries in subject-verb inversion. Other

than dominance relations, linear precedence is irrelevant for semantic processing of the

resulting constituency tree. For an accurate syntactic analysis, however, one may want the

90



inserted token to be at its appropriate position in the sentence. Relinking syntax therefore

has to provide instruments to calculate the position of such newly inserted tokens.

If a new token is inserted, there is always a head-dependent relationship to an existing

token, to which the new token is going to be linked. Either, the new token is dependent

on an existing one, or it is going to be the head of such a token. The position of a new

token can thus be calculated in relation to the position of an existing one, which is either

its dependent or its head. This is not trivial since there can be further dependents of either

the head or the dependent in between.

If one wanted to make the input linkage compatible to DP-hypothesis, an empty de-

terminer would need to be assigned to nouns that have no overt determiner. The inserted

determiner would be the head of the existing noun, as demonstrated in (124).

(124) big worms
�

⇒ [] big worms
W�

It can be inferred from example (124) that if the relation of a new token N to an existing

token E is that of a head to its dependent, the position of the new token is on the left

(or on the right respectively) of the leftmost (or rightmost respectively) dependent of the

existing token. This statement is represented by (125).26

(125) N - * E
W�

The projectivity constraint on linkages (cf. 8.1.1) prevents any dependent of the existing

token to stand further left (or right respectively) than the head of this token since the

branches in such a tree must not cross.

There are situations other than that described in (124) above, however, where the

position of the newly inserted token is to be calculated in relation to its head.

(126) The apples the worms have eaten were red.

Sentence (126) is a relative sentence where the object of the subordinate sentence has been

moved. The movement is shown in the traced version of the sentence (127).

(127) [The apples]i the worms have eaten ti were red.

26Note that only the left hand variant is shown in this and the following figures, but it always represents
the right hand variant too.

91



We can recognize in (127) that there is an empty object to be inserted, dependent on

the verb eaten. In this example, thus, an empty token is to be inserted in relation to the

position of its head since it has no dependents itself. This causes no problems if the relation

of the new token to its existing head is that of a complement to its head, like in (127). But

as soon as one wants to insert a specifier to the head, a precise rule is necessary since there

may still be complements and adjuncts in between. On the other hand, if complements are

inserted, there may still be adjuncts and specifiers around the head and its complement.

We are therefore led to figure (128): T denotes the projection type, and T-1 stands for the

projection type, which is lower in ranking than T (cf. 8.1.5).

(128) N - * E
�

T

�
T-1

Yet, one still runs into problems if applying (128) to recursive projection types, be they flat

or stacked. Sentences (129–131) demonstrate that only the outer object can be moved in a

double object construction. Rule (128), however, would insert the empty object inside the

existing object, namely outside the utmost dependent of the next lower projection type.

(129) The booki I gave her ti was interesting.

(130) * [The girl/She]i I gave ti the book was clever.

(131) [The girl]i I gave the book to ti was clever.

To handle recursive projection types, an additional rule needs to be defined. We restrict

(128) to non-recursive projection types and apply (132) to recursive projection types. The

additional rule (132) says that if the relation of a new token N and an existing token E is

that of a dependent to its head and if the projection type R of their linking is recursive, the

position of the new token is on the left (or right respectively) of the leftmost (or rightmost

respectively) dependent of the existing token, the link to which has the same projection

type R.

(132) N - * E
�

R

�
R

Figures (125, 128, 132) can be summarized by saying that if one wants to calculate the

position of a newly inserted token N, (i) the position of an existing token E that is linked

92



to N, and (ii) the utmost projection type P, which is realized inside E and N, have to

be known. The position of the new token is in-between the utmost dependent D of the

existing token E which is of the projection type P and the next further existing token

F. The position of N is calculated as D+F
2

. Yet, whether the position of a new token

is calculated in relation to its head or to its dependent is to be considered carefully. If

the new token has dependents itself it must not be calculated in relation to its head but

rather to one of its dependents that immediately follows or precedes it. Otherwise, it will

be miss-positioned since its dependents, which may be in between the new token and its

head, would not be taken into account.

linkage2links.pl provides the predicates leftendpos/3 and rightendpos/3, respec-

tively, to calculate the position of an inserted token. They take the position of the existing

token as their first argument and the projection type outside which the link between the

new and the existing token is placed as a second. Both predicates return the position of

the new token in their third argument.

Assuming the projection types defined in (133), one could thus state relinking rule

(134) for assigning an empty determiner to a noun according to DP-hypothesis. As the

determiner and the noun are in a head-complement relation, the determiner has to be

placed outside the complete sub-linkage of the noun, i.e. outside the realization of the

topmost projection type (which is specifier in our example).

(133) treelevel(specifier, nil, obligatory, adjunct, [bar=2]).

treelevel(adjunct, stack, optional, complement, [bar=1]).

treelevel(complement, flat, obligatory, [], [bar=1]).

93



(134) relink:-

% condition

token(_Noun, NounID),

feature(NounID, cat=n),

\+link(NounID, _, ‘D’, _),

\+link(_, NounID, ‘D’, _),

\+link(_, NounID, ‘AN’, _),

% calculation of new token position

feature(NounID, position=NounPos),

leftendpos(NounPos, specifier, DetPos),

% adding of the empty determiner

add_token([], [cat=d, bar=0, position=DetPos], DetID),

% relinking

remove_link(HeadID, NounID, HeadLinktype, HeadSubsList),

add_link(HeadID, DetID, HeadLinktype, HeadSubsList),

add_link(DetID, NounID, ‘D’, HeadSubsList).

14.1.5 Summary of the relinking syntax

It has been explained in the current section how relinking rules are to be written and

what syntax the module linkage2links.pl provides for them. Table 1 summarizes the

described predicates.

Conditions: Adding and removing
links:

Auxiliary predicates:

link/4 remove link/4 leftendpos/3

token/2 add link/4 rightendpos/3

feature/2 remove token/2 sub root/2

add token/3 remote head/4

add features/2 new nr/2

Table 1: The syntax of relinking rules

14.2 Link types that violate structural constraints

We have seen that there are several reasons for relinking. Basically, two variants of relink-

ing can be distinguished: relinking that is required for theoretical reasons and relinking

94



required for practical reasons. If relinking is done for theoretical reasons, it is meant to

correct a linkage in such a way that the constituent output corresponds to the chosen syn-

tax model. Particular link types may therefore be relinked for the one model of syntactic

analysis but kept as they are for the other.

Relinking for practical reasons, however, is necessary in any case. It is required to

make the algorithm work properly. Link types that have to be relinked for such reasons

violate structural constraints. We have seen in section 8.1.1 that linkages have to fit several

constraints to be converted into constituent structures: (i) the linkage has to be directed,

(ii) there must be a root word in the linkage, from which every token of the linkage can

be reached, (iii) every dependent must only have one head, (iv) the linkage is required to

be acyclic, and (v) it has to be projective. Link types that violate one or more of these

constraints therefore have to be relinked in order to guarantee the proper working of the

conversion algorithm.

The following subsections discuss the different categories of link types that violate

structural constraints and how they can be recognized and corrected. To test if a link type

violates a structural constraint, the most basic kind of conversion stated in 8.1.1 and in

(135), respectively, can be implied.

(135) X Y *
W W

⇒ X’
ll,,

X Y’
@@��

The core of the rule set for the above conversion operation consists of a single statement

for the ranking of projection types (136) and one single statement for all link types (137).

(136) treelevel(xbar, stack, optional, [], [bar=1]).

(137) typefeatures( , [], [], xbar).

Readers are referred to appendix B for the complete rule set.

14.2.1 Link types violating the directionality constraint

Link Grammar linkages are undirected. In ExtrAns, however, directionality is added to

most link types by the predicate add dep info/5. This predicate is found in the ExtrAns

source directory in the file link grammar.pl. Yet, link types that are not explicitly de-

fined as right-head (h(r)) or left-head links (h(l)) in ExtrAns are assigned no direction

95



(h(nil)). These link types therefore violate the directionality constraint. They are arbi-

trarily changed into left-head links in linkage2links.pl (see 7.2.1). The user can easily

recognize such link types during the conversion process from the warning message printed

on the screen.

Link types violating the directionality constraint comprise AA, AM, CC, CO,

CX, ER, EZ, FL, G, HA, ID, LI, NJ, NT, RW, X and in some environments B (see

link grammar.pl). Note that some of these link types still violate another constraint

after their conversion to left-head links and must therefore be corrected again in the rule

set.

14.2.2 Link types violating the root word constraint

If a link type violates the root word constraint parts of the sentence cannot be reached

from the root word because of that link type. If a single token or even a whole part of

the input sentence is missing in the output constituent tree, a link type violating the root

word constraint must be present in the linkage.

The link type EF, for instance, “is used to connect the word ‘enough’ to adjectives and

adverbs.” (Temperley et al., 2000). We can see in linkage (138) that the word enough

cannot be reached from the root word is. The tree output for this linkage would therefore

be (139), where enough is missing.

(138) He is good enough.
�
S

W
P

�
EF

(139) v1
|

+---------+
d0 v1
| |
| +------+
| v0 a0
| | |
| | |
he is good

Most link types that violate the root word constraint can easily be corrected by changing

their direction – some of them need more sophisticated relinking. As soon as relinking

rule (140) is added to the rule set in use, the corrected linkage (141) is converted into tree

(142).

96



(140) relink:-

link(Enough, Adjective, ’EF’, EFSubscripts),

remove_link(Enough, Adjective, ’EF’, EFSubscripts),

add_link(Adjective, Enough, ’EF’, EFSubscripts).

(141) He is good enough.
�
S

W
P

W
EF

(142) v1
|

+--------------+
d0 v1
| |
| +------------+
| v0 a1
| | |
| | +--------+
| | a0 adv0
| | | |
| | | |
he is good enough

Link types violating the root word constraint are AA, AM, BIq, C, CO, CP, EF, ER, EZ,

G, ID, K, L, NI, NJ, NT, OF, PF, QI, U, Qd, Z and in some environments QI and R (see

14.2.6). Of these, AA, AM, CO, EF, EZ, G, K, L, NJ, NT, OF, U, Z can be corrected

simply by changing their direction. The other link types need to be re-linked. The reader

is referred to 14.1.3 for a description of the relinking of BIq links.

14.2.3 Link types violating the single head constraint

The single head constraint says that a token in a linkage must not have more than one

head. Link types that violate the root word constraint usually also violate the single

head constraint. Nevertheless, there are link types that violate the single head constraint

without violating the root word constraint. These are AL and JQ. Linkages (143) and

(144) show how they are used.

(143) All the people work.
W

AL
W

J

�

S

�
D

97



(144) In which room were you working?
W

JQ
W

J

�
D

�

Q

W
SI

W

P

Linkages that violate the single head constraint without violating the root word constraint

have a doubling of words as an effect in the resulting constituent tree. It is the same with

cyclic linkages, which are a sub-set of linkages violating the single head constraint (see

14.2.4 below). Tree (145) illustrates how the word the is doubled when linkage (143) is

converted since it is reached as a dependent from all as well as from people.

(145) v1
|

+----------------+
d1 v0
| |

+--------------+ |
d1 n1 |
| | |

+------+ +-------+ |
d0 d0 d0 n0 |
| | | | |
| | | | |
all the the people work

AL and JQ links can simply be removed as they are redundant because of the existence of

J links in the respective construction.

14.2.4 Link types violating the circularity constraint

It has already been mentioned above that cyclic linkages are a sub-set of linkages that

violate the single head constraint. In Link2Tree, they result in the same error as the latter,

namely the doubling of words. Since links are continuously removed during the conversion

process cyclic linkages cannot produce a never-ending loop. From a theoretical point of

view, however, cyclic links correspond to non-terminating, recursive structures, whereas

link types that violate the single head constraint only are equivalent to terminating non-

recursive structures.

B and HA can produce cyclic linkages. They are both arbitrarily changed into left-head

links by linkage2links.pl as they do not obtain a direction by ExtrAns. Linkage (146)

shows the occurrence of HA together with AA.

98



(146) How big a dog was it?
�
EA
�
AA
W

HA

�
D

(146) shows that HA is passed repeatedly. HA links can simply be removed since every

token in the linkage can also be reached without passing the HA link. B links, on the other

hand, need more sophisticated relinking as they occur in various different environments.

14.2.5 Link types violating the projectivity constraint

Link types that violate the projectivity constraint are not easy to recognize in the link

structure. However, they cause wrong word order in the constituent tree returned by

Link2Tree. To make the violation of projectivity evident in the linkage, an artificial link

from the left wall to the root word of the sentence must be added. Linkage (147) does

not violate the projectivity constraint, whereas in linkage (148) the BT link does so. Tree

(149) shows that the output returned for linkage (148) contains wrong word order.

(147) ///// Peter saw John.
�
S

W
O

W

(148) ///// How many years did it last?
W�

H
�

TQ
�

BT

W

I

W
SI

99



(149) v1
|

+---------------------------+
v1 v1
| |

+-----+ +------------+
v0 d0 ?1 v0
| | | | | |
| | +-----------+ |
| | d1 ? |
| | | | |
| | +------+ | |
| | c0 d0 | |
| | | | | |
| | | | | |
did it how many years last

Although the word order in tree (149) is not correct, dominance relations are kept. Such a

tree contains crossing branches if one arranges its tokens in the right word order. Depending

on what the output of Link2Tree is used for, structures like the one in (149), which are

deep-structures (in GB-terminology, see 3.8), may be more suited than any relinked surface-

structures since they are much closer to the semantic representation.

Link types that violate the projectivity constraint comprise B, BT, CC, ER, Qd, TQ,

WR.

14.2.6 Complex relinking

Not all links behave the same way in all environments. Among those that violate structural

constraints under some circumstances but do not violate them under other circumstances

are B, QI, R, W. Since these link types behave differently in different environments, more

than one relinking rule has to be defined for them.

For instance, Temperley et al. (2000) state that “R connects nouns to relative clauses.

In subject-type relatives, it connects to the relative pronoun [...]; in object-like relatives, it

connects either to the relative pronoun or to the subject of the relative clause [...].” These

three ways of using R are illustrated in linkages (150-152).

(150) The dog who chased me was black.
W

R
�

RS

(151) The dog that I chased was black.
W

R
W

C
�
S

100



(152) The dog I chased was black.
W

R
�
S

It is evident that R violates the root word constraint in linkages (150) and (152), but does

not in linkage (151). Therefore, relinking rule (153) for R links can be stated, which is

only applied if the dependent of the R links is at the same time the dependent of either an

S link or an RS link.

(153) X Y Z
W

R
�

RS/S

⇒ X Y Z
W

R

�

RS/S

B links are probably the most complicated links to relink. They usually need to be re-

placed by trace links. Trace links are not original link types that have to follow structural

constraints but are mere auxiliary constructions which are removed and replaced by traces

before the actual conversion starts (cf. 8.3). “B serves various functions involving relative

clauses and questions. It connects transitive verbs back to their objects in relative clauses,

questions, and indirect questions [...]; it also connects the main noun to the finite verb in

subject-type relative clauses.” (Temperley et al., 2000).

Some link types – Qd, RW, X – can even be irrelevant under particular circumstances.

Their common feature is that they connect to walls or punctuation. They can, however,

occur in environments where they cannot just be removed, e.g. link type W with coordi-

nating conjunctions.

As already mentioned, more than one relinking rule has to be defined for such link types.

Such rules usually involve more than one link type. It is therefore necessary to define rules

for particular syntactic constructions rather than for particular link types. The fact that

multiple link types are relinked at the same time implies that there is usually more than

one way to correct the violation of a structural constraint. Therefore, the relinking of

the above link types cannot be done without taking minimal decisions about the model

of syntax used. It can be said that relinking is necessary for practical reasons here, but

cannot be done without minimal theoretical considerations.

14.2.7 Summary

As demonstrated in this section, some link types need to be relinked for practical reasons.

They violate structural constraints which a linkage must comply with in order to be con-

101



verted properly by Link2Tree. The occurrence of such link types can be recognized in the

Link2Tree output. Table 2 summarizes the link types that violate structural constraints.

Violated structural con-
straint:

Effect in the Link2Tree
output:

Link types:

directionality warning message AA, AM, (B), CC, CO,
CC, CX, ER, EZ, FL, G,
HA, ID, LI, NJ, NT, RW,
X

root word missing word(s) AA, AM, BIq, C, CO, CP,
EF, ER, EZ, G, ID, K, L,
NI, NJ, NT, OF, PF, Qd,
(QI), (R), U, Z

single head doubled word(s) AL, JQ
circularity doubled word(s) B, HA
projectivity wrong word order B, BT, CC, ER, Qd, TQ,

WR

Table 2: Link types that violate structural constraints

102



15 Conclusion

In this thesis I have presented the dependency-constituency converter Link2Tree. I have

described its architecture and functionality in detail. It has been demonstrated what

constraints on link structures make them equivalent to constituent structures. This equiv-

alence makes Link2Tree a deterministic converter since a linkage corresponds to exactly

one constituent tree. However, the linkages may need some preprocessing, which is called

‘relinking’ in Link2Tree, to ensure their equivalence to a particular form of the constituent

structure. A conversion algorithm has been developed and implemented.

Link2Tree is a flexible program, which enables users to specify the form of X-bar theory

they desire for the constituent structure delivered by the converter. Furthermore, users

can freely choose the features they want to use in the constituent output. The possibilities

of Link2Tree make it applicable to Government & Binding as well as PSG structures. If its

rule set is tuned accordingly, Link2Tree is able to preserve all information that is stored in

linkages for the constituent structures it returns.

At its current state, Link2Tree can only handle simple feature structures. I have shown,

however, how facilities to handle complex feature structures can be integrated in Link2Tree

in future work.

103



104



Part IV

Appendices

105



106



A Installation and startup

In order to install Link2Tree first unzip and unpack the file link2tree.tar.gz in the

extrans source directory, i.e. the directory where the file main.pl is (154). Once unpacked,

the program consists of the files and directory listed in (155).

(154) ~/extrans_1.7> tar xvfz link2tree.tar.gz

(155) link2tree/

link2tree/features.pl

link2tree/link2tree.pl

link2tree/linkage2links.pl

link2tree/linkfeatures.pl

link2tree/linkinfo.pl

link2tree/merge2tree.pl

link2tree/nicetree.pl

link2tree/draw.pl

link2tree_start

link2tree_start.pl

Link2Tree can be started on its own. To do so, you may have to adopt the paths in the

shell-script link2tree start (156) to the paths in the ExtrAns startup script.

(156)0 #!/bin/tcsh -f

1

2 setenv JAR "/home/ludwig/rinaldi/WEBEXTRANS/current/JAR"

3

4 setenv CLASSPATH ".:$JAR/demo.jar:$JAR/xalan.jar:$JAR/xerces.jar"

5

6 echo $CLASSPATH

7

8 sicstus -l link2tree_start.pl

Shell-script (156) sets the required variables. It then executes the Prolog file link2tree start.pl

(157). link2tree start.pl loads ExtrAns by consulting main.pl (line 2), as well as the

required information for Link Grammar according to the variables set in the shell-script

(line 3). The predicate start parser/4 (lines 6-7) loads Link Grammar using the param-

eters specified. At last, link2tree.pl is consulted (line 9). Sample queries can now be

made by using the predicate link2tree/3 as demonstrated in (158).

107



(157)0 # link2tree_start.pl

1

2 :-consult(main).

3 :-load_foreign. # see link_grammar.pl

4

5 # start_parser(Dictionary,Knowledge,Const,Affix)

6 :-start_parser(’link-4.1/data/2.1.dict’,’link-4.1/data/2.1.knowledge’,

7 ’’,’link-4.1/data/4.0.affix’).

8

9 :-consult(’link2tree/link2tree.pl’).

(158) ?- link2tree(‘‘cp copies the files.’’, 0, Result).

108



B Addendum: linkfeatures.pl split up

After the completion of this documentation, I have extended Link2Tree by the facility to

load different rule sets while it is running. This enables the user to compare the output of

two different rule sets for the same input sentence.

An additional program option has been defined for this in linkfeatures.pl: the option

model specifies the rule set that is to be loaded at the beginning of the conversion process

of a sentence. The possible values for model can be defined by the user via the predicate

modelpath/2 in linkfeatures.pl, which specifies the path of the rule set file, relative

to the position from where Link2Tree is started. The auxiliary option last model, which

does not need to be altered by the user, memorizes the rule set used for the previous query.

If it has not been altered since then, no new rule set needs to be loaded at the beginning

of the conversion.

The module linkinfo.pl provides a predicate reload linkfeatures/0. This pred-

icate is called at the beginning of linkage2constituents/4 in link2tree.pl, i.e. at

the beginning of each conversion. It checks if the option model has changed since the

last conversion by comparing it to the option last model. If it has changed indeed,

reload linkfeatures/0 abolishes all predicates imported from the old rule set, loads

the new rule set and sets last model to the new rule set.

Listings (B.1) and (B.2) show how the module linkfeatures.pl has therefore been

split up into a module linkfeatures.pl (B.1) and several rule set modules, one of which

is shown in listing (B.2).

B.1 Module linkfeatures.pl

0 :-module(linkfeatures, [rootlink/2, typefeatures/4, subsfeatures/4,

1 projectable/1, footfeature/1, relink/0,

2 tagfeatures/2, option/1, treelevel/5,

3 toplevel/1, headfeature/1, modelpath/2]).

4
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % linkfeatures.pl

7 % the rule set module: here, all the information how links shall be

8 % converted into constituents is stored.

9 % adaptions need only be made in this module.

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 % May 2002

109



12 % Stefan Hoefler

13 % shoefler@cl.unizh.ch

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15
16 %--------------------------+

17 % option(OptionName, Value)

18 %--------------------------+

19 % Default values for options

20 % A default has to be defined for every option

21 % ATTENTION: Do not change Option-Names!

22
23 :-dynamic(option/1).

24 :-dynamic(last_option/1).

25 option(display_traces=1).

26 option(display_nodeid=0).

27 option(bar=0). % 0: n0, n1, n2 // 1: n, nbar, np

28 option(model=basic).

29 option(last_model=basic).

30
31 % Default rule set (cp. option model)

32 :-use_module(linkfeatures_basic).

33
34 % Paths for rules sets (cp. options model and last_model)

35 modelpath(basic, ’link2tree/linkfeatures_basic’).

36 modelpath(corr, ’link2tree/linkfeatures_basic_corr’).

37 modelpath(gb, ’link2tree/linkfeatures_gb’).

38

B.2 Module linkfeatures-basic.pl

0 :-module(linkfeatures_basic, [rootlink/2, typefeatures/4, subsfeatures/4,

1 projectable/1, footfeature/1, relink/0,

2 tagfeatures/2, treelevel/5,

3 toplevel/1, headfeature/1]).

4
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % linkfeatures_basic.pl

7 % the rule set module: here, all the information how links shall be

8 % converted into constituents is stored.

9 % adaptions need only be made in this module.

10 % NB. this file is the most basic version of a rule set for Link2Tree

110



11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12 % April 2002

13 % Stefan Hoefler

14 % shoefler@cl.unizh.ch

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16
17 :-use_module(linkage2links, [link/4, token/2, add_link/4,

18 remove_link/4, add_token/3,

19 remove_token/2, add_features/2,

20 rightendpos/3, leftendpos/3,

21 remote_head/4, sub_root/2, new_nr/2]).

22 :-use_module(features, [feature/2]).

23
24 %---------------------------------------------------------------------+

25 % treelevel(TypeOfProjection, Recursive(nil/stack/flat), obligatory/optional,

26 % Next(Deeper)TypeOfProjection, AdditionalFeaturesListOfTheProjection)

27 %---------------------------------------------------------------------+

28
29 treelevel(xbar, stack, optional, [], [bar=1]).

30
31 %------------------------------+

32 % toplevel(TopTypeOfProjection)

33 %------------------------------+

34
35 toplevel(xbar).

36
37 %-----------------------------------------------+

38 % rootlink(RootlinkType, RootlinkSubscriptsList)

39 %-----------------------------------------------+

40
41 rootlink(’SFI’, _AnySubscripts).

42 rootlink(’SI’, _AnySubscripts).

43 rootlink(’SF’, _AnySubscripts).

44 rootlink(’S’, _AnySubscripts).

45
46 %----------------------+

47 % projectable(Category)

48 %----------------------+

49
50 projectable(_). % no minors

51

111



52 %------------------------------------------------+

53 % typefeatures(LinktypeCapitals, HeadFeatureList,

54 % DependentFeatureList, ProjectionType)

55 %------------------------------------------------+

56
57 typefeatures(_, [], [], xbar). % no additional information specified

58
59 %------------------------------------------------------+

60 % subsfeatures(+Subscript, +TypeList, -HeadFeatureList,

61 % -DependendtFeatureList)

62 %------------------------------------------------------+

63
64 subsfeatures(_, [_], [], []). % default

65
66 %---------------------+

67 % headfeature(Feature)

68 %---------------------+

69
70 headfeature(bar).

71 headfeature(num).

72 headfeature(rel).

73
74 % program inherent features

75 % do not remove!

76
77 headfeature(cat).

78 headfeature(hd).

79 headfeature(position). % do not remove this line!

80 headfeature(trace). % do not remove this line!

81
82
83 %---------------------+

84 % footfeature(Feature)

85 %---------------------+

86
87 footfeature(wh).

88
89 %------------------------------------------------+

90 % tagfeatures(TagCharactersList, TagFeautureList)

91 %------------------------------------------------+

92 %

112



93 % attention: for affixes that begin with the same letter: write clause

94 % for the longer affix first

95 %

96 % source: extrans_1.7/link-4.1/data21/README_NEWTAGS_WORDS2.1

97
98 tagfeatures([’a’|_], [cat=a, bar=0]).

99 tagfeatures([’c’|_], [cat=c, bar=0]).

100 tagfeatures([’d’|_], [cat=d, bar=0]).

101 tagfeatures([’e’|_], [cat=adv, bar=0]).

102 tagfeatures([’n’|_], [cat=n, bar=0]).

103 tagfeatures([’o’|_], [cat=p, bar=0]).

104 tagfeatures([’p’|_], [cat=d, bar=0]).

105 tagfeatures([’v’|_], [cat=v, bar=0]).

106 tagfeatures(_,[]). % default: do not delete!

107
108 %----------------------------+

109 % relink

110 %----------------------------+

111 %

112 % ATTENTION: order of relink-rules may be significant

113
114 relink. % default. do not remove this line.

113



C Listings of Link2Tree

C.1 Module link2tree.pl

0 :-module(link2tree, [link2tree/3, linkage2constituents/4, chopt/1,

1 lp/3, id/3, feature/3, m/1, test/0, al2t/2]).

2
3
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % link2tree.pl

6 % converts strings via linkages into constituent trees

7 % main interface

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 % May 2002

10 % Stefan Hoefler

11 % shoefler@cl.unizh.ch

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 % This version of link2tree combines with ExtrAns 1.7

14 % (which makes use of Link Grammar 4.1)

15 % For a detailled description see my master’s thesis.

16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17
18 :-use_module(linkage2links, [linkage2links/2]).

19 :-use_module(merge2tree, [get_tree_of_links/1]).

20 :-use_module(nicetree, [wordorder/2, nodelabels/2]).

21 :-use_module(draw, [draw/1]).

22 :-use_module(linkinfo, [change_option/1, reload_linkfeatures/0]).

23 :-use_module(features, [feature/2]).

24 :-use_module(’../link_grammar.pl’, [parse/2, print_links/1]).

25
26 %-------------------------------------------+

27 % chopt(+OptionName) or chopt(+Option=Value)

28 %-------------------------------------------+

29 % changes program options stored in linkfeatures.pl

30
31 chopt(Option):-change_option(Option). % from module linkinfo

32
33 m(Model):-chopt(model=Model).

34
35 %-------------------------------------------+

36 % echo_option(?Option=?Value)

37 %-------------------------------------------+

114



38 % displays program options stored in linkfeatures.pl

39
40 echo_option(Option=Value):-if_option(Option=Value). % from module

41 % linkinfo

42
43 %-------------------------------------------------------+

44 % link2tree(+String, +ResultLinkageNr, -ConstituentTree)

45 %-------------------------------------------------------+

46 % simplified display of results for user queries

47 % ?- link2tree("cp copies the file.", Tree).

48
49 link2tree(String, ResultNr, ConstituentTree):-

50 parse(String, Linkages), !, % from main.pl

51 print_links(Linkages), !, % from main.pl

52 nl, nl, write(Linkages), % test!

53 linkage2constituents(0, Linkages, ResultNr, ConstituentTree), !,

54 display_tree(ConstituentTree),

55 !.

56 %---------------------------------------------------------------+

57 % linkage2constituents(+SentenceNr, +Linkages, +ResultLinkageNr,

58 % -ConstituentTree)

59 %---------------------------------------------------------------+

60 % interface to other modules/programs

61 % input: Link Grammar linkage as returned by ExtrAns 1.7

62 % parse/2

63 % output: constituent tree of the form

64 % [NodeNr1,[NodeNr2,’word2’],[NodeNr3, ’word3’]]

65 % as well as the features to the nodes (dynamically asserted

66 % in the file features.pl: feature(NodeNr, Feature=Value).

67
68 linkage2constituents(SentNr, Linkages, ResultNr, ConstituentTree):-

69 reload_linkfeatures,

70 linkage2links(Linkages, ResultNr), !, % from module linkage2links

71 get_tree_of_links(UnarrangedTree), !, % from module merge2tree

72 wordorder(UnarrangedTree, ConstituentTree), !,

73 % from module nicetree

74 nl, nl, write(UnarrangedTree), % check

75 nl, nl, write(ConstituentTree), nl, nl, % check

76 postprocess(SentNr, ConstituentTree).

77
78 %-------------------------------+

115



79 % display_tree(+ConstituentTree)

80 %-------------------------------+

81
82 % display of the resulting constituent tree:

83 % - lists dynamically asserted features features:feature/2

84 % - draws tree using draw.pl

85
86 display_tree(ConstituentTree):-

87 nodelabels(ConstituentTree, LabelledTree), % from module nicetree

88 nl, nl, use_draw(LabelledTree),

89 nl, nl,

90 !.

91
92 %==================================================================+

93 % use_draw

94 % this predicate makes use of the module draw by Mark Holcomb.

95 % Draw.pl displays tree-structures in a form similar to

96 % [s,[np,[d,the],[n,dog]],[vp,[v,ran],[np,[d,the],[n,house]]]].

97 %

98 %==================================================================+

99
100 %--------------------+

101 % use_draw(+ListTree)

102 %--------------------+

103 % prints an ascii diagram of the tree

104
105 use_draw(ListTree):-

106 recursive_unif(ListTree, FunctorTree),

107 draw(FunctorTree). % from module draw

108
109 use_draw(_):-

110 nl, nl, write("ERROR in link2tree:use_draw: Tree could not be drawn.").

111
112 %----------------------------------------+

113 % recursive_unif(+ListTree, -FunctorTree)

114 %----------------------------------------+

115 % changes a list tree of the form [Node, DaughterTree1, DaughterTree2]

116 % into a functor tree of the form node(DaughterTree1, Daughtertree2)

117 % using the predicat unif: Term=..[Functor|Arguments].

118
119 recursive_unif([Node|ListRest], FunctorTree):-

116



120 list_unif(ListRest, FunctorRest),

121 FunctorTree=..[Node|FunctorRest],

122 !.

123
124 recursive_unif(Leaf, Leaf).

125
126 %-----------------------------------------------------+

127 % list_unif(+List_of_ListTrees, -List_of_FunctorTrees)

128 %-----------------------------------------------------+

129
130 list_unif([], []).

131
132 list_unif([FirstListTree|ListRest],[FirstFunctorTree|FunctorRest]):-

133 recursive_unif(FirstListTree, FirstFunctorTree),

134 list_unif(ListRest, FunctorRest).

135
136 %=========================================================+

137 % postprocess(+SentenceNr, +TreeInListForm)

138 %=========================================================+

139 % brings the output into the canonical form we decided on:

140 % linear precedence: lp(SentNr, LeftSister, RightSister)

141 % immediate dominance: id(SentNr, Mother, Child)

142 % features: feature(SentNr, NodeNr, Feature=Value)

143 %=========================================================+

144
145 :-dynamic(id/3).

146 :-dynamic(lp/3).

147 :-dynamic(feature/3).

148
149 postprocess(SentNr, TreeList):-

150 % retracting dynamic facts from the previous query

151 my_retractall(id(_,_,_)), % from module linkage2links

152 my_retractall(lp(_,_,_)),

153 my_retractall(feature(_,_,_)),

154 % generating dynamic lp, id and feature facts

155 tree2id(SentNr, TreeList),

156 tree2lp(SentNr, TreeList),

157 add_sentnr_to_features(SentNr),

158 % printing the generated facts on the screen

159 listing(id/3),

160 listing(lp/3),

117



161 listing(feature/3).

162
163 %--------------------------------------------------------+

164 % tree2id(+SentenceNr, +Tree)

165 %--------------------------------------------------------+

166 % generates the id/3 facts expressing immediate dominance

167
168 % case1: one or more complex child(ren)

169 tree2id(SentNr, [MotherID, [ChildID|Grandchildren]|RestChildren]):-

170 assertz(id(SentNr, MotherID, ChildID)),

171 tree2id(SentNr, [ChildID|Grandchildren]),

172 tree2id(SentNr, [MotherID|RestChildren]).

173
174 % case2: leaf

175 tree2id(_SentNr, [_Terminal, _Leaf]).

176
177 %--------------------------------------------------------+

178 % tree2lp(+SentenceNr, +Tree)

179 %--------------------------------------------------------+

180 % generates the lp/3 facts expressing linear precedence

181
182 % case1: two or more children

183 tree2lp(S, [M, [N1|C1], [N2|C2]|R]):-

184 assertz(lp(S, N1, N2)),

185 tree2lp(S, [N1|C1]),

186 tree2lp(S, [M, [N2|C2]|R]).

187
188 % case2: one complex child

189 tree2lp(S, [_M, C]):-

190 tree2lp(S, C).

191
192 % case3: anything else: no child or leaf

193 tree2lp(_, _).

194
195 %--------------------------------------------------------+

196 % add_sentnr_to_features(+SentenceNr)

197 %--------------------------------------------------------+

198 % generates feature/3 facts including the sentence number

199 % (failure-driven loop)

200
201 add_sentnr_to_features(SentNr):-

118



202 feature(Node, Feature=Value), % from module features

203 assertz(feature(SentNr, Node, Feature=Value)),

204 fail.

205
206 add_sentnr_to_features(_).

207
208 %=============================+

209 % general (non-iso) predicates

210 %=============================+

211
212 %-----------------------+

213 % my_retractall(+Clause)

214 %-----------------------+

215
216 my_retractall(Clause):-

217 retract(Clause),

218 fail.

219
220 my_retractall(_).

119



C.2 Module linkage2links.pl

0 :-module(linkage2links, [test/0, linkage2links/2,

1 token/2, link/4, add_link/4, remove_link/4,

2 add_token/3, remove_token/2, add_features/2,

3 leftendpos/3, rightendpos/3, remote_head/4,

4 sub_root/2, new_nr/2]).

5
6 %===================================================================+

7 % linkassert: changes the linkage-output of linkgrammar into:

8 % - token(Word, FeatureMatrixNr)

9 % - link(HeadNr, DependentNr, Linktype, ListOfSubscripts)

10 %===================================================================+

11
12 :-use_module(features).

13 :-use_module(linkinfo,[split_linktype/3, get_tagfeatures/3,

14 call_rule/0, get_treelevel/5]).

15 :-dynamic(link/4).

16 :-dynamic(token/2).

17 :-dynamic(last_tokennr/1).

18 :-dynamic(last_nr/2).

19
20 %-------------------------------------------------+

21 % linkage2links(+Resultlinkages, +ResultLinkageNr)

22 %-------------------------------------------------+

23
24 linkage2links(ResultLinkages, ResultNr):-

25 retract_all_dynamics,

26 get_xth_result(ResultNr, ResultLinkages, Linkage),

27 get_lists(Linkage, TokenList, LinkList),

28 create_list_of_links(LinkList, ListOfLinks),

29 assert_links(ListOfLinks),

30 assert_tokens(TokenList),

31 do_relinking,

32 do_linksorting.

33
34 %---------------------+

35 % retract_all_dynamics

36 %---------------------+

37
38 retract_all_dynamics:-

39 my_retractall(link(_,_,_,_)),

120



40 my_retractall(token(_,_)),

41 my_retractall(last_tokennr(_)),

42 my_retractall(last_nr(_,_)),

43 my_retractall(feature(_,_)), % aus module features

44 my_retractall(last_matrixnr(_)). % aus module features

45
46 %-------------------------------------------------------+

47 % get_xth_result(+X, +ResultLinkages, -XthResultLinkage)

48 %-------------------------------------------------------+

49
50 % case1: no result linkages

51 get_xth_result(_, [], []).

52
53 % case2: X is 0 -> get the first result linkage

54 get_xth_result(0, [FirstLinkage|_RestLinkages], FirstLinkage).

55
56 % case3: X > 0 -> check next result linkage and decrease X

57 get_xth_result(X, [_FirstLinkage|RestLinkages], XthLinkage):-

58 X > 0,

59 Y is X-1,

60 get_xth_result(Y, RestLinkages, XthLinkage).

61
62 % case4: X < 0 -> ERROR

63 get_xth_result(X, _, _):-

64 X < 0,

65 nl,

66 write(’ERROR: Number of selected result linkage is negative!’),

67 fail.

68
69 %-------------------------------------------+

70 % get_lists(+Linkage, -TokenList, -LinkList)

71 %-------------------------------------------+

72
73 get_lists([[TokenList, LinkList]], TokenList, LinkList).

74
75 %----------------------------------------------+

76 % create_list_of_links(+LinkList, -ListOfLinks)

77 %----------------------------------------------+

78
79 % changes the form of the LinkList from

80 % [[1,2,h(r),’Ss’]] to [link(2,1,’S’,[s])]

121



81 % in order to simplify assertion of the dynamic link/4 predicate.

82
83 create_list_of_links([], []).

84
85 create_list_of_links([FirstLink|RestLinks],

86 [FirstLinkPredicate|RestLinkPredicates]):-

87 transform_link(FirstLink, FirstLinkPredicate),

88 create_list_of_links(RestLinks, RestLinkPredicates).

89
90 %--------------------------------------+

91 % transform_link(+Link, -Linkpredicate)

92 %--------------------------------------+

93
94 % changes the form of a Link from

95 % [1,2,h(r),’Ss’] to link(2,1,’S’,[s])

96
97 % case1: Head is left

98 transform_link([HeadNr, DependentNr, h(l), Linktype], link(HeadNr,

99 DependentNr, Type, SubsList)):-

100 split_linktype(Linktype, Type, SubsList). % aus module linkinfo

101
102 % case2: Head is right

103 transform_link([DependentNr, HeadNr, h(r), Linktype], link(HeadNr,

104 DependentNr, Type, SubsList)):-

105 split_linktype(Linktype, Type, SubsList). % aus module linkinfo

106
107 % case3: No Head (no directionality added to this linktype)

108 % ATTENTION: these linktype are automatically changed into

109 % left-head-links! this is arbitrary!

110 % they have to be corrected by an appropriate rule in module linkfeatures!

111 transform_link([HeadNr, DependentNr, AnyOtherOrNoDirectionality,

112 Linktype], link(HeadNr, DependentNr, Type,

113 SubsList)):-

114 split_linktype(Linktype, Type, SubsList), % aus module linkinfo

115 nl, write(’Linktype ’), write(Linktype),

116 write(’ with directionality ’), write(AnyOtherOrNoDirectionality),

117 write(’ arbitrarily changed into left-head-link!’), nl,

118 write(’Make shure that a correction-rule for this linktype is ’),

119 write(’provided in linkfeatures.pl!’), nl.

120
121

122



122 %---------------------------+

123 % assert_links(+ListOfLinks)

124 %---------------------------+

125
126 % asserts all clauses link/4 of a list

127
128 assert_links([]).

129
130 assert_links([FirstLinkClause|RestLinkClauses]):-

131 assertz(FirstLinkClause),

132 nl, write(’Link asserted: ’), write(FirstLinkClause), nl,

133 assert_links(RestLinkClauses).

134
135 %-----------------------------+

136 % assert_tokens(+TokenList)

137 %-----------------------------+

138
139 assert_tokens([]).

140
141 assert_tokens([Token|RestTokens]):-

142 new_nr(token, TokenNr),

143 add_token(Token, [position=TokenNr, cat=’?’], _NewMatrixNr),

144 assert_tokens(RestTokens).

145
146 %=============================+

147 % general (non-iso) predicates

148 %=============================+

149
150 %-----------------------+

151 % my_retractall(+Clause)

152 %-----------------------+

153
154 my_retractall(Clause):-

155 retract(Clause),

156 fail.

157
158 my_retractall(_).

159
160 %==================+

161 % relinking process

162 %==================+

123



163
164 %-------------+

165 % do_relinking

166 %-------------+

167
168 do_relinking:-

169 call_rule, % from module linkinfo

170 fail.

171
172 do_relinking.

173
174 %------------------------------+

175 % call_list(+ListOfExectuables)

176 %------------------------------+

177
178 call_list([]).

179
180 call_list([FirstTerm|RestTerms]):-

181 call(FirstTerm),

182 call_list(RestTerms).

183
184 %============================+

185 % predicates for relink-rules

186 %============================+

187 % always use cuts ! in the end of these rules!

188
189 %----------------------------------------------+

190 % remove_link(+HeadNr, +DepNr, +Type, +SubsList)

191 %----------------------------------------------+

192
193 % case1: link exists

194 remove_link(HeadNr, DepNr, Type, SubsList):-

195 retract(link(HeadNr, DepNr, Type, SubsList)),

196 nl,

197 write(’Link removed: ’),

198 write(link(HeadNr, DepNr, Type, SubsList)),

199 nl,

200 !.

201
202 % cas2: link does not exist

203 remove_link(HeadNr, DepNr, Type, SubsList):-

124



204 nl,

205 write(’ERROR in linkinfo:relink: ’),

206 write(link(HeadNr, DepNr, Type, SubsList)),

207 write(’ could not be removed.’),

208 nl,

209 !.

210
211 %-------------------------------------------+

212 % add_link(+HeadNr, +DepNr, +Type, +SubsList)

213 %-------------------------------------------+

214
215 add_link(HeadNr, DepNr, Type, SubsList):-

216 assertz(link(HeadNr, DepNr, Type, SubsList)),

217 nl, write(’Link asserted: ’),

218 write(link(HeadNr, DepNr, Type, SubsList)),

219 nl,

220 !.

221
222 %-----------------------------------+

223 % remove_token(+TokenWord, +MatrixNr)

224 %-----------------------------------+

225
226 % case1: token exists

227 remove_token(Token, Matrix):-

228 retract(token(Token, Matrix)),

229 my_retractall(feature(Matrix,_)),

230 nl, write(’Token removed: ’),

231 write(token(Token, Matrix)),

232 nl,

233 !.

234
235 % case2: token does not exist

236 remove_token(Token, Matrix):-

237 nl,

238 write(’ERROR in linkinfo:relink: ’),

239 write(token(Token, Matrix)),

240 write(’ could not be removed.’),

241 nl,

242 !.

243
244 %-----------------------------------------------+

125



245 % add_token(+TokenWord, +FeatureList, -MatrixNr)

246 %-----------------------------------------------+

247
248 add_token(Token, FeatureList, MatrixNr):-

249 create_matrix(FeatureList, MatrixNr), % from module features

250 get_tagfeatures(Token, TagFeatureList, Word), % from module linkinfo

251 add_featurelist_to_matrix(MatrixNr, [hd=Word|TagFeatureList]),

252 % from module features

253 assertz(token(Word, MatrixNr)),

254 nl, write(’Token asserted: ’),

255 write(token(Word, MatrixNr)),

256 nl,

257 !.

258
259 %-----------------------------------+

260 % add_features(+Matrix, +FeatureList)

261 %-----------------------------------+

262
263 add_features(Matrix, FeatureList):-

264 add_featurelist_to_matrix(Matrix, FeatureList), % from module

265 % features

266 !.

267
268 %----------------------------------------------------+

269 % remote_head(+Dep, +TopType, +TopSubsList, -TopHead)

270 %----------------------------------------------------+

271 %

272 % finds TopHead-(TopType,TopSubs)->Dep1->Dep2->...->Dep

273
274 % case1: TopHead is direct head

275 remote_head(Dep, TopType, TopSubs, TopHead):-

276 link(TopHead, Dep, TopType, TopSubs),

277 !.

278
279 % case2: recursive

280 remote_head(Dep, TopType, TopSubs, TopHead):-

281 link(Head, Dep, _, _),

282 remote_head(Head, TopType, TopSubs, TopHead),

283 !.

284
285 % case3: no TopHead of TopType/TopSubs exists

126



286 remote_head(_Dep, TopType, TopSubs, _):-

287 nl,

288 write(’ERROR in relinking rule: No TopHead of Type: ’),

289 write(TopType), write(TopSubs),

290 write(’ exists. Check rule in module linkfeatures.’),

291 nl,!.

292
293 %-----------------------------------+

294 % sub_root(+Dependent, -SubRootWord)

295 %-----------------------------------+

296 %

297 % finds the root word of a linkage starting from one token

298
299 % case1: there is a head

300 sub_root(Token, RootWord):-

301 link(Head, Token, _, _),

302 sub_root(Head, RootWord),

303 !.

304
305 % case2: no head left -> token is root word

306 sub_root(RootWord, RootWord):-!.

307
308 %------------------------+

309 % new_nr(+NrType, -NewNr)

310 %------------------------+

311
312 % case1: last nr of this type existing

313 new_nr(NrType, NewNr):-

314 last_nr(NrType, LastNr),

315 NewNr is LastNr +1,

316 retract(last_nr(NrType, LastNr)),

317 assertz(last_nr(NrType, NewNr)),

318 !.

319
320 % case2: initialise nr of this type

321 new_nr(NrType, InitNr):-

322 InitNr is 0, % initialise nr

323 assertz(last_nr(NrType, InitNr)),

324 !.

325
326 %=============================================+

127



327 % leftendpos(+HeadPos, +ProjType, -LeftEndPos)

328 %=============================================+

329
330 leftendpos(HeadPos, ProjType, LeftEndPos):-

331 mindeppos(HeadPos, ProjType, MinDepPos),

332 prevpos(MinDepPos, PrevPos),

333 LeftEndPos is (MinDepPos+PrevPos)/2,

334 !.

335
336 %-------------------------------------------+

337 % mindeppos(+HeadPos, +ProjType, -MinDepPos)

338 %-------------------------------------------+

339
340 % case1: link of this ProjType exists

341 mindeppos(HeadPos, ProjType, MinDepPos):-

342 id2pos(HeadID, HeadPos),

343 link(HeadID, DepID, _, ProjType),

344 id2pos(DepID, DepPos),

345 DepPos<HeadPos,

346 smallestdeppos(DepPos, HeadPos, ProjType, MinDepPos),

347 !.

348
349 % case2: no link of this ProjType exists -> next ProjType

350 mindeppos(HeadPos, ProjType, MinDepPos):-

351 get_treelevel(ProjType, _, _, NextProjType, _),

352 mindeppos(HeadPos, NextProjType, MinDepPos),

353 !.

354
355 % case3: this ProjType is not defined

356 mindeppos(HeadPos, _ProjType, HeadPos).

357
358 %---------------------------------------------------------------+

359 % smallestdeppos(+StartPos, +HeadPos, +ProjType, -SmallestDepPos)

360 %---------------------------------------------------------------+

361
362 % case1: a link of this ProjType exists

363 smallestdeppos(StartPos, HeadPos, ProjType, SmallestDepPos):-

364 id2pos(HeadID, HeadPos),

365 link(HeadID, DepID, _, ProjType),

366 id2pos(DepID, DepPos),

367 StartPos>DepPos,

128



368 smallestdeppos(DepPos, HeadPos, ProjType, SmallestDepPos),

369 !.

370
371 % case2: no link of this ProjType with smaller DepPos can be found

372 smallestdeppos(StartPos, _, _, StartPos).

373
374 %------------------------+

375 % prevpos(+Pos, -PrevPos)

376 %------------------------+

377
378 % case1: there is a previous position

379 prevpos(X, Y):-

380 feature(_, position=Y),

381 X>Y,

382 \+intermediate(X, Y),

383 !.

384
385 % case2: there is no previous Pos

386 prevpos(X, Y):-

387 Y is X-1.

388
389 %===============================================+

390 % rightendpos(+HeadPos, +ProjType, -RightEndPos)

391 %===============================================+

392
393 rightendpos(HeadPos, ProjType, RightEndPos):-

394 maxdeppos(HeadPos, ProjType, MaxDepPos),

395 nextpos(MaxDepPos, NextPos),

396 RightEndPos is (MaxDepPos+NextPos)/2,

397 !.

398
399 %-------------------------------------------+

400 % maxdeppos(+HeadPos, +ProjType, -MaxDepPos)

401 %-------------------------------------------+

402
403 % case1: link of this ProjType exists

404 maxdeppos(HeadPos, ProjType, MaxDepPos):-

405 id2pos(HeadID, HeadPos),

406 link(HeadID, DepID, _, ProjType),

407 id2pos(DepID, DepPos),

408 DepPos>HeadPos,

129



409 biggestdeppos(DepPos, HeadPos, ProjType, MaxDepPos),

410 !.

411
412 % case2: no link of this ProjType exists -> next ProjType

413 maxdeppos(HeadPos, ProjType, MaxDepPos):-

414 get_treelevel(ProjType, _, _, NextProjType, _),

415 maxdeppos(HeadPos, NextProjType, MaxDepPos),

416 !.

417
418 % case3: this ProjType is not defined

419 maxdeppos(HeadPos, _ProjType, HeadPos).

420
421 %--------------------------------------------------------------+

422 % biggestdeppos(+StartPos, +HeadPos, +ProjType, -BiggestDepPos)

423 %--------------------------------------------------------------+

424
425 % case1: a link of this ProjType exists

426 biggestdeppos(StartPos, HeadPos, ProjType, BiggestDepPos):-

427 id2pos(HeadID, HeadPos),

428 link(HeadID, DepID, _, ProjType),

429 id2pos(DepID, DepPos),

430 StartPos<DepPos,

431 biggestdeppos(DepPos, HeadPos, ProjType, BiggestDepPos),

432 !.

433
434 % case2: no link of this ProjType with bigger DepPos can be found

435 biggestdeppos(StartPos, _, _, StartPos).

436
437 %------------------------+

438 % nextpos(+Pos, -NextPos)

439 %------------------------+

440
441 % case1: there is a next position

442 nextpos(X, Y):-

443 feature(_, position=Y),

444 X<Y,

445 \+intermediate(X, Y),

446 !.

447
448 % case2: there is no bigger Pos

449 nextpos(X, Y):-

130



450 Y is X+1.

451
452 %================================================================+

453 % auxiliary predicates for the calculation of new token positions

454 %================================================================+

455
456 %------------------+

457 % id2pos(?ID, ?Pos)

458 %------------------+

459 id2pos(ID, Pos):-

460 feature(ID, position=Pos).

461
462 %---------------------+

463 % intermediate(+X, +Y)

464 %---------------------+

465
466 intermediate(X, Y):-

467 feature(_, position=Z),

468 X<Z, Z<Y.

469
470 intermediate(X, Y):-

471 feature(_, position=Z),

472 X>Z, Z>Y.

473
474 %================================================================%

475 % do_linksorting/0

476 %================================================================%

477 % re-sorts the link/4 facts after relinking according to the order

478 % given by Link Grammar

479
480 do_linksorting:-

481 links2list(UnsortedList), !,

482 linksort(UnsortedList, SortedList), !,

483 list2links(SortedList).

484
485 %-------------------------+

486 % links2list(-ListOfLinks)

487 %-------------------------+

488 % retracts the existing link/4 facts and reads them into a list

489
490 links2list([[H, D, T, S]|R]):-

131



491 retract(link(H, D, T, S)),

492 links2list(R).

493 links2list([]).

494
495 %-------------------------------------+

496 % linksort(+UnsortedList, -SortedList)

497 %-------------------------------------+

498 % quicksort for links

499
500 linksort([],[]).

501 linksort([X|Tail], Sorted):-

502 linksplit(X, Tail, Small, Big),

503 linksort(Small, SortedSmall),

504 linksort(Big, SortedBig),

505 append(SortedSmall, [X|SortedBig], Sorted).

506
507 %-----------------------------------+

508 % linksplit(+X, +Tail, -Small, -Big)

509 %-----------------------------------+

510 % split for links

511
512 linksplit(_X, [], [], []).

513 linksplit(X, [Y|Tail], [Y|Small], Big):-

514 X = [HX, DX|_],

515 Y = [HY, DY|_],

516 get_left(HX, DX, LX, _RX),

517 get_left(HY, DY, LY, _RY),

518 LX > LY,

519 linksplit(X, Tail, Small, Big).

520 linksplit(X, [Y|Tail], Small, [Y|Big]):-

521 X = [HX, DX|_],

522 Y = [HY, DY|_],

523 get_left(HX, DX, LX, _RX),

524 get_left(HY, DY, LY, _RY),

525 LX < LY,

526 linksplit(X, Tail, Small, Big).

527 linksplit(X, [Y|Tail], [Y|Small], Big):-

528 X = [HX, DX|_],

529 Y = [HY, DY|_],

530 get_left(HX, DX, LX, RX),

531 get_left(HY, DY, LY, RY),

132



532 LX = LY,

533 RX < RY,

534 linksplit(X, Tail, Small, Big).

535 linksplit(X, [Y|Tail], Small, [Y|Big]):-

536 X = [HX, DX|_],

537 Y = [HY, DY|_],

538 get_left(HX, DX, LX, _RX),

539 get_left(HY, DY, LY, _RY),

540 LX = LY,

541 linksplit(X, Tail, Small, Big).

542
543 %-------------------------------------------------------+

544 % get_left(+Nr1, +Nr2, -SmallerPosition, -BiggerPosition)

545 %-------------------------------------------------------+

546
547 get_left(A, B, L, R):-

548 feature(A, position=APos),

549 feature(B, position=BPos),

550 APos < BPos,

551 L = APos,

552 R = BPos, !.

553 get_left(A, B, L, R):-

554 feature(A, position=APos),

555 feature(B, position=BPos),

556 L = BPos,

557 R = APos, !.

558
559 %-------------------------+

560 % list2links(+ListOfLinks)

561 %-------------------------+

562 % asserts link/4 facts from a list of links

563
564 list2links([[H, D, T, S]|R]):-

565 assertz(link(H, D, T, S)),

566 list2links(R).

567 list2links([]).

568
569 %----------+

570 % append/3

571 %----------+

572

133



573 append([], List, List).

574 append([Element], List, [Element|List]).

575 append([Element|Rest], List, [Element|AppendList]):-

576 append(Rest, List, AppendList).

134



C.3 Module merge2tree.pl

0 :-module(merge2tree, [get_tree_of_links/1]).

1
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % merge2tree.pl - converts links into a tree

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5
6 :-use_module(linkinfo, [get_toplevel/1, get_treelevel/5,

7 is_projectable/1, is_rootlink/2,

8 is_footfeature/1, linkfeatures/5,

9 is_headfeature/1]).

10 :-use_module(linkage2links, [new_nr/2, link/4, token/2]).

11 :-use_module(features).

12
13 %-------------------------+

14 % get_tree_of_links(-Tree)

15 %-------------------------+

16 % gets the root link type and checks if a link of this type

17 % exists. The head of this link is the starting point of the

18 % conversion process.

19
20 get_tree_of_links(Tree):-

21 get_rootlink(RootType, RootSubsList),

22 link(StartHeadNr, _DependentNr, RootType, RootSubsList),

23 % from module linkage2links

24 merge2tree(StartHeadNr, Tree).

25
26 %---------------------------+

27 % merge2tree(+HeadNr, -Tree)

28 %---------------------------+

29
30 % case1: the category of the head is projectable

31 % - gets the top projection type (eg. specifier) (get_toplevel/1)

32 % - resolves (retracts) all links from this head of the projection type "trace" and

33 % adds a trace index to their tokens (trace/1).

34 % - starts the projection of a tree with HeadNr as its head

35
36
37 merge2tree(HeadNr, Tree):-

38 cat_is_projectable(HeadNr),

39 get_toplevel(ProjType), % from module linkinfo

135



40 trace(HeadNr),

41 projection(ProjType, HeadNr, Tree),

42 !.

43
44 % case2: the category of the head is not projectable

45 % - turn the head into a terminal subtree

46
47 merge2tree(HeadNr, LeafTree):-

48 add_leaf(HeadNr, LeafTree).

49
50 %---------------+

51 % trace(+HeadNr)

52 %---------------+

53 % resolves (retracts) all links from this head of the projection type "trace" and

54 % initialises and adds trace indices to the feature structure of their

55 % tokens (trace/1).

56
57 % case1: if trace exists

58 trace(HeadNr):-

59 link(HeadNr, TraceNr, Type, SubsList),

60 linkfeatures(Type, SubsList, HeadFeatures, TraceFeatures, trace),

61 % from module linkinfo

62 add_features_to_both(HeadNr, HeadFeatures, TraceNr, TraceFeatures),

63 new_nr(trace, TraceIndex), % from module linkage2links

64 add_features_to_both(HeadNr, [trace=TraceIndex], TraceNr,

65 [trace=TraceIndex]),

66 retract(link(HeadNr, TraceNr, Type, SubsList)),

67 trace(HeadNr).

68
69 % case2: no trace exists

70 trace(_HeadNr).

71
72 %--------------------------------------------------+

73 % projection(+ProjectionType, +HeadNr, -ProjectedTree)

74 %--------------------------------------------------+

75
76 % case1: does a link from this head and of this projection type exist?

77 % yes. -> add the features defined for its link type to the feature

78 % structures of its head and its dependents; retract the link; project

79 % the head to a new node along the projection mode defined for this

80 % projection type; convert the dependent and all its dependents

136



81 % (recursively) to a subtree; check if this projection type is

82 % recursive.

83
84 projection(ProjType, HeadNr, [ProjNr, [DepProjNr|DepTree]|RestTree]):-

85 link(HeadNr, DepNr, Type, SubsList),

86 linkfeatures(Type, SubsList, HeadFeatures, DepFeatures, ProjType),

87 add_features_to_both(HeadNr, HeadFeatures, DepNr, DepFeatures),

88 retract(link(HeadNr, DepNr, Type, SubsList)),

89 project(HeadNr, ProjType, ProjNr),

90 merge2tree(DepNr, [DepProjNr|DepTree]),

91 apply_ffp(DepProjNr, ProjNr),

92 recursive_projection(ProjType, HeadNr, ProjNr, RestTree).

93
94 % case2: does a link from this head and of this projection type exist?

95 % no. -> Is this projection type obligatory? yes. -> project its head

96 % (whithout any dependents) to a new node along the projection mode

97 % defined for this projection type; go to the links of the next (lower)

98 % projection type

99
100 projection(ProjType, HeadNr, [ProjNr, NextSubTree]):-

101 get_treelevel(ProjType, _Recursive, obligatory, _NextProjType,

102 _ProjFeatures),

103 project(HeadNr, ProjType, ProjNr),

104 next_projection(ProjType, HeadNr, NextSubTree).

105
106 % case2: does a link from this head and of this projection type exist?

107 % no. -> Is this projection type obligatory? no. -> go to the links of

108 % the next (lower) projection type.

109
110 projection(ProjType, HeadNr, NextSubTree):-

111 next_projection(ProjType, HeadNr, NextSubTree).

112
113
114 %---------------------------------------------+

115 % project(+HeadNr, +ProjType, -ProjNr)

116 %---------------------------------------------+

117 % projects the token and creates a new avm for its projection

118 %- get the features which have to be added (updated) to the projection

119 %(eg. bar=1)

120 % - create a new matrix

121 % - add the headfeatures to the new matrix

137



122 % - add the footfeatures to the new matrix

123 % - add (update) the features from above to the avm of the projection

124 % - return the ID of the projection

125
126 project(HeadNr, ProjType, ProjNr):-

127 get_treelevel(ProjType, _Recursive, _Obligatory, _NextProjType,

128 ProjFeatures),

129 create_matrix([], ProjNr),

130 apply_hfp(HeadNr, ProjNr),

131 apply_ffp(HeadNr, ProjNr),

132 add_featurelist_to_matrix(ProjNr, ProjFeatures).

133
134 %------------------------------------------------------------+

135 % recursive_projection(+ProjType, +HeadNr, +ProjNr, -ProjTree

136 %------------------------------------------------------------+

137
138 % case1: ProjType produces stacked structure if multiple links occur

139 % Does another link of this head and projection type exist && is this

140 % projection type recursive? yes and it produces stacked

141 % structures. -> ...

142 recursive_projection(ProjType, HeadNr, _ProjNr, [ProjTree]):-

143 link(HeadNr, _DepNr, Type, SubsList),

144 linkfeatures(Type, SubsList, _HeadFeatures, _DepFeatures, ProjType),

145 get_treelevel(ProjType, stack, _Obligatory, _NextProjType,

146 _ProjFeatures),

147 projection(ProjType, HeadNr, ProjTree).

148
149 % case 2: ProjType produces flat structure if multiple links occur

150 recursive_projection(ProjType, HeadNr, HeadProjNr, [[DepProjNr|DepTree]|RestTree]):-

151 link(HeadNr, DepNr, Type, SubsList),

152 linkfeatures(Type, SubsList, HeadFeatures, DepFeatures, ProjType),

153 get_treelevel(ProjType, flat, _Obligatory, _NextProjType,

154 _ProjFeatures),

155 add_features_to_both(HeadNr, HeadFeatures, DepNr, DepFeatures),

156 retract(link(HeadNr, DepNr, Type, SubsList)),

157 merge2tree(DepNr, [DepProjNr|DepTree]),

158 apply_ffp(DepProjNr, HeadProjNr),

159 recursive_projection(ProjType, HeadNr, HeadProjNr, RestTree).

160
161 % case3: ProjType is not recursive or no links of this type are left

162 recursive_projection(ProjType, HeadNr, _ProjNr, [NextSubTree]):-

138



163 next_projection(ProjType, HeadNr, NextSubTree).

164
165 %---------------------------------------------------+

166 % next_projection(+PrevProjType, +HeadNr, -ProjTree)

167 %---------------------------------------------------+

168
169 % case2: lowest projection type is reached

170 next_projection(ProjType, HeadNr, TerminalSubTree):-

171 get_treelevel(ProjType, _Recursive, _Obligatory, [], _ProjFeatures),

172 add_leaf(HeadNr, TerminalSubTree).

173
174 % case1: there is a next projection type left

175 next_projection(ProjType, HeadNr, ProjTree):-

176 get_treelevel(ProjType, _Recursive, _Obligatory, NextProjType,

177 _ProjFeatures),

178 projection(NextProjType, HeadNr, ProjTree).

179
180 %------------------------------------+

181 % add_leaf(+LeafNr, -TerminalSubTree)

182 %------------------------------------+

183
184 add_leaf(LeafNr, [LeafNr, LeafWord]):-

185 trace(LeafNr),

186 token(LeafWord, LeafNr).

187
188 %--------------------------------------------------------------------------------+

189 % add_features_to_both(+HeadNr, +HeadFeautures, +DependentNr, +DependentFeatures)

190 %--------------------------------------------------------------------------------+

191
192 add_features_to_both(HeadNr, HeadFeatures, DependentNr, DependentFeatures):-

193 add_featurelist_to_matrix(HeadNr, HeadFeatures), % from module features

194 add_featurelist_to_matrix(DependentNr, DependentFeatures). % from features

195
196 %-----------------------------+

197 % cat_is_projectable(+TokenNr)

198 %-----------------------------+

199
200 % if feature cat is already part of the matrix

201 cat_is_projectable(TokenNr):-

202 feature(TokenNr, cat=Cat),

203 is_projectable(Cat). % aus module linkinfo

139



204
205 cat_is_projectable(HeadNr):- % Token ist Head

206 link(HeadNr, _DepNr, Type, SubsList),

207 linkfeatures(Type, SubsList, HeadFeatures, _DepFeatures,

208 _Projectiontype),

209 get_feature(HeadFeatures, cat=Cat), % from module features

210 is_projectable(Cat). % from module linkinfo

211
212 %-----------------------------------------------------+

213 % get_rootlink(-RootlinkType, -RootlinkSubscriptsList)

214 %-----------------------------------------------------+

215
216 get_rootlink(RootType, RootSubsList):-

217 link(_Head, _Dependent, RootType, RootSubsList),

218 % from module linkages2links

219 is_rootlink(RootType, RootSubsList). % from module linkinfo

220
221 get_rootlink(_Rootlink, _RootSubsList):- % error message, if no root link exists

222 nl, write(’ERROR in linkinfo:get_rootlink/2: no rootlink found.’),

223 nl, write(’Execution aborted.’),

224 fail.

225
226 %---------------------------------+

227 % apply_ffp(+DepNr, +ProjectionNr)

228 %---------------------------------+

229
230 apply_ffp(DepNr, ProjectionNr):- % failure-driven loop

231 feature(DepNr, Feature=Value), % from module features

232 is_footfeature(Feature), % from module linkinfo

233 update_feature(ProjectionNr, Feature=Value),

234 fail.

235
236 apply_ffp(_DepNr, _ProjectionNr).

237
238 %----------------------------------+

239 % apply_hfp(+HeadNr, +ProjectionNr)

240 %----------------------------------+

241
242 apply_hfp(HeadNr, ProjectionNr):- % failure-driven loop

243 feature(HeadNr, Feature=Value), % aus module features

244 is_headfeature(Feature), % aus module linkinfo

140



245 update_feature(ProjectionNr, Feature=Value),

246 fail.

247
248 apply_hfp(_HeadNr, _ProjectionNr).

141



C.4 Module nicetree.pl

0 :-module(nicetree, [wordorder/2, nodelabels/2]).

1
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % nicetree.pl

4 % - rearrenges a tree according to its word order

5 % - labels tree

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7
8 :-use_module(features, [feature/2]).

9 :-use_module(linkinfo, [if_option/1]).

10
11 %------------------------------------------------+

12 % wordorder(+RandomlyArrangedTree, -ArrangedTree)

13 %------------------------------------------------+

14
15 % case0: empty tree

16 wordorder([], []).

17
18 % case1: tree of one or more elements

19 wordorder([MatrixNr|DaughterTrees],

20 [MatrixNr|RecursivelySortedDaughters]):-

21 quicksort(DaughterTrees, SortedDaughterTrees),

22 recursivesort(SortedDaughterTrees, RecursivelySortedDaughters).

23
24 wordorder(Element, Element).

25
26 %------------------------------------------------------+

27 % recursivesort(+List_of_Trees, -List_of_sorted_Trees)

28 %------------------------------------------------------+

29
30 recursivesort([FirstTree|RestTrees],

31 [SortedFirstTree|SortedRestTrees]):-

32 wordorder(FirstTree, SortedFirstTree),

33 recursivesort(RestTrees, SortedRestTrees).

34
35 recursivesort([], []).

36
37 %------------------------+

38 % quicksort for MatrixNrs

39 %------------------------+

142



40
41 quicksort([],[]).

42
43 quicksort([X|Tail], Sorted) :-

44 split(X, Tail, Small, Big),

45 quicksort(Small, SortedSmall),

46 quicksort(Big, SortedBig),

47 append(SortedSmall, [X|SortedBig], Sorted).

48
49 split(_X, [],[],[]).

50 split(X, [Y|Tail], [Y|Small], Big) :-

51 % X > Y, !,

52 X=[XID|_], Y=[YID|_],

53 feature(XID, position=PositionX),

54 feature(YID, position=PositionY),

55 PositionX > PositionY, !,

56 split(X, Tail, Small, Big).

57 split(X, [Y|Tail], Small, [Y|Big]) :-

58 split(X, Tail, Small, Big).

59
60 %-------------------------------------------+

61 % nodelabels(+UnlabelledTree, -LabelledTree)

62 %-------------------------------------------+

63
64 nodelabels([], []).

65
66 nodelabels([MatrixNr|Daughters], [Label|LabeledDaughters]):-

67 matrixnr2label(MatrixNr, Label),

68 recursivelabels(Daughters, LabeledDaughters).

69
70 nodelabels(Leaf, Leaf).

71
72 %----------------------------------------------------+

73 % recursivelabels(+ListofTrees, -ListofLabeledTrees)

74 %----------------------------------------------------+

75
76 recursivelabels([FirstTree|RestTrees],

77 [LabeledFirstTree|LabeledRestTrees]):-

78 nodelabels(FirstTree, LabeledFirstTree),

79 recursivelabels(RestTrees, LabeledRestTrees).

80

143



81 recursivelabels([], []).

82
83 %----------------------------------+

84 % matrixnr2label(+MatrixNr, -Label)

85 %----------------------------------+

86
87 matrixnr2label(MatrixNr, Label):-

88 add_catbar2label(MatrixNr, CatBarLabel),

89 add_trace2label(MatrixNr, CatBarLabel, TracedLabel),

90 add_matrixnr2label(MatrixNr, TracedLabel, Label).

91
92 %------------------------------------+

93 % add_catbar2label(+MatrixNr, -Label)

94 %------------------------------------+

95
96 add_catbar2label(MatrixNr, Label):-

97 feature(MatrixNr, cat=Cat), % wenn cat vorhanden

98 name(Cat, CatList),

99 feature(MatrixNr, bar=BarNr), % wenn bar vorhanden

100 barnr2barletter(BarNr, BarLetter), % n2 -> np etc.

101 name(BarLetter, BarList),

102 append(CatList, BarList, LabelList),

103 name(Label, LabelList).

104
105 add_catbar2label(MatrixNr, Label):-

106 feature(MatrixNr, cat=Label). % wenn nur cat (ohne bar) vorhanden

107
108 add_catbar2label(_MatrixNr, ’’). % wenn weder cat noch bar vorhanden

109
110 %------------------------------------+

111 % barnr2barletter(+BarNr, -BarLetter)

112 %------------------------------------+

113
114 barnr2barletter(BarNr, BarLetter):-

115 if_option(bar=1), % from module linkinfo

116 bar(BarNr, BarLetter).

117
118 barnr2barletter(BarNr, BarNr).

119
120 %----------------------+

121 % bar(BarNr, BarLetter)

144



122 %----------------------+

123
124 bar(0,’’).

125 bar(1,’bar’).

126 bar(2, ’p’).

127
128 %-----------------------------------------------+

129 % add_trace2label(+Matrix, +Label, -TracedLabel)

130 %-----------------------------------------------+

131
132 % case1: if trace exists and trace-display-option on

133 add_trace2label(Matrix, Label, TracedLabel):-

134 if_option(display_traces=1), % aus module linkinfo

135 feature(Matrix, trace=TraceNr),

136 atom_chars(Label, LabelList1),

137 name(TraceNr, TraceNrList),

138 atom_chars(’.t’, PreTraceList),

139 atom_chars(’’, PostTraceList),

140 append(LabelList1, PreTraceList, LabelList2),

141 append(LabelList2, TraceNrList, LabelList3),

142 append(LabelList3, PostTraceList, LabelList4),

143 atom_chars(TracedLabel, LabelList4).

144
145 % case2: if no trace exists

146 add_trace2label(_Matrix, Label, Label).

147
148 %--------------------------------------------------------+

149 % add_matrixnr2label(+Matrix, +Label, -LabelInclMatrixNr)

150 %--------------------------------------------------------+

151
152 add_matrixnr2label(Matrix, Label, CompleteLabel):-

153 if_option(display_nodeid=1), % aus module linkinfo

154 atom_chars(Label, LabelList),

155 name(Matrix, MatrixList),

156 atom_chars(’<’, OpenBrList),

157 atom_chars(’>’, CloseBrList),

158 append(OpenBrList, MatrixList, LabelList1),

159 append(LabelList1, CloseBrList, LabelList2),

160 append(LabelList2, LabelList, LabelList4),

161 atom_chars(CompleteLabel, LabelList4).

162

145



163 add_matrixnr2label(_Matrix, Label, Label).

164
165 %=====================+

166 % auxiliary predicates

167 %=====================+

168
169 %-------------------------------------+

170 % append(+List1, +List2, -CombinedList

171 %-------------------------------------+

172
173 append([], List, List).

174 append([Element], List, [Element|List]).

175 append([Element|Rest], List, [Element|AppendList]):-

176 append(Rest, List, AppendList).

177

146



C.5 Module features.pl

0 :-module(features, [feature/2, add_featurelist_to_matrix/2,

1 create_matrix/2, update_feature/2,

2 get_feature/2, last_matrixnr/1]).

3
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % feature.pl - erstellt und bearbeitet Feature-Matricen:

6 % - feature(MatrixNr, Feature=Value)

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8
9 :-use_module(linkinfo, [is_headfeature/1]).

10
11 :-dynamic(last_matrixnr/1).

12 :-dynamic(feature/2).

13
14
15 %--------------------------------+

16 % make_new_matrixnr(-NewMatrixNr)

17 %--------------------------------+

18
19 make_new_matrixnr(NewNr):- % wenn schon eine LastNr vorhanden

20 last_matrixnr(LastNr),

21 NewNr is LastNr +1,

22 retract(last_matrixnr(LastNr)),

23 assertz(last_matrixnr(NewNr)),

24 !.

25
26 make_new_matrixnr(0):- % MatrixNr initialisieren

27 assertz(last_matrixnr(0)).

28
29 %---------------------------------------+

30 % create_matrix(+FeatureList, -MatrixNr)

31 %---------------------------------------+

32
33 create_matrix(FeatureList, MatrixNr):-

34 make_new_matrixnr(MatrixNr),

35 add_featurelist_to_matrix(MatrixNr, FeatureList).

36
37 %---------------------------------------------------+

38 % add_featurelist_to_matrix(+MatrixNr, +FeatureList)

39 %---------------------------------------------------+

147



40
41 add_featurelist_to_matrix(_MatrixNr, []).

42 add_featurelist_to_matrix(MatrixNr,

43 [FirstFeature=FirstValue|RestFeatureList]):-

44 feature(MatrixNr, FirstFeature=_), % Feature vorhanden

45 update_feature(MatrixNr, FirstFeature=FirstValue),

46 add_featurelist_to_matrix(MatrixNr, RestFeatureList).

47
48 add_featurelist_to_matrix(MatrixNr,

49 [FirstFeature|RestFeatureList]):-

50 assertz(feature(MatrixNr, FirstFeature)), % neues Feature

51 add_featurelist_to_matrix(MatrixNr, RestFeatureList).

52
53 %---------------------------------------------+

54 % update_feature(+MatrixNr, +Feature=NewValue)

55 %---------------------------------------------+

56
57 update_feature(MatrixNr, Feature=NewValue):- % feature vorhanden

58 retract(feature(MatrixNr, Feature=_OldValue)),

59 assertz(feature(MatrixNr, Feature=NewValue)).

60
61 update_feature(MatrixNr, Feature=Value):- % zur Sicherheit: neues

62 % Feature

63 assertz(feature(MatrixNr, Feature=Value)).

64
65 %-------------------------------------------+

66 % get_feature(+FeatureList, ?Feature=?Value)

67 %-------------------------------------------+

68 % Fail if feature or value resp. not available

69
70 get_feature([Feature=Value|_], Feature=Value).

71
72 get_feature([_|Rest], Feature=Value):-

73 get_feature(Rest, Feature=Value).

148



C.6 Module linkinfo.pl

0 :-module(linkinfo, [linkfeatures/5, is_rootlink/2, is_projectable/1,

1 is_footfeature/1, split_linktype/3, call_rule/0,

2 get_tagfeatures/3, change_option/1, if_option/1,

3 get_treelevel/5, get_toplevel/1,

4 is_headfeature/1, reload_linkfeatures/0]).

5
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 % linkinfo.pl

8 % interface between the "grammar" (module linkfeatures) and the

9 % converter.

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 % April 2002

12 % Stefan Hoefler

13 % shoefler@cl.unizh.ch

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15
16 :-use_module(linkfeatures).

17
18 :-dynamic(linkfeatures/4).

19
20 %-------------------------------------------------+

21 % linkfeatures(+Type, +SubsList, -HeadFeatureList,

22 % -DependentFeatureList, -ProjectionType)

23 %-------------------------------------------------+

24
25 linkfeatures(Type, SubsList, HeadFeatureList, DependentFeatureList,

26 ProjectionType):-

27 get_typefeatures(Type, HeadFeatureList_1, DepFeatureList_1,

28 ProjectionType),

29 add_subsfeatures(SubsList, Type, HeadFeatureList_1,

30 DepFeatureList_1, HeadFeatureList,

31 DependentFeatureList),

32 !.

33
34 %-----------------------------------------------------------------+

35 % get_typefeatures(+Type, -HeadFeatureList, -DependentFeatureList,

36 % -ProjectionType)

37 %-----------------------------------------------------------------+

38
39 get_typefeatures(Type, HeadFeatureList, DepFeatureList,

149



40 ProjectionType):-

41 typefeatures(Type, HeadFeatureList, DepFeatureList,

42 ProjectionType).

43
44 %-------------------------------------------------+

45 % split_linktype(+Linktype, -Type, -SubscriptList)

46 %-------------------------------------------------+

47
48 split_linktype(Linktype, Type, SubsList):-

49 name(Linktype, CharList),

50 get_capitals(CharList, CapitalsList, MinorsList),

51 name(Type, CapitalsList),

52 name_subscripts(MinorsList, SubsList).

53
54 %---------------------------------------------------+

55 % name_subscripts(+MinorsASCIIList, -SubscriptsList)

56 %---------------------------------------------------+

57
58 name_subscripts([], []).

59
60 name_subscripts([FirstASCII|RestASCII],[FirstSub|RestSubs]):-

61 atom_chars(FirstSub, [FirstASCII]),

62 name_subscripts(RestASCII, RestSubs).

63
64 %------------------------------------------------------+

65 % get_capitals(+CharList, -CapitalsList, -RestCharList)

66 %------------------------------------------------------+

67
68 % case1: empty character list

69 get_capitals([], [], []). % capitals aus einer leeren Liste

70
71 % case2: first element is a capital

72 get_capitals([FirstChar|RestChars], [FirstChar|RestCapitals],

73 RestCharList):-

74 65 =< FirstChar, FirstChar =< 90,

75 get_capitals(RestChars, RestCapitals, RestCharList),

76 !.

77
78 % case3: first element is $

79 get_capitals([FirstChar|RestChars], [FirstChar|RestCapitals],

80 RestCharList):-

150



81 36=:=FirstChar,

82 get_capitals(RestChars, RestCapitals, RestCharList),

83 !.

84
85 % case4: first element is no capital (nor $)

86 get_capitals(RestChars, [], RestChars). % subscripts

87
88 %-----------------------------------------------------------+

89 % add_subsfeatures(+SubscriptsList, +Type, +HeadFeatureList,

90 % +DependentFeatureList, -CompleteHeadFeautureList,

91 % -CompleteDependentFeatureList)

92 %-----------------------------------------------------------+

93
94 % if no subscritps left

95 add_subsfeatures([], _Type, HeadFeatureList, DepFeatureList,

96 HeadFeatureList, DepFeatureList).

97
98 % there are subscripts left

99 add_subsfeatures([Subscript|RestSubs], Type, HeadFeatureList_1,

100 DepFeatureList_1, HeadFeatureList, DepFeatureList):-

101 get_subsfeatures(Subscript, Type, SubsHeadFeatureList, SubsDepFeatureList),

102 append_featurelist(HeadFeatureList_1, SubsHeadFeatureList,

103 HeadFeatureList_2),

104 append_featurelist(DepFeatureList_1, SubsDepFeatureList,

105 DepFeatureList_2),

106 add_subsfeatures(RestSubs, Type, HeadFeatureList_2, DepFeatureList_2,

107 HeadFeatureList, DepFeatureList).

108
109 %----------------------------------------------------------+

110 % get_subsfeatures(+Subscript, +Type, -SubsHeadFeatureList,

111 % -SubsDepFeatureList)

112 %----------------------------------------------------------+

113
114 get_subsfeatures(Subscript, Type, SubsHeadFeatureList,

115 SubsDepFeatureList):-

116 subsfeatures(Subscript, TypeList, SubsHeadFeatureList,

117 SubsDepFeatureList),

118 element_of_list(Type, TypeList).

119
120 get_subsfeatures(_Subscript, _Type, [], []). % unknown subscripts

121

151



122 %---------------------------------+

123 % element_of_list(+Element, +List)

124 %---------------------------------+

125
126 element_of_list(Element, [Element|_Rest]).

127 element_of_list(Element, [_FirstElement|Rest]):-

128 element_of_list(Element, Rest).

129
130 %--------------------------------------------------+

131 % append_featurelist(+ListA, +ListB, -CombinedList)

132 %--------------------------------------------------+

133
134 append_featurelist([], List, List).

135 append_featurelist([Element], List, [Element|List]).

136 append_featurelist([First|Rest], List, [First|AppendList]):-

137 append_featurelist(Rest, List, AppendList).

138
139 %---------------------+

140 % is_projectable(?Cat)

141 %---------------------+

142
143 is_projectable(Cat):-

144 projectable(Cat). % aus module linkfeatures

145
146 %------------------------------------------------+

147 % is_rootlink(+RootlinkType, +RootSubscriptsLink)

148 %------------------------------------------------+

149
150 is_rootlink(RootType, RootSubsList):- % wenn ein Rootlink vorhanden

151 rootlink(RootType, RootSubsList). % aus module linkfeatures

152
153 %-------------------------+

154 % is_footfeature(?Feature)

155 %-------------------------+

156
157 is_footfeature(Feature):-

158 footfeature(Feature). % aus module linkfeatures

159
160 %-------------------------+

161 % is_headfeature(?Feature)

162 %-------------------------+

152



163
164 is_headfeature(Feature):-

165 headfeature(Feature). % aus module linkfeatures

166
167 %-----------------------------+

168 % call_rule

169 %-----------------------------+

170 % interface to module linkfeatures

171
172 call_rule:-

173 relink. % from module linkfeatures

174
175 %-------------------------+

176 % get_treelevel(_,_,_,_,_)

177 %-------------------------+

178 % interface to module linkfeatures

179
180 get_treelevel(ProjType, Recursive, Obligatory, NextProjType, ProjFeatures):-

181 treelevel(ProjType, Recursive, Obligatory, NextProjType, ProjFeatures).

182
183 %--------------------------+

184 % get_toplevel(TopProjType)

185 %--------------------------+

186
187 get_toplevel(TopProjType):-

188 toplevel(TopProjType).

189
190 %=================+

191 % handling options

192 %=================+

193
194 %---------------------------------------------------------------+

195 % change_option(+OptionName) or change_option(+OptionName=Value)

196 %---------------------------------------------------------------+

197
198 % case1: Option=Value, Option already exists

199 change_option(Option=NewValue):-

200 option(Option=OldValue), % from module linkfeatures

201 retract(option(Option=OldValue)),

202 assertz(option(Option=NewValue)),

203 nl, write(’Option ’), write(Option), write(’ set to ’),

153



204 write(NewValue), nl.

205
206 % case2: only Option indicated, Option set to 0

207 change_option(Option):-

208 option(Option=0), % from module linkfeatures

209 retract(option(Option=0)),

210 assertz(option(Option=1)),

211 nl, write(’Option ’), write(Option), write(’ set to 1’), nl.

212
213 % case3: only Option indicated, Option set to 1

214 change_option(Option):-

215 option(Option=1), % from module linkfeatures

216 retract(option(Option=1)),

217 assertz(option(Option=0)),

218 nl, write(’Option ’), write(Option), write(’ set to 0’), nl.

219
220 % case4: error in option handling

221 change_option(_):-

222 nl,

223 write(’ERROR: Option does not exist or is not used in this way.’),

224 nl, write(’Check module linkfeatures.’), nl.

225
226 %---------------------------+

227 % if_option(+Option=Value)

228 %---------------------------+

229
230 if_option(Option=Value):-

231 option(Option=Value). % from module linkfeatures

232
233 %==================================================+

234 % get the features of tokens out of its affixed tag

235 %==================================================+

236
237 %-------------------------------------------------+

238 % get_tagfeatures(+Token, -TagFeaturesList, -Word)

239 %-------------------------------------------------+

240
241 get_tagfeatures(Token, TagFeatures, Word):-

242 atom_chars(Token, CharList),

243 check4features(CharList, TagFeatures, Word),

244 !.

154



245
246 %-----------------------------------------------------+

247 % check4features(+ASCIIList, -TagFeauturesList, -Word)

248 %-----------------------------------------------------+

249
250 check4features(TokenASCIIList, TagFeatures, Word):-

251 get_tag(TokenASCIIList, TagASCIIList, WordASCIIList),

252 make_chars_list(TagASCIIList, TagCharsList),

253 atom_chars(Word, WordASCIIList),

254 tagfeatures(TagCharsList, TagFeatures). % from module linkfeatures

255
256 check4features(_, []).

257
258 %------------------------------------------------------+

259 % get_tag(+WordASCIIList, -TagASCIIList, -WordformList)

260 %------------------------------------------------------+

261
262 % case1: empty ASCII-List

263 get_tag([],[], []).

264
265 % case2a: a full stop is the only symbol

266 get_tag([FullStop], [], [FullStop]):-

267 FullStop=:=46.

268
269 % case2b: first symbol is a dot -> rest is tag

270 get_tag([FirstASCII|Tag],Tag, []):-

271 FirstASCII=:=46.

272
273 % case3: cut first symbol

274 get_tag([FirstASCII|RestASCII],Tag, [FirstASCII|RestWordform]):-

275 get_tag(RestASCII, Tag, RestWordform).

276
277
278 %----------------------------------------+

279 % make_chars_list(+ASCIIList, -CharsList)

280 %----------------------------------------+

281
282 make_chars_list([],[]).

283
284 make_chars_list([ASCII|RestASCII],[Char|RestChars]):-

285 atom_chars(Char, [ASCII]),

155



286 make_chars_list(RestASCII, RestChars).

287
288 %==================================================================+

289 % reload_linkfeatures/0: load a another rule set during the program

290 %==================================================================+

291
292 % case1: the option model has not been changed since the last time

293 reload_linkfeatures:-

294 option(last_model=Model),

295 option(model=Model).

296
297 % case2: the option model has been changed since the last time

298 reload_linkfeatures:-

299 abolish([rootlink/2, typefeatures/4, subsfeatures/4,

300 projectable/1, footfeature/1, relink/0, tagfeatures/2,

301 treelevel/5, toplevel/1, headfeature/1]),

302 option(model=Model),

303 modelpath(Model, ModelPath),

304 use_module(ModelPath, [rootlink/2, typefeatures/4, subsfeatures/4,

305 projectable/1, footfeature/1, relink/0,

306 tagfeatures/2, treelevel/5, toplevel/1,

307 headfeature/1]),

308 change_option(last_model=Model).

309

156



C.7 Module linkfeatures.pl

0 :-module(linkfeatures, [rootlink/2, typefeatures/4, subsfeatures/4,

1 projectable/1, footfeature/1, relink/0,

2 tagfeatures/2, option/1, treelevel/5,

3 toplevel/1, headfeature/1, modelpath/2]).

4
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % linkfeatures.pl

7 % the rule set module: here, all the information how links shall be

8 % converted into constituents is stored.

9 % adaptions need only be made in this module.

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 % May 2002

12 % Stefan Hoefler

13 % shoefler@cl.unizh.ch

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15
16 %--------------------------+

17 % option(OptionName, Value)

18 %--------------------------+

19 % Default values for options

20 % A default has to be defined for every option

21 % ATTENTION: Do not change Option-Names!

22
23 :-dynamic(option/1).

24 :-dynamic(last_option/1).

25 option(display_traces=1).

26 option(display_nodeid=0).

27 option(bar=0). % 0: n0, n1, n2 // 1: n, nbar, np

28 option(model=basic).

29 option(last_model=basic).

30
31 % Default rule set (cp. option model)

32 :-use_module(linkfeatures_basic).

33
34 % Paths for rules sets (cp. options model and last_model)

35 modelpath(basic, ’link2tree/linkfeatures_basic’).

36 modelpath(corr, ’link2tree/linkfeatures_basic_corr’).

37 modelpath(gb, ’link2tree/linkfeatures_gb’).

38

157



References

Bennett, Paul. 1995. A Course in Generalized Phrase Structure Grammar . London: UCL

Press.

Bloomfield, Leonard. 1933. Language. New York: H. Holt and Company.

Borsley, Robert D. 1997. Syntax Theorie: Ein zusammengefasster Zugang . Tübingen:

Niemeyer Verlag.

Bröker, Norbert and Geert-Jan Kruijff. 1999. “Dependency Grammar.” Homepage at the

Institute of Formal and Applied Linguistics, Prague University, Prague.

http://ufal.mff.cuni.cz/dg/.

Burton-Roberts, Noel. 1997. Analyzing Sentences . 2nd ed. New York: Addison Wesley

Longman.

Chomsky, Noam. 1957. Syntactic Structure. The Hague: Mouton.

Chomsky, Noam. 1981. Lectures on Government and Binding . 7th ed. Berlin and New

York: Mouton de Gruyter.

Chomsky, Noam. 1986a. Barriers . Cambridge, MA: MIT Press.

Chomsky, Noam. 1986b. Knowledge of Language: Its Nature, Origin and Use. New York:

Praeger.

Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MA: MIT Press.

Cook, Vivian and Mark Newson. 1996. Chomsky’s Universal Grammar: An Introduction.

2nd ed. Oxford: Blackwell.

Covington, Michael. 1992. “GB Theory as Dependency Grammar.” Research Report

AI-1992-03, University of Georgia, Athens GE.

Covington, Michael. 1994. “An Empirically Motivated Reinterpretation of Dependency

Grammar.” Research Report AI-1994-01, University of Georgia, Athens GE.

Fraser, Norman. 1996. “Dependency Grammar.” In: Brown, Keith and Jim Miller (eds.),

Concise Encyclopedia of Syntactic Theories . Oxford: Elsevier, 71–75.

158



Gaifman, Haim. 1965. “Dependency systems and phrase-structure systems.” Information

and Control vol. 8, 304–337.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum and Ivan Sag. 1985. Generalized Phrase

Structure Grammar . Cambridge, MA: Harvard University Press.

Gazdar, Gerald and Chris Mellish. 1989. Natural Language Processing in PROLOG .

Workingham, Reading MA: Addison-Wesley.

Haegeman, Liliane. 1994. Introduction to Government & Binding Theory . 2nd ed.

Oxford: Blackwell.

Hays, David G. 1964. “Dependency theory: A formalism and some observations.”

Language vol. 40, 511–525.

Hudson, Richard. 1990. English Word Grammar . Oxford: Basil Blackwell.

Järvinen, Timo and Pasi Tapanainen. 1997. “A Dependency Parser for English.”

Department of Linguistics Technical Report TR-1, University of Helsinki, Helsinki.

Matthews, Peter H. 1981. Syntax . Cambridge: Cambridge University Press.

Mélčuk, Igor A. 1988. Dependency Syntax: Theory and Practice. New York: State

University of New York Press.

Mollá, Diego. 2000. ExtrAns: An Answer Extraction System for Unix Manpages: On-line

Manual . University of Zurich: Computional Linguistics, Zurich.

Mollá, Diego, Gerold Schneider, Rolf Schwitter and Michael Hess. 2000a. “Answer

Extraction Using a Dependency Grammar in ExtrAns.” T.A.L. vol. 41, no. 1, 127–156.

Mollá, Diego, Rolf Schwitter, Michael Hess and Rachel Fournier. 2000b. “ExtrAns, an

Answer Extraction System.” T.A.L. vol. 41, no. 2, 1–25.

Müller, Stefan. 1998. “Prolog und Computerlinguistik: Teil I Syntax.” Vorlesungsskripte

Computerlinguistik, Humboldt Universität, Berlin.

http://www.dfki.de/∼stefan/Pub/prolog.html.

Pollard, Carl and Ivan Sag. 1987. Fundamentals , vol. 1 of Information-based Syntax and

Semantics . Stanford: University of Chicago Press.

159



Pollard, Carl and Ivan Sag. 1994. Head-Driven Phrase Structure Grammar . Chicago:

University of Chicago Press.

Radford, Andrew. 1997. Syntactic theory and the structure of English: A minimalist

approach. Cambridge: Cambridge University Press.

Sag, Ivan A. and Thomas Wasow. 1999. Syntactic Theory: A Formal Introduction.

Stanford, California: CSLI.

Schneider, Gerold. 1998a. “An Introduction to Government & Binding: Notes for an

Imaginary Colloquium.” unpublished paper, University of Zurich.

Schneider, Gerold. 1998b. “A Linguistic Comparison of Constituency, Dependency and

Link Grammar.” Master’s thesis, Philosophical Faculty I of the University of Zurich,

Zurich.

Schneider, Gerold. 1999. “Wordtags as used for the ExtrAns version of Link Grammar

Lexicon V 2.1.” Available together with the ExtrAns system in the file

README NEWTAGS WORDS2.1 in the ExtrAns parser directory.

Sleator, Daniel and Davy Temperley. 1993. “Parsing English with a Link Grammar.”

Proceedings of IWPT ’93.

Somers, Harold. 1984. “On the validity of the complement-adjunct distinction in valency

grammar.” Linguistics vol. 22, 507–530.

Tarvainen, Kalevi. 1981. Einführung in die Dependenzgrammatik . Reihe Germanistische

Linguistik 35, Tübingen: Niemeyer.

Temperley, Davy, Daniel Sleator and John Lafferty. 2000. “Link Grammar

Documentation.” Homepage at the Carnegie Mellon University.

http://bobo.link.cs.cmu.edu/grammar/html/dict/.

Tesnière, Lucien. 1959. Eléments de syntaxe structurale. Paris: Librairie Klincksieck.

Weber, Heinz. 1997. Dependenzgrammatik . Tübingen: Gunter Narr Verlag.

160



Index

:/2, 72

::/2, 72

=../2, 46

add catbar2label/2, 69, 70

add dep info/5, 15, 95

add featurelist to matrix/2, 71–73

add features/2, 88, 94

add features to both/4, 65

add leaf/2, 65, 66

add link/4, 53, 88, 94

add matrixnr2label/3, 70

add sentnr to features/1, 47

add subsfeatures/4, 81

add token/3, 50, 51, 79, 88, 94

add trace2label/3, 70

apply ffp/2, 65, 66, 83

apply hfp/2, 65, 83

assert links/1, 50

assert tokens/1, 50, 51, 68

assertz/1, 53

atom chars/2, 79

avm/2, 74

bar/2, 69

barnr2barletter/2, 69

call rule/0, 87

cat is projectable/1, 65

change option/1, 46, 85

chopt/1, 44, 46

create list of links/2, 50

create matrix/2, 71, 73

dag update/3, 73, 74

display tree/1, 44–46, 69, 70

do linksorting/0, 53

do relinking/0, 51–53

do relinking, 87

draw/1, 46

echo option/1, 44, 46

feature/2, 30, 36, 41, 47, 71, 72, 74, 87,

94

feature/3, 32–34, 36, 41, 42, 47

footfeature/1, 66, 83

get lists/3, 49

get rootlink/2, 64

get tag/3, 79

get tagfeatures/2, 51

get tagfeatures/3, 51, 79

get toplevel/1, 64, 83

get tree of links/1, 44, 64

get treelevel/5, 66, 83

get typefeatures/2, 81

get xth result/3, 48, 49

h/1, 15

headfeature/1, 66, 83

id/3, 32–34, 36, 41, 42, 47

if option/1, 46, 85

is footfeature/1, 83

is headfeature/1, 83

is projectable/1, 65, 83

is rootlink/2, 82

last matrixnr/1, 71

leftendpos/3, 93, 94

link/4, 36, 39, 50, 53, 54, 87, 88, 94

link2tree/3, 36, 42, 44–46, 69, 107

linkage2constituents/2, 44

161



linkage2constituents/4, 33, 36, 42, 44,

45, 48, 109

linkage2links/1, 48–50

linkage2links/2, 44

linkfeatures/5, 61, 65, 81

links2lists/1, 53

linksort/2, 53, 54

linksplit/2, 54

list2links/1, 54

list univ/2, 46

listing/1, 47

lp/3, 32–34, 36, 41, 42, 47

make chars list/2, 79

make new matrixnr/1, 71

matrixnr2label/2, 69

merge2tree/2, 64, 65

modelpath/2, 109

new nr/2, 88, 94

next projection/3, 66

nodelabels/2, 37, 40, 46, 69, 70, 85

option/1, 85

parse/2, 14, 33, 45

postprocess/2, 44, 47

print links/2, 45

project/3, 65, 83

projectable/1, 64, 83

projection/3, 65, 66, 83

quicksort/2, 69

recursive projection/4, 65, 66

recursive univ/2, 46

recursivelabels/2, 69

recursivesort/2, 69

relink/0, 87

reload linkfeatures/0, 109

remote head/4, 88, 89, 94

remove link/4, 88, 94

remove token/2, 88, 94

retract all dynamics/0, 48

rightendpos/3, 93, 94

rootlink/2, 63, 81, 82

split/2, 54

split linktype/3, 50, 81

start parser/0, 45

start parser/4, 107

sub root/2, 88, 90, 94

subsfeatures/4, 61, 80

tagfeatures/2, 78, 79

token/2, 36, 87, 88, 94

toplevel/1, 60, 61, 82, 83

trace/1, 65–67

transform link/2, 50

tree2id/2, 47

tree2lp/2, 47

treelevel/5, 60, 66, 67, 82, 83

typefeatures/4, 61, 80, 82

update feature/2, 71–73

use draw/1, 46

wordorder/2, 37, 44, 68, 69

162


