
Coral: Corpus Access in Controlled Language∗

Tobias Kuhn1,2 and Stefan Hoefler1

1Institute of Computational Linguistics
University of Zurich, Switzerland

2Department of Intelligent Computer Systems
University of Malta

kuhntobias@gmail.com / hoefler@cl.uzh.ch

Abstract

This paper presents Coral, an interface in which complex corpus queries
can be expressed in a controlled subset of natural English. With the help
of a predictive editor, users can compose queries and submit them to
the Coral system, which then automatically translates them into formal
AQL statements. The paper gives an overview of the controlled natural
language developed for Coral and describes the functionalities of the pre-
dictive editor provided for it. It also reports on a user experiment in which
the system was evaluated. The results show that, with Coral, corpora of
annotated texts can be queried easier and faster than with the existing
ANNIS interface. Our system demonstrates that complex corpora can be
accessed without the need to learn a complicated formal query language.

1 Introduction

In recent years, the analysis of large corpora of annotated texts has come to play
an ever more important role in linguistic research. Not only has an increasing
number of corpora become available but the amount of linguistic information
with which they are annotated is on the rise too: corpora, nowadays, are anno-
tated with part-of-speech tags, syntactic structure and even semantic or other
linguistic information.

More complex annotations also require more complex queries if they are to
be exploited effectively. The problem is that it is often not possible to make the
full complexity of such queries available through simple, user-friendly web forms.
At the moment, linguists can thus only use this new type of corpora effectively if
they invest a considerable amount of time and effort into acquiring complicated

∗This manuscript will appear in Corpora, issue 7.2, Edinburgh University Press.

1



and idiosyncratic formal query languages. Examples of user-interfaces that em-
bed such formal query languages are XKWIC (Christ, 1994), TigerSEARCH
(König et al., 2003), and more recently ANNIS (Zeldes et al., 2009). Users with
no particular background in computer science would benefit from simpler and
more intuitive corpus query interfaces, be they corpus linguists or users employ-
ing corpora-based systems for language learning (Brill, 1993) and for translation
support1.

In this paper, we present a way to tackle this problem: we have developed
Coral, an interface in which complex corpus queries can be expressed in a con-
trolled subset of natural English. They are then automatically translated into
the underlying formal query language AQL (Zeldes et al., 2009). We show that
with this interface, complex corpora can be queried effectively without much
training or prior knowledge.

The remainder of the paper falls into four main parts. In section 2, we
introduce the method of controlled natural language on which Coral is based. In
section 3, we give an overview of the syntax and semantics of Coral’s controlled
English and introduce its special editor. In section 4, we present an evaluation
of our approach in the form of a user experiment. In section 5, we place Coral
in the context of related work.

2 Approach

The central idea of the Coral system is to employ the method of controlled nat-
ural language to provide an interface for annotated text corpora in which users
can compose complex queries in a straight-forward and intuitive way without
much training or prior knowledge.

Controlled natural languages (Wyner et al., 2010; Pool, 2006) are artificially
defined subsets of natural languages whose vocabulary, syntax and/or semantics
have been restricted in order to reduce or eliminate ambiguity and complexity.
Some of these languages are completely formal and can be automatically mapped
to some sort of logic. Their goal is to improve human-computer communication.
Examples are ACE (Fuchs et al., 2008), CLP (Clark et al., 2005) and PENG
(Schwitter and Tilbrook, 2006). Other controlled natural languages are richer
and less restricted, but cannot be interpreted automatically. Caterpillar Funda-
mental English and ALCOGRAM are examples among many others (Adriaens
and Schreors, 1992). Their goal is to improve the communication among humans,
especially non-native speakers of the respective language.

The controlled natural language implemented in Coral is of the first type:
it can be mapped deterministically onto a formal representation, namely onto
the ANNIS Query Language AQL. Coral queries, as shown in Fig. 1, are thus at
the same time statements in natural English and statements in a formal query
language. They combine the intuitiveness of natural language with the precision
of formal languages. From a linguistic perspective, such an approach is thus of
twofold interest: firstly, it offers a novel way of querying annotated text corpora,

1e.g. http://www.linguee.com/

2



Figure 1: A screenshot of the Coral web interface.

and secondly, it uses natural language – the very object of study of linguistics
– as an interface to do so.

Statements in controlled natural language are easier to read and understand
than statements in formal languages (Kuhn, 2010b). However, they are still
relatively hard to write: without the help of adequate authoring tools, users need
to keep in mind the often numerous and complex restrictions of the controlled
language they are using. Two main approaches have been suggested to tackle
this problem: conceptual authoring (Power et al., 2009) and predictive editors
(Tennant et al., 1983; Schwitter et al., 2003).

In both approaches, a tool supports users in composing statements incre-
mentally and informs them about their possible next actions. With a concep-
tual authoring tool, users do not have direct control of the text in the controlled
language. They can only trigger specific actions to change the underlying logic
model. After each change, the model is verbalized in the respective controlled
language and shown to the user. With a predictive editor, users have more fine-
grained control of the actual syntax of the statements. A statement is composed
step by step, i.e. phrase by phrase or word by word, from the start to the end
of the statement. At each step, the user sees all possible options of how to con-
tinue the statement. We chose the second approach and have equipped the Coral
system with such a predictive editor to support users in composing queries in
Coral’s controlled English (see section 3.2 below).

3 Coral

Coral allows for users to compose queries in a controlled natural language and
automatically translates them into AQL statements.2 Coral’s output can then
be passed on to ANNIS or any other AQL-compliant query engine (in the case

2We chose AQL because it was specifically designed for the composition of complex queries
on multi-level linguistic corpora (Chiarcos et al., 2008).

3



AQL gets implemented in other systems in the future). We used version 2.1.7
of ANNIS and AQL. Coral is implemented as a web-based application that can
be easily accessed with a browser.

We will now (1) provide an overview of the syntax and semantics of Coral’s
controlled English, (2) introduce the predictive editor offered by the Coral sys-
tem and (3) briefly discuss the implementation of its grammar and lexicon.

3.1 Coral’s Controlled English

Fig. 1 shows a screenshot of the Coral web interface with a sample query. Coral
queries start with the phrase: Find all passages where. . . This initial phrase is
followed by the actual query conditions, which take the form of one or more sen-
tences separated by semicolons. The formal semantics of these query conditions
is defined by a deterministic mapping to AQL.

The most basic component of an AQL query is one that refers to a specific
token (e.g. telephone). The following example shows such an AQL expression (a)
and its equivalent in Coral’s controlled English (c).

(1) a. token="telephone"

c. a token “telephone”

Both languages also support the shorter forms “telephone” or "telephone" re-
spectively. A search for a node with a specific attribute-value pair is realised as
follows in AQL and in Coral:

(2) a. cat="VP"

c. a structure has an attribute “cat” of value “VP”

Coral supports shortcuts for specific attributes or for whole attribute-value pairs
in its lexicon: e.g. category for cat or verb phrase for cat="VP" (cf. section 3.3).
This option makes it possible to phrase the respective queries in a more straight-
forward manner:

(3) a. cat="VP"

c1. a structure with the category “VP”

c2. a verb phrase

To express relations, AQL uses special symbols (e.g. .* for precedence) together
with relative addressing (#1 referring to the first of the introduced nodes, #2 to
the second, etc.); in Coral, such relations are mapped onto verbs:

(4) a. "a" & "telephone" & #1 .* #2

c. a token “a” is followed by a token “telephone”

Table 1 provides a list of AQL’s relation symbols and the verbs they map to in
Coral. Verbs can be used in active or in passive voice; all of the below Coral
statements are thus equivalent:

4



Coral AQL
[1] precedes [2] #1 .* #2

[1] directly precedes [2] #1 . #2

[1] is preceded by [2] #2 .* #1

[1] is directly preceded by [2] #2 . #1

[1] follows [2] #2 .* #1

[1] directly follows [2] #2 . #1

[1] is followed by [2] #1 .* #2

[1] is directly followed by [2] #1 . #2

[1] contains [2] #1 >* #2

[1] directly contains [2] #1 > #2

[1] is contained in [2] #2 >* #1

[1] is directly contained in [2] #2 > #1

[1] is identical to [2] #1 = #2

[1] includes [2] #1 i #2

[1] is included in [2] #2 i #1

[1] overlaps with [2] #1 o #2

[1] overlaps on the right with [2] #1 or #2

[1] overlaps on the left with [2] #1 ol #2

[1] is left-aligned with [2] #1 l #2

[1] is right-aligned with [2] #1 r #2

[1] shares a parent with [2] #1 $ #2

[1] shares an ancestor with [2] #1 $* #2

Table 1: Default relations of the Coral lexicon and their AQL equivalents.

(5) c1. “a” precedes “telephone”

c2. “telephone” is preceded by “a”

c3. “telephone” follows “a”

c4. “a” is followed by “telephone”

As shown in the sample query in Fig. 1, definite noun phrases can be used as
anaphoric expressions to refer to objects that have been introduced earlier in the
query. To facilitate anaphora resolution in complex queries, Coral additionally
permits the use of numbers as explicit identifiers:

(6) a. cat="S" & cat="S" & #1 >* #2 & pos="V" & #1 >* #3 &

#2 .* #3

c. a sentence (1) contains a sentence (2);
sentence (1) contains a verb;
sentence (2) precedes the verb

AQL’s unary operators are realised as prepositional phrases or as the direct
object of the verb have:

5



(7) a. cat="NP" & #1:length=6

c1. a noun phrase with length 6

c2. a noun phrase has length 6

Negation is only possible on the level of attribute-value pairs in AQL; in Coral,
this feature can be expressed by inserting not:

(8) a. pos="N" & lemma!="telephone" & #1 = #2

c. a noun with a lemma that does not have the value “telephone”

The value of an attribute can also be indicated as a regular expression; in Coral,
regular expressions are introduced by the verb match:

(9) a. pos="N" & lemma=/d[aeiou]g/ & #1 = #2

c. a noun has a lemma that matches “d[aeiou]g”

In AQL, edges can be assigned attribute-value pairs as labels. The example
below shows an edge labeled with the user-defined attribute func. In Coral,
such edge labels are expressed as prepositional phrases with the preposition as:

(10) a. cat="S" & pos="N" & #1 >[func="OA"] #2

c. a sentence contains a noun as an accusative object

A special key phrase makes it possible to indicate the distance between tokens:

(11) a. pos="N" & pos="Conj" & #2 .5,10 #1

c. a noun follows a conjunction at a distance of 5 to 10 tokens

Complex queries can be constructed by combining these elements:

(12) a. CAT="S" & POS=V & LEMMA=/.*ize/ & #2 = #3 & #1 >* #2 &

CAT="NP" & #1 >[func=OA] #4 & POS=N & LEMMA="telephone"

& #5 = #6 & #2 .5,10 #5 & #4 >* #5

c. a sentence contains a verb with a lemma that matches “.*ize” and con-
tains a noun phrase as an accusative object;
the noun phrase contains a noun with the lemma “telephone” that fol-
lows the verb at a distance of 5 to 10 tokens;

AQL has some more features, which cannot all be discussed here. Coral
covers all but some of the most recently added features of AQL.

3.2 Predictive Editor

As mentioned at the beginning of this paper, we chose the predictive editor
approach to solve the problem that controlled English is easy to read but rel-
atively hard to write. We took the editor that is part of the ACE Editor3 and

6



Figure 2: The predictive editor of the Coral system.

of AceWiki (Kuhn, 2009a). The source code of these systems is open4, and the
predictive editor module can be easily reused and incorporated in other systems.

Figure 2 shows a screenshot of the predictive editor in Coral. Its interface
is organised as follows. At the very top, it shows the (partial) query that the
users have entered so far. Underneath, it shows all ways in which the query
can currently be continued. At any given point of time, users can continue the
composition of their query by choosing from any of the displayed words or
phrases. Of course, the availability of specific words or phrases also depends on
the grammar and lexicon that have been loaded (see below).

The availability of a predictive editor thus enables users to compose query
statements that comply with the restrictions of the controlled language without
having to memorise these restrictions beforehand. User experiments with the
AceWiki system showed that the predictive editor in question is easy to use,
even without prior training (Kuhn, 2009b).

3.3 Grammar and Lexicon

The grammar describing the controlled subset of English used in Coral is written
in the Codeco notation (Kuhn, 2010a). This notation is specifically designed for

3http://attempto.ifi.uzh.ch/aceeditor
4https://launchpad.net/acewiki

7



Type Coral AQL
element adjective phrase CAT="AP"

element noun phrase CAT="NP"

element adjective POS=/ADJ.*/

element proper noun POS="NE"

element normal noun POS="NN"

element noun POS=/N.*/

property category CAT

property part of speech POS

property lemma LEMMA

role the subject [func="SB"]

role a relative clause [func="RC"]

Table 2: Some exemplary lexicon entries of element, property and role descrip-
tions.

controlled natural languages to be used in predictive editors. Coral’s grammar
consists of 51 grammar rules.

The lexicon describes the dynamic part of the language: it can easily be mod-
ified and customized for specific corpora and their tag sets. Table 2 shows some
exemplary lexicon entries of element, property and role descriptions. Elements
describe tokens and nodes, properties map to tag names, and roles are used for
labeled edges. Since AQL does not have predefined tag names or categories, the
mapping from controlled English to AQL depends on the actual tag set used
by the respective corpus. For this reason, the lexicon has to be tailored towards
the corpus to be used. Alternatively, more low-level expressions are possible in
Coral, as shown above in example (2).

In contrast to tag names and categories, general relations like precedence and
containment are predefined in AQL: these entries in Coral’s lexicon do therefore
not need to be adapted to the tag sets of specific corpora. However, it can still
make sense to give these relations different aliases in different application areas,
to allow or disallow certain synonyms, or to remove certain relations from the
lexicon if they are not needed in a particular scenario. Table 1 shows the default
definitions of the relations.

4 Evaluation

To test whether the approach implemented in the Coral system constitutes an
improvement to existing query interfaces, we set up a user experiment. We chose
ANNIS as the system to compare Coral against. ANNIS provides a graphical
query builder as well as the possibility to directly write AQL code. Since both
Coral and ANNIS rely on AQL, a direct comparison is possible. We will first
explain the design of the experiment and then discuss the results we obtained.

8



4.1 User Experiment Design

The experiment focused on how easy it is to compose corpus queries in either
system. The experiment was thus performed on the query interfaces only, with-
out a corpus actually being searched: the participants were told to compose
queries but they did not have the possibility to actually see any results these
queries might have returned. The reason for this was to keep the design of the
experiment simple, focusing on one key aspect and allowing for strict and clear
evaluation. It seems natural to expect that users normally use corpus query en-
gines in an iterative, trial-and-error-based manner, while our experiment only
covers the first of such a sequence of queries. However, it is sensible to assume,
we think, that the first query plays a crucial role: it must have a fair quality in
order to keep the iterative process going into the right direction, and for very
simple queries users would probably get frustrated if they fail to get it right
on the first try. We have to leave these assumptions to future research and we
concentrate here on the quality of queries written without the feedback from
previous query results.

We recruited twelve participants, all with a computational linguistics5 back-
ground (students or researchers) and a reasonably good, non-native command of
English but without any special expertise in controlled natural languages. None
of them had worked with ANNIS or Coral before, but eight of them had worked
with systems similar to ANNIS, and three had worked with systems similar to
Coral (according to the questionnaire they had to fill out after the experiment).

All participants were tested on both systems, Coral and ANNIS. In order to
rule out learning effects, half of them received Coral first, while the other half
started with ANNIS.

The task of the participants was to compose queries (using Coral or ANNIS)
for given statements in natural language. Since these statements were not to be
biased towards one of the systems, we took them from academic articles and user
guides, preserving exact wording and formatting. We selected eight statements
that are reasonably simple and use consistent vocabulary and divided them into
three groups:

Group A:

1. Find all trees in which ‘is’ immediately precedes a determiner (Schulte im
Walde and Zinsmeister, 2006)

2. verb fight followed by the noun independence (Rychlý, 2008)

3. Find nouns that follow a verb which is a child of a verb phrase (Bird et al.,
2005)

Group B:

5We chose computational linguists as participants to give ANNIS a more realistic chance to
outscore CORAL. As computational linguists should be familiar with formal query languages,
they can be expected to produce sensible results on both systems after the short learning
phases provided during the experiment.

9



Type Coral AQL
element sentence CAT="S"

element noun phrase CAT="NP"

element verb phrase CAT="VP"

element prepositional phrase CAT="PP"

element determiner POS="DET"

element verb POS="V"

element noun POS="N"

element preposition POS="PREP"

property category CAT

property part of speech POS

property lemma LEMMA

Table 3: Element and property entries of the Coral lexicon used in the experi-
ment.

4. verb fight followed by any preposition (Rychlý, 2008)

5. Find noun phrases that immediately follow a verb (Bird et al., 2005)

6. Find all verb phrases that are comprised of a verb, a noun phrase, and a
prepositional phrase (Bird et al., 2005)

Group C:

7. verb fight preceded by a noun (Rychlý, 2008)

8. locate all sentences with a preposition followed immediately by the word
“the” (MacWhinney, 2010)

The Coral lexicon entries required to express these statements are shown in
Table 3.

Half of the participants had to express the statements of group A in Coral and
those of group B in ANNIS; the other half of the participants had to express the
statements of group A in ANNIS and those of group B in Coral. The statements
of group C were used as examples in the instructions.

The procedure of the experiment was as follows:

1. The participants read an instruction sheet explaining the procedure of the
experiment.

2. The participants received an instruction sheet for the first system (either
Coral or ANNIS), which provided them with the knowledge needed to
successfully accomplish the subsequent tasks (showing only the elements
and relations necessary for the tasks). The instructions used statements
7 and 8 as examples and showed how they could be expressed as queries
in the respective system. Figure 3 illustrates the sample solutions that
were provided for statement 8. The participants were allowed to spend 6
minutes on this step.

10



3. The participants then received one of the statements of group A (or B
respectively) and had to compose a query for it on the given system. They
were granted 2 minutes to solve the task, and they were allowed to consult
the instructions. In the case of the ANNIS interface, the participants could
either directly write the query code or use the graphical editor, as they
preferred. This step was then repeated for the other two statements of
the same group. The participants received the individual statements in
different orders.

4. Steps 2 and 3 were repeated for the other system.

5. The participants filled out a questionnaire asking about their background,
whether they have worked with similar systems before, and how usable
they found the two systems.

We chose strict and tight time limits because the tasks were relatively simple,
the participants were skilled, and perfect scores for both systems would not
have allowed us to detect on which system the participants performed better.
Participants were allowed to finish before the time limit was reached; we recorded
the amount of time they needed for each task. Thus we were able to compare
Coral and ANNIS not only with regard to the number of tasks that were solved,
but also with regard to the time that was needed to complete these tasks.

4.2 User Experiment Results

The most important result is the number of tasks the participants accomplished
successfully for each system. Figure 4 compares the percentages of successful
tasks for each system, and Table 4 shows the concrete scores of the individual
participants. With the Coral system, participants managed to solve almost twice
as many tasks as with ANNIS (23 vs. 12). On average, 64% of the tasks were
completed successfully with Coral but only 33% with ANNIS. In the case of
ANNIS, six of the participants used the code-based way to construct all three
queries, another four only used the graphical editor, and the remaining two used
the code-based way for the first task and switched then to the graphical editor
for the remaining two tasks. The percentage of correctly formalized queries was
slightly higher with the code-based editor than with the graphical one (35% vs.
31%).

The difference of the scores (i.e. the number of correctly formalized queries)
between Coral and ANNIS is statistically significant, with a p-value of 0.039
when using a Wilcoxon signed rank test (Wilcoxon, 1945). Since these scores
are not single measurements but consist of three individual measurements each
(i.e. Boolean measurements of whether the task was accomplished or not), we
can apply more fine-grained tests on the individual tasks: applying a simple
logistic regression, with the system used as the independent variable and the
score (0 or 1) as the dependent one, shows a significant effect in favor of Coral
(with a p-value of 0.011); the correlation between used system and resulting

11



Task: Create a query that expresses the situation of the following
statement:

locate all sentences with a preposition followed immediately
by the word “the”

Sample Solutions:

Coral:

ANNIS (graphical):

ANNIS (AQL code): CAT="S" & POS="PREP" & "the" & #1 >* #2 & #2 . #3

Figure 3: An exemplary task that the participants of the experiment had to
accomplish.

score measured as a Pearson correlation shows a significant effect of medium
strengh in favor of Coral (with a coefficient of 0.31 and a p-value of 0.0090).

Next, we can have a look at the time aspect. Figure 5 shows the total amount
of time the participants spent on average on the three tasks of each system. With
Coral, users required a bit more than four minutes (86 seconds per task), whereas
more than five minutes were needed in the case of ANNIS (108 seconds per task).
Only one participant was faster with ANNIS, while all others were faster with
Coral. The difference is highly significant, with a p-value of 0.0044 when using
a Wilcoxon signed rank test. The above results include the time values for all
tasks regardless of whether the participant was successful or not. Restricting
the attention to the successful tasks shows an even bigger difference: 70 seconds
per successful task for Coral versus 102 seconds for ANNIS. The participants
clearly required less time to accomplish the tasks with Coral than they needed
with ANNIS.

As a further dimension, we can look at the subjective usability, i.e. at how
usable the participants found the two systems. The questionnaire contained a
question “How easy or hard to use did you find system X?” for each of the

12



64%Coral

33%totalANNIS

35%code-based

31%graphical

0% 20% 40% 60% 80% 100%

percentage of correct queries

Figure 4: Average percentage of correct queries per participant and system. In
the case of ANNIS, the results are shown for each of the two possibilities to
construct queries (i.e. code-based vs. graphical).

Participant Coral ANNIS Total
1 3 2 5
2 3 2 5
3 3 1 4
4 3 1 4
5 2 2 4
6 2 2 4
7 2 0 2
8 2 0 2
9 2 0 2

10 0 2 2
11 1 0 1
12 0 0 0

Total 23 12 35
Average 1.92 1.00 1.46

Table 4: Scores of the individual participants, sorted by their total score.

systems. They could choose between “very hard to use” (value 0), “hard to use”
(1), “easy to use” (2), and “very easy to use” (3). Figure 6 shows the results.
Coral got an average value of 2.33, i.e. between “easy to use” and “very easy to
use”. ANNIS, in contrast, was in the lower half between “hard to use” and “easy
to use” with an average value of only 1.42. This difference is significant too, with
a p-value of 0.027. Thus, the participant perceived Coral as being easier to use
than ANNIS.

Finally, we can have a closer look at the tasks that the participants were
not successful in. We were able to identify seven patterns of mistakes: (1) some
solutions covered only part of what was described in the task; (2) others con-
tained the correct entities (categories, relations, etc.) but connected them in
an incorrect way; (3) some used incorrect relations (e.g. precedence instead of
containment); (4) some used incorrect categories or parts of speech; (5) some

13



257Coral

324ANNIS

0 60 120 180 240 300 360
time in seconds spent on the three tasks

Figure 5: Average total amount of time the participants spent on accomplishing
the three tasks.

2.33Coral

1.42ANNIS

0 1 2 3
subjective usability

Figure 6: Degree of usability as perceived by the participants (0 means “very
hard to use”; 3 means “very easy to use”).

contained mistyped tokens; (6) some were empty; and finally (7) some solutions
contained syntax errors (this last case was only possible when ANNIS was used
in its code-based mode). Furthermore, a number of incorrect solutions could
not be classified according to this scheme or contained multiple mistakes. The
distribution of these error types is visualized in Figure 7.

The most apparent difference between Coral and ANNIS in terms of error
types is the fact that errors due to incorrectly connected entities are frequent
with ANNIS (about 11% of all tasks), while they did not occur in Coral. All
participants that made this type of error chose to use the code-based way to
construct the query. The graphical editor of ANNIS did not show this kind
of problem. The following example should clarify why this type of error is so
frequent with the code-based ANNIS interface. One participant’s solution to
task 5 (i.e. “Find noun phrases that immediately follow a verb”) consisted of
the following AQL query:

CAT="NP" & POS="V" & #1 . #2

This solution is almost correct, but it should be “#2 . #1” instead of “#1 . #2”
to correctly reflect the task description. Arguably, the direction of a relation is
clearer with Coral’s controlled English (“precedes” or “is preceded by”?) than
with AQL (“#1 . #2” or “#2 . #1”?).

Another type of problem that only occurred with the code-based interface
of ANNIS were syntax errors, which could be identified as the sole cause of
an incorrect solution in two cases. The fact that mistyped tokens and multiple
mistakes were more frequent with ANNIS than with Coral could be an indication
that some users were overwhelmed by ANNIS and did not manage to understand

14



0 3 6 9 12 15 18 21 24 27 30 33 36

number of tasks

c correct

m missing information

n incorrectly connected entities

r incorrect relations
p incorrect categories / parts of speech

t mistyped tokens

e empty answers

s syntax errors

o multiple mistakes / others

Coral c m r p e o

ANNIS c m n r p t e s o

c m n r p t s o code-based

c m r p t e o graphical

Figure 7: Number and types of errors for all of the 36 tasks that were performed
on each system. For ANNIS: errors that were made with each of the two possible
interfaces, i.e. the code-based and the graphical one.

the interface in the short time provided.
In summary, our results show that in the given scenario (computational

linguists as users, little training, and relatively high time pressure) Coral is
easier to use than ANNIS. We expect that linguists without a computer science
background would exhibit an even stronger preference of Coral.

5 Related Work

A number of approaches have been presented in the past that are related to our
approach.

Controlled English has been proposed for queries to the structure of software
code (Würsch et al., 2010) and as a query language for ontologies (Kaufmann
and Bernstein, 2007). This has been implemented in systems like GINO (Bern-
stein and Kaufmann, 2006) and PANTO (Wang et al., 2007). Other approaches
use controlled English as a general knowledge representation language for the
Semantic Web (Schwitter and Tilbrook, 2004; Kaljurand, 2007; Schwitter et al.,
2008). In the area of corpus queries, however, to the best of our knowledge no
research on controlled language queries has been conducted so far.

In terms of evaluation, there are some experiments that test the understand-
ability of controlled languages (Kuhn, 2010b; Hart et al., 2008; Hallett et al.,
2007; Chervak et al., 1996). They come to the conclusion that statements in

15



controlled English are easier to understand than other formal languages. How-
ever, this does not imply that such statements are also easier to write (given an
appropriate editor), which is what we showed with our experiment.

Funk et al. (2007) compared the usability of an ontology editor based on
controlled English and a classical ontology editor (their study is about writing
declarative statements, not queries). They found a significant preference for the
first system but, in contrast to what we did, they only measured the subjective
usability, i.e. the participants were asked how usable they found the respective
system. The subjective feeling of the participants, however, does not necessarily
coincide with the actual, objective usability of the tool (they might have made
mistakes without having noticed it, they might have over- or underestimated
certain aspects, etc.).

6 Conclusions

Linguistically annotated text corpora will be the more useful, the more effec-
tively researches can query them. At present, linguists interested in regularities
that require complex queries are forced to learn sophisticated formal languages
or complicated graphical notations if they want to access these corpora. We
believe that corpus-based linguistic research would greatly profit from the avail-
ability of query methods that would combine the expressivity and power of
formal query languages with greater intuitiveness and ease of use.

In this paper, we have shown that controlled natural language may prove to
be a useful tool to achieve this goal. We have introduced Coral, a system in which
users can express queries in a controlled subset of natural English and which
then automatically translates these queries into the formal query language AQL.
The evaluation we conducted showed that even relatively skilled users find it
easier to compose corpus queries with Coral’s predictive editor than to express
them in a formal query language they were not deeply familiar with, at least on
the first encounter with the system. The effects of iterative interaction with the
system and of longer periods of usage experience and training remain open to
be studied for the future.

Acknowledgments

We would like to thank Amir Zeldes and Florian Zipser for their help on ANNIS
and AQL. We also want to thank Alexandra Bünzli, Norbert E. Fuchs, Michael
Hess and Gerold Schneider for their input and feedback. Finally, we thank all
participants of the experiment for their time and effort.

References

Adriaens, G. and D. Schreors: 1992, ‘From COGRAM to ALCOGRAM: To-
ward a Controlled English Grammar Checker’, in Proceedings of the 14th

16



Conference on Computational Linguistics, Vol. 2, pp. 595–601. Association
for Computational Linguistics.

Bernstein, A. and E. Kaufmann: 2006, ‘GINO — A Guided Input Natural Lan-
guage Ontology Editor’, in The Semantic Web — ISWC 2006, Proceedings of
the 5th International Semantic Web Conference (Lecture Notes in Computer
Science 4273), pp. 144–157. Springer.

Bird, S., Y. Chen, S. B. Davidson, H. Lee, and Y. Zheng: 2005, ‘Extending XPath
to support linguistic queries’, in Proceedings of the Workshop on Programming
Language Technologies for XML 2005 (PLAN-X 2005), pp. 35–46.

Brill, E.: 1993, A Corpus-Based Approach to Language Learning, PhD disserta-
tion, Philadelpha, PA, USA.

Chervak, S., C. G. Drury, and J. P. Ouellette: 1996, ‘Field Evaluation of Sim-
plified English for Aircraft Workcards’, in Proceedings of the 10th FAA/AAM
Meeting on Human Factors in Aviation Maintenance and Inspection.

Chiarcos, C., S. Dipper, M. Götze, J. Ritz, and M. Stede: 2008, ‘A Flexible
Framework for Integrating Annotations from Different Tools and Tagsets’,
in Proceeding of the Conference on Global Interoperability for Language Re-
sources. Hongkong, China.

Christ, O.: 1994, ‘A modular and flexible architecture for an integrated corpus
query system’, in Proceedings of COMPLEX’94, 3rd Conference on Compu-
tational Lexicography and Text Research, pp. 23–32.

Clark, P., P. Harrison, T. Jenkins, J. Thompson, and R. H. Wojcik: 2005, ‘Ac-
quiring and Using World Knowledge Using a Restricted Subset of English’,
in Proceedings of the Eighteenth International Florida Artificial Intelligence
Research Society Conference (FLAIRS 2005), pp. 506–511. AAAI Press.

Fuchs, N. E., K. Kaljurand, and T. Kuhn: 2008, ‘Attempto Controlled English
for Knowledge Representation’, in Reasoning Web — 4th International Sum-
mer School 2008, pp. 104–124. Springer.

Funk, A., V. Tablan, K. Bontcheva, H. Cunningham, B. Davis, and S. Hand-
schuh: 2007, ‘CLOnE: Controlled Language for Ontology Editing’, in Proceed-
ings of the 6th International Semantic Web Conference and the 2nd Asian
Semantic Web Conference (ISWC 2007 + ASWC 2007) (Lecture Notes in
Computer Science 4825), pp. 142–155. Springer.

Hallett, C., D. Scott, and R. Power: 2007, ‘Composing Questions through Con-
ceptual Authoring’, Computational Linguistics 33(1), 105–133.

Hart, G., M. Johnson, and C. Dolbear: 2008, ‘Rabbit: Developing a Controlled
Natural Language for Authoring Ontologies’, in Proceedings of the 5th Euro-
pean Semantic Web Conference (ESWC 2008) (Lecture Notes in Computer
Science 5021), pp. 348–360. Springer.

17



Kaljurand, K.: 2007, Attempto Controlled English as a Semantic Web Language,
PhD dissertation, Faculty of Mathematics and Computer Science, University
of Tartu, Estonia.

Kaufmann, E. and A. Bernstein: 2007, ‘How Useful are Natural Language In-
terfaces to the Semantic Web for Casual End-users?’, in Proceedings of the
6th International Semantic Web Conference and the 2nd Asian Semantic Web
Conference (ISWC 2007 + ASWC 2007) (Lecture Notes in Computer Science
4825), pp. 281–294. Springer.

König, E., W. Lezius, and H. Voormann: 2003, ‘TIGERSearch 2.1 — User’s
Manual’. University of Stuttgart.

Kuhn, T.: 2009a, ‘AceWiki: A Natural and Expressive Semantic Wiki’, in Pro-
ceedings of the Fifth International Workshop on Semantic Web User Interac-
tion (SWUI 2008) — Exploring HCI Challenges (CEUR Workshop Proceed-
ings 543). CEUR-WS.

Kuhn, T.: 2009b, ‘How Controlled English can Improve Semantic Wikis’, in
Proceedings of the Forth Semantic Wiki Workshop (SemWiki 2009) (CEUR
Workshop Proceedings 464). CEUR-WS.

Kuhn, T.: 2010a, ‘Codeco: A Grammar Notation for Controlled Natural Lan-
guage in Predictive Editors’, in Pre-Proceedings of the Second Workshop on
Controlled Natural Languages (CNL 2010) (CEUR Workshop Proceedings
622). CEUR-WS.

Kuhn, T.: 2010b, ‘An Evaluation Framework for Controlled Natural Languages’,
in Proceedings of the Workshop on Controlled Natural Language (CNL 2009)
(Lecture Notes in Computer Science 5972), pp. 1–20. Springer.

MacWhinney, B.: 2010, ‘The CHILDES Project, Tools for Analyzing Talk, Part
2: The CLAN Programs’. Carnegie Mellon University, electronic edition.

Pool, J.: 2006, ‘Can Controlled Languages Scale to the Web?’, in Proceedings of
the 5th International Workshop on Controlled Language Applications (CLAW
2006).

Power, R., R. Stevens, D. Scott, and A. Rector: 2009, ‘Editing OWL through
Generated CNL’, in Pre-Proceedings of the Workshop on Controlled Natural
Language (CNL 2009) (CEUR Workshop Proceedings 448). CEUR-WS.

Rychlý, P.: 2008, ‘Building and Exploring (Web) Corpora’. www.fi.muni.cz/

~pary/emasters08-1.pdf.

Schwitter, R., K. Kaljurand, A. Cregan, C. Dolbear, and G. Hart: 2008, ‘A
Comparison of three Controlled Natural Languages for OWL 1.1’, in Proceed-
ings of the Fourth OWLED Workshop on OWL: Experiences and Directions
(CEUR Workshop Proceedings 496). CEUR-WS.

18



Schwitter, R., A. Ljungberg, and D. Hood: 2003, ‘ECOLE — A Look-ahead
Editor for a Controlled Language’, in Controlled Translation — Proceedings
of the Joint Conference combining the 8th International Workshop of the Eu-
ropean Association for Machine Translation and the 4th Controlled Language
Application Workshop (EAMT-CLAW03), pp. 141–150. Dublin City Univer-
sity, Ireland.

Schwitter, R. and M. Tilbrook: 2004, ‘Controlled Natural Language meets
the Semantic Web’, in Proceedings of the Australasian Language Technology
Workshop 2004 (ALTA Electronic Proceedings 2), pp. 55–62. Australasian
Language Technology Association.

Schwitter, R. and M. Tilbrook: 2006, ‘Let’s Talk in Description Logic via Con-
trolled Natural Language’, in Proceedings of the Third International Work-
shop on Logic and Engineering of Natural Language Semantics (LENLS2006),
pp. 193–207.

Tennant, H. R., K. M. Ross, R. M. Saenz, C. W. Thompson, and J. R. Miller:
1983, ‘Menu-based Natural Language Understanding’, in Proceedings of the
21st annual meeting on Association for Computational Linguistics, pp. 151–
158. Association for Computational Linguistics.

Schulte im Walde, S. and H. Zinsmeister: 2006, ‘Exercise: Searching Tree-
banks TIGERSearch and Tregex’. http://www.coli.uni-saarland.de/

~schulte/Teaching/ESSLLI-06/Exercises/syntax-ex.pdf.

Wang, C., M. Xiong, Q. Zhou, and Y. Yu: 2007, ‘PANTO: A Portable Natural
Language Interface to Ontologies’, in The Semantic Web: Research and Appli-
cations — Proceedings of the 4th European Semantic Web Conference (ESWC
2007) (Lecture Notes in Computer Science 4519), pp. 473–487. Springer.

Wilcoxon, F.: 1945, ‘Individual Comparisons by Ranking Methods’, Biometrics
Bulletin 1(6), 80–83.

Würsch, M., G. Ghezzi, G. Reif, and H. C. Gall: 2010, ‘Supporting develop-
ers with natural language queries’, in ICSE ’10: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, pp. 165–174.
ACM, New York, NY, USA.

Wyner, A., K. Angelov, G. Barzdins, D. Damljanovic, B. Davis, N. Fuchs, S.
Hoefler, K. Jones, K. Kaljurand, T. Kuhn, M. Luts, J. Pool, M. Rosner, R.
Schwitter, and J. Sowa: 2010, ‘On Controlled Natural Languages: Properties
and Prospects’, in Proceedings of the Workshop on Controlled Natural Lan-
guage (CNL 2009) (Lecture Notes in Computer Science 5972), pp. 281–289.
Springer.

Zeldes, A., J. Ritz, A. Ldeling, and C. Chiarcos: 2009, ‘ANNIS: A Search Tool for
Multi-Layer Annotated Corpora’, in Proceedings of Corpus Linguistics 2009.

19


