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Abstract

Relational database systems represent the current standard technology for implementing database appli-
cations. Now that the object-oriented paradigm becomes more and more mature in all phases of the
software engineering process, object-oriented DBMS are seriously considered for the seamless integra-
tion of object-oriented applications and data persistence. When reengineering existing applications or
constructing new ones on top of relational databases, a large semantic gap between the new object mod-
el and the legacy database’s model must still be bridged. We propose database migration to resolve this
mismatch: the relational schema is transformed into an object-oriented one and the relational data is mi-
grated to an object-oriented database. Existing approaches for migration do not exploit the full potential
of the object-oriented paradigm so that the resulting object-oriented schema still “looks rather relation-
al” and retains the drawbacks and weaknesses of the relational schema. We propose a redesign environ-
ment which allows to transform relational schemas into adequate object-oriented ones. Schemas and
transformation rules are expressed in terms of a new data model, called semi object types (SOT). We
also propose a formal foundation for SOT and transformation rules. This formalization makes it possi-
ble to automatically generate the input of the data migration process.

1 Introduction

The presence of new technologies like the World Wide Web, E-commerce or data warehousing is a key ar-
gument for many companies to reengineer legacy information systems [34]. Now that the object-oriented
method is prevailing in modern software development, almost all components of new information systems
are developed within an object-oriented software engineering life cycle. The notable exception is in many
cases the (relational or even hierarchical and CODASYL-) database component. Many organizations still
principally refrain from using object-oriented database management systems (OODBMS), for reasons
which are beyond the the scope of this paper. Other organizations are willing to give OODBMS a try, but
then require the existing relational data to be available in the object-oriented database system (OODBS).
This requirement raises the research problem of how to convert schemas and databases stored in an exist-
ing (relational) database system into those of an OODBS. To that end, mainly hybrid approaches such as
object-oriented views over relational schemas have been proposed, but these do not resolve the data model

mismatch, and the required conversions at runtime lead to performance degradations. We therefore propose



database migrationi.e. the transformation of a relational schema into an object-oriented one and the sub-

sequent migration of the data to the object-oriented DBMS.

Several database vendors now offer so-called connectivity tools to relational databases, some of them
providing also load facilities. However, these and additional approaches proposed in research [1, 19, 8, 36]
are not flexible enough, especially in supporting extensive schema restructuring operations. They primarily
map each relation to a class and replace inclusion dependencies by references or inheritance relationships.
All approaches have in common that they providea-step mapping.e., every element of the target ob-
ject schema is directly derived from an element of the relational source schema. These approaches are ade-
guate for small and well-designed schemas which, e.g., are derived from an entity-relationship schema
and/or are in third Normal Form (3NF). However, connectivity tools and other proposals exhibit two major
inadequacies:

» Weaknesses and drawbacks of relational schemafelational legacy databases typically contain
“obscure” optimizations or are denormalized in order to avoid expensive join operations in queries. For
example, multiple tables conceptually related by aggregation or inheritance relationships are often col-
lapsed into a single table. A direct mapping of such structures into object-oriented ones preserves inad-
equacies; consequently, schema transformation must be flexible (e.g., not in all cases semantics-
preserving), as overcoming such drawbacks enhances the semantic expressiveness of the schema.

» Different design strategies:Relational and object-oriented database design are principally different
and follow different design strategies. Besides additional semantic features in object-oriented schemas,
such as aggregation or inheritance, object-oriented models comprise the concepts of methods and en-
capsulation, objects as an abstraction level, but usually do not provide a view mechanism. As a conse-
quence, the straightforward transformation of a well-designed relational schema does not necessarily
result in a well-designed object schema. These differences are extensively discussed in [10, 26, 31].
Again, flexible transformations need to be supported in order to obtain a well-designed object-oriented

schema.

Approaches supporting both, flexible schema transformation and an automatically generated data mi-

gration process, do not yet exist. The main contributions of our approach therefore consist of:

* Flexible schema transformation: This allows transforming the relational schema into (any) “ade-
quate” object-oriented schema as obtained by forward engineering, rigorously using an object-oriented
design method like OOD [11]. We therefore introducedesign environment

« Automatically generated data mapping: The formal foundationof our approach is given by an alge-

bra. This makes it possible to successively define and rewrite data mappings during schema redesign. In



consequence, the data migration process can be generated automatically as soon as the schema transfor-

mation process is completed.

Recently, object-relational DBMS (ORDBMS) have started to offer some object-oriented features de-
fined in the SQL3 standard such as inheritance, user-defined types, etc. Other features are likely to be ad-
dressed in SQL4 (e.g., collection-valued attributes). ORDBMS will have the same problem as discussed
here for OODBMS, namely to convert an existing relational schema into one exploiting object-oriented
features, and to adapt existing databases. Thus, the results presented here for OODBS will also be impor-
tant for (future) ORDBS.

The remainder of this paper is structured as follows. An overview of all migration activities is presented
in section 2. The basis of our approach is th@esign environmenthich is illustrated in section 3. We in-
troduce a new data model, called semi object types (SOT), and an algebra, in which the activity of schema
transformation is embedded. The migration process, embedded in this redesign environment, is presented
in section 4. The essential element of the migration process is the condegtgformation rulesvhich
supports both, schema transformation and data mapping. The application of transformation rules is illus-

trated by an example in section 5. Section 6 contains concluding remarks and open issues.

2 The Migration Framework

The framework of our view of the migration process is illustrated in Fig. 1. The part of the approach pre-

sented in this paper resides in the grey box in the lower part of the figure.
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Figure 1: The Migration Framework

is necessary since no specific assumptions are made about the source schema (e.qg., it might not be in 3NF).

Reverse engineering has found considerable attention in research in this decade, not only in the context of



database migration but also for redocumentation, restructuring, maintenance or extension of existing data-
bases and applications [2, 14, 17, 12, 21, 22, 25, 30]. Its objective is to extract semantic information like
primary keys or foreign keys from the database, which might not be explicitly available, e.g., as part of the
DDL code (note that older versions of relational DBMS did, e.g., not support foreign key constraints). Data
models capturing semantic information in the context of database migration have been proposed in [18,
36]. Semantic information can also be gathered by analysing queries from application programs [24, 29] or
data. The activity of adding semantic information to an existing schema is sttehtic enrichment

Even though various approaches for semantic enrichment exist, the extracted information is not suffi-
cient for anautomaticschema transformation process (recall the limitations of one-step, automatic map-
pings discussed above). Hence, similar to other recently devised approaches, we proptsactive
schema transformation process. The user is thereby supported by (i) semantic information and (ii) an addi-
tional layer, calledchema transformation contrahich supports the user through schema transformation
strategies. The latter can be implemented by extracting common transformation patterns, as will be shown
in subsequent examples. A detailed presentation of this layer is outside the scope of this paper.

The result of the schema transformation process is (i) an object-oriented schema and (ii) an algebraic

data mapping definition which enables an automatic migration of the database.

3 Redesign Environment

The redesign environment contains an intermediary model for the transformation of a relational schema
into an object-oriented one. It consists of two major parts: a data model in which schema transformations
are expressed, and an algebra which supports to formulate data mapping expressions.

The central modelling construct of the data modelssai object type&SOT), which are comparable to
relations or classes. The purpose of the SOT model is to express all (static) properties of object-oriented
schemas in a way that makes restructuring operations as easy as possible.

Neither the relational nor the object-oriented data model fulfils the requirements for schema transforma-
tion and data migration. The relational data model lacks (unique) identifiers and the support of complex
structures. Identity is simulated through key attributes. Since key attributes may also represent contents of
the universe of discourse, transformation rules relaxing the uniqueness requirement of these attributes
cause problems. As regards complex structures, aggregates and sets may be simulated through additional

relations, however list or array structures cannot be expressed directly.



On the other hand, the object-oriented model is too restrictive with respect to object identity and inher-
itance. Moreover, schema restructuring cannot easily be propagated to the data level. The interface of an
object or its class membership (usually) cannot be changed once it is created. No influence can be taken on
object identifiers.

An SOT schema consists of asetof SHs { s, ..., S} .Every SOT  consists of a set of attributes
s.A ={ay,...,a,} . SOTs and attributes are identified by unique (artificial) identifiers. In this way we
avoided the problem of hame conflicts and the need for defining default names for attributes and SOTs be-
ing created during the transformation process. However, in subsequent examples we use names instead of
identifiers for better readability. Attributes can be divided into basic attributes (of type integer, string, etc.),
collection attributes (of set, list or array type) and reference attributes. Binary relationships between SOTs
are expressed through reference attributes, which also define the cardinalities for both SOTSs participating
in the relationship. A reference attribute of an SQT s a triple (s;, C;, Cy) , Wisere is the refer-
enced SOTC; denotes the cardinalityspf -references to instanegs of Gand  denotes the inverse car-
dinality. The cardinalitiesC; an€, are pai® = (Cil’ ciz) wheIi?D {0, 1} aJpZdD {1,n} .In
other words, the cardinalities denote whether the relationship is injective, total, surjective or functional. In-
heritance is expressed as a special kind of one-to-one relationship between SOTSs.

Data is expressed in form of objects which are elements of extensions. An oligeah instance of an
SOT and consists of an identifier and a tuple valwes (id, [a,:vy, ..., &,:V,]) . An extension consists of
a set of object§o,, ..., 0.}

The SOT algebra defines a number of operators for both metadata and data manipulation. Various alge-
bras for object-oriented data models exist [4, 16, 33, 32], most of them with the purpose of formalizing a
query language. The SOT algebra was derived from [20] and extended with restructuring and metada-
ta operators. Operators are distinguished in schema operators and data operators. The application of sche-
ma operators produces side effects on the SOT schema. Data operators are free of side effects and provide
various data restructuring operations. In the following, we briefly introduce a subset of those operators of
the SOT algebra, which are used in subsequent examples. The complete and formal definition of the alge-
bra is presented in [6].

* Image operatarThe image operator[Ax. f(X)] , as known from [4], applies the funétiorevery
object within an extension argumentAx. f(x)]{o,,...,0,} = {f(0y), ..., f(0,)}

* Projection The projection operators has the same purpose as in the relational algebra. We distinguish
identifier projectionm, andtuple projectiontt; , which can be applied to objects, aoloject projection

Ty, Which can be applied to both, objects and extensions:



- m(id, [a;:vy, ..., a,:v,]) = id
- nT{anl, ___,%m}(id, [agivy, . a,v]) = [anl:vnl, a.nm:vnm] where{m,, ..., } O{1,...,n}
- T[O{anl'---'anm}(id’ [agivy, o agivy]) = (id,[anl:vnl, ...,aﬂm:vnm]),and
- T[O{anl’ “”anm}{ol, ., 0} = I[AX. T[O{anl’ ””anm}x]{ol, ey Op}
» SelectionThis operator can be applied to all kinds of collection values, for example to extensions:
- o[Ax. f(0]{0y, ..., 0.} = {0 | 0,0{0y...,0.}, p(0)}
* Map (extend)This variation of the map operatRy.,, x  €extends an object with an attebute
whose value is computed by a functfon
Xa:ax. to(ids [ag:vy, o aniv]) = (id, [agivy, ..., apivy, at f((id, [agivy, ..., aniv]))])
Xa:ax. f(x){ Op) -oos On} = 1[Ay. Xa:ax. f(x)y]{ol’ T On}
* Map (rename)This variation of the map operatpgall, oty OBy, 2y O replaces attributes in an
object without changing their values such that attrila,i}e is replacegll by and so on:

- XEall’m’almD: Dizlv---vazmdid’ [ag iVy @ 1V 80V, e 8V]) =
(id, [ap 1vy s ey 8 1Vy 58,1V, oy 8RIVR])
T Kiay a0y, ...,asz{ 0p, -+ O} = 1[AX. Riny .y Oy, ...,azmd(]{oll -+ Op}
« ConcatenationObjects can be constructed through concatenation of an identifier and a tuple value:
- id O [agvy,..,a:v,] = (id,[ag:vy,...a:v,])
+ Union: The union operator unifies two extensio{rtslzl,...,oln} O {021,...,02m} = {011’""Oln’021""’02m}
* New identifier The operatonewidcreates a new identifier, derived from one (or more) existing identi-
fier and one SOT identifier, e.gd, = newid(id}, s;) . The novelty of this operator definition lies in
the avoidance of side effects, that is, applying the operator for a certain ideidtjfeard a certain SOT
s; always results in the same identifiel,. In contrast, traditional (object creating) algebras always
yield a new identifier value when invoking operators creating a new object. Details as well as variations
of this operator can be found in [6].
An example of an SOT schema with two SOPsyson andEmployee, is shown on the left side of Fig. 2.
The attributesiame andfirstname are basic attributes of type string. The type of the collection attritdute
tles is a list of strings. The reference attribstigoerv_of denotes a recursive relationship between employ-
ees. Itis represented as an arrow with cardinalities at both ends. An employee can supervise zero or more
employees whereas every employee is supervised by at most one other employee. The reference attribute

person denotes an inheritance relationship, represented as a thick arrow. Instances of both SOTs are pre-

sented on the right side.



Person
Person 0.1 - -
name: string -— id name firstname
firstname: string lgl Eenn grris
ido erge enn
ids3 Felli Paul
Employee idy Kumar Irina
person 11
superv_of on Employee
ltles: list(string) ' id person superv_of titles
Qlt ide idy {idg id}  |<Prof,Dr>
idG |d2 {} <Dr>
id7 ids { <>

Figure 2: SOT schema and instances

4 The Migration Process

In this section, the complete migration process from relational schemas and data to object-oriented sche-
mas and data is presented. An overview of the migration process within the SOT redesign environment is

shown in Fig. 3. The schema transformation process is subdivided into three sequential tasks:
1. Transformation of the relational schema into an SOT schema
2. Redesign of the SOT schema

3. Transformation of the SOT schema into an object-oriented schema

The data migration process is generated automatically after completing these three steps of schema

transformation.

4.1 Transformation of the Relational Schema into an SOT Schema

The transformation of the relational schema into an SOT schema is a straightforward process. For each
relation in the relational schema, composed of relatipns ..., r .} , one SOT is created containing the
same attributes. The initial SOT schema thus consists of a set of SO¥s;, ..., s} . Then, mset of
itial extensions{ €+ esn} is computed, which contains all the instances of the initial SOTs. These in-
stances are composed by concatenating tuples of the corresponding relation and (unique) object identifiers.
The initial extensions remain constant throughout the entire process.

During the schema transformation process, every SOT  within the schema has itsiroant exten-
sion ESi which consists of an algebraic expression determining the current instanses of . Consequently,

the current extensions of the initial SOT schema are initialiséd as e s, [,
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Figure 3: Overview of the migration process

4.2 Redesign of the SOT Schema

Redesign of the SOT schema means transforming the initial SOT schema into a schema having a more
object-oriented flavour, i.e., an object-oriented schema as created by forward engineering using rigorously
an object-oriented design method like OOD [11]. We now introduce the conceéyatnsformation rules
which supports a consistent modification of schema and data.

Schema transformations are well-known in both, the relational [23, 27, 3] and the object-oriented [9]
context. On the relational side, schema transformations have been used for reverse engineering [23] or
quality improvement [3], in order to reduce deficiencies of the relational schema like denormalization or
optimization. On the object-oriented side, schema transformations have been used for the detailed design
phase [9]. Some of those transformation rules have been adopted. We currently propose 22 transformation
rules, which are presented in detail in [7]; new transformation rules can easily be added. All transformation
rules have a common structure which consists of five parts: a pattern, definitions, preconditions, schema

operations and data operations:

» Pattern: The pattern defines to which elements of the SOT schema the rule can be applied. These ele-

ments also serve as input of the subsequent operations parts.



« Definitions: In this part, new SOTSs or attributes are defined which result from applying the transforma-
tion rule.

» Preconditions: This part contains a number of conditions which must hold when the transformation
rule is applied for a certain pattern. All predicates are first order logic expressions of the SOT algebra
and contain pattern elements as variables.

» Schema Operations:The way a transformation rule is executed is defined in the schema and data oper-
ations parts. This part contains a set of SOT schema operations which add, modify or remove SOTs or
attributes.

» Data Operations: The last part of a transformation rule contains a set of data operations modifying the
extension expression's% of modified or added S®TSuppose a transformation rule creates a new

SOT sz derived from two SOTSs; ands,. The extensiorEs3 is then expressedfzgas = f(Esl, Esz)

wheref is a sequence of algebraic operators.

In the following we introduce two concrete transformation rules, both of which are used in the example
in section 5. The first transformation rule vertically splits an SOT, as shown in Fig. 4. The formalism of this
transformation rule is presented in Fig. 5. Vertically splitting an S Tneans creating a new SG}
which contains a proper subset of the attributes, oln turn, these attributes are removed freymThe pat-
tern consists of the SO3; which has to be split, and a set of attribugswhich are moved to the new
SOT. Thedefinitionspart creates the new SGs which contains the attributes; and a new attribute,
referencings, in an exactly-one-to-exactly-one relationship. The precondition statesAthatust be a
proper subset of the attributessyf The effects of schema operations are modifying the attributesaofd
includings, in the SOT schema, denoted by a global varié@l The data operators compute the exten-
sions ofs; ands,. The extensiorEsl results from a projection on those attributes remainiggaind a
mapping of the reference attribude The map operatolx,.,, fy @adds the attribateo each object in
the argument extension. The value of the attribute is computed by applying the fuiifx}icaptured in the
lambda expression to the object. The extenﬁgzn is computed by creating one new object for every ex-
isting object within ESl . Each new instance Efsz is composed of a new object identifier and the at-
tributesA;.

Two variations of this transformation rule exist which are not presented here. The first variation does not
create an instance ef for those instances f where all attributes of\; contain null values. Thus, the ref-
erence attribut@, denotes a zero-or-one-to-exactly-one relationship. The second variation eliminates du-

plicates such that, denotes a one-to-many relationship.
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Figure 4: Vertical split of an SOT

Pattern $:S
A :sel( A
Definitions S, = newgo(A)
a = nevg«s, (1, 1), (1, 1))
Preconditions A, Os. A
Schema Operations s;.set attribute s.A— A, +sef &)
SOT= SO+ sdt.$
Data Operations ESl = Xa:x. newidmx Sz)nosl.A_AlEsl
E, = ([[AX. newidm X, s,) O nTAlx] Es

Figure 5: Transformation rule: vertical split of SOT

The second transformation rule merges two S@Tands, into a single one, as shown in Fig. 6. The
formalism of this transformation rule is presented in Fig. 7. The original rule is rather complex and thus
has been simplified in this context. In this case, all attributes; @fe mapped to the attributes fand
both SOTs do not contain reference attributes. The pattern consists of twosg@ids,, denotings, is
merged intos;. Two attribute listsal; = [&,,...,a; [ andal, = [&,,...,a,  denote the order in
which the attributes are mapped, i.nalz,l is mappedltlo and so on. The definitions part is empty. The
preconditions state that the participating SOTs must be different, all attributes of bothsg@ias, ap-
pear in the pattern’s attribute lists, and the types of corresponding attributes must be equal, i.e., the type of
a, must be the same as the typeag]; and so on. Schema operators ignfrove the SOT schema and
modify all reference attributes referencing eitBgor S,. The new extension & is computed by unifying

ESl and E52 whereby the instancesl:"ag‘2 undergo the attribute mapping.

| ]

sl s2 ] sl
1

a an —I> a

an Aon 1 ain
| |

Figure 6: Merging two SOTs
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aly :list(A)
al, : list(A)
Definitions
Preconditions S %S,

member§ al) = s;. A
memberg &) = s,.A
O(i Dindexlist(ah))(type ak[i]) = type( ab[i]))
Schema Operations SOT = SOT- sdt.$
for (s SOT)
for (@l s.R)
if (@.S=9)
a.set_S(p
if(a.S=9)
a.set_c21(0)

S = Esl U XalzzallEs2

Data Operations E

Figure 7: Transformation rule: merge SOTs

4.3 Transformation of the SOT Schema into an Object-Oriented Schema

The last step of an SOT-schema redesign is the computation of target exte{rEgt)lns., Es[m} . Once
this step has been completed, the target SOT sct&ma {s, ..., s } is transformed into an object-ori-
ented schema. Extensions can be computed either by successive computation of the incurred data opera-
tions (without the possibility of optimization) or by recursively rewriting the extension expressions such
that all target extensions are expressed as functions defined over the initial extensions:
Es, = f.'(es, ..., & ). These expressions can be optimized, which is outside the scope of this paper. Sin-
gle terms can be optimized by applying predefined algebraic rewriting rules. Common subexpressions of
different extensions have to be computed only once. All resulting target extensions are independent of each
other, therefore parallel computation is possible. Optimization for relational and object-oriented algebras
has been extensively studied in [5, 15, 16, 28, 33, 35]. The resulting expressions are then compiled into
gueries against the relational database.

The target SOT schema can then, again in a straightforward process, be transformed into an object-ori-
ented schema. The object-oriented database is populated by creating objects from the SOT target exten-
sions. This can be performed by creating code in the ODMG obiject interchange format (OIF) [13], or by
generating a migration program. An example of OIF code for the instances presented in Fig. 2 is shown in
Fig. 8. One employee object is composed of one &EdWployee object and one SOPerson object. This

step concludes the migration process.
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id4 Person { id6 Employee {
name “Kumar”, name “Berge”,
firstname “Irina”} firstname “Glenn”,
superv_of {},
id5 Employee { tittes {“Dr"}}
name “Benn”,
firsthname “Chris”, id7 Employee {
superv_of {id6, id7}, name “Felli”,
tittes {“Prof”, “Dr"}} firsthame “Paul”,
superv_of {},
titles {}}

Figure 8: Example of OIF code

5 A Migration Example

The examples presented in this section illustrate most issues introduced in this paper. In particular, we
present an example for schema transformation, and afterwards consider a subset of this example for the

demonstration of two transformation rules and data migration.

5.1 Schema Transformation

The relational schema in Fig. 9 is composed of seven relations and contains information about insti-
tutes, employees, students and hardware. For simplicity we omitted the type of each attribute. Most of the
relations are self-explanatory. The relatiostitute contains five description attributes representing a tex-
tual field of at most five lines. The relatid@mployee contains information about name, office and address
of employees. Students are characterized by a name, a local address and a home address. The relation
Hardware contains information about workstations and monitors, which are distinguished by the attribute
type. An IP can be applied to workstation entities and a screen size can be applied to monitors. The rela-
tion InstEmp defines a many-to-many relationship betwistitute andEmployee.

The initial SOT schema is presented in Fig. 10. After applying various transformation rules, the result-
ing target SOT schema is shown in Fig. 11. Finally the class structure of the object-oriented schema is pre-
sented in Fig. 12, expressed by the interface notation of the ODMG object definition language (ODL) [13].

Two aspects are worth mentioning in this example. First, traditional migration tools are only able to re-
place the relationnstEmp by a many-to-many relationship. The remaining relations will be mapped to
classes having the same attributes. Second, the schema contains three typical examples of transformation
patterns. The first one is the multiple occurrence of common attribute groups like the address attributes

street, zip andcity, or the office attributesffice_floor andoffice_nr. The second example is the implemen-

12



Employee (emp_id, name, office_floor, office_nr, adr_street, adr_zip, adr_city)

Institute (name, street, zip, city, descrl, descr2, descr3, descr4, descr5)

Student (stud_id, name, adr_street, adr_zip, adr_city, home_street, home_zip, home_city)

Hardware (serial_nr, office_floor, office_nr, type, ip, screen_size)

InstEmp (emp_id, inst_name)

Primary Keys: Employee (emp_id) Foreign Keys: InstEmp (inst_name) -> Institute (name)
Institute (name) InstEmp (emp_id) -> Employee (emp_id)
Student (stud_id)
Hardware (serial_nr)
InstEmp (emp_id, inst_name)
Figure 9: Relational schema
Employee Institute Student Hardware InstEmp
emp_id name stud_id serial_nr emp_id
name ntreet name office_floor ins_name
office_floor zZip adr_street office_nr
office_nr city adr_zip type
adr_street descrl adr_city ip
adr_zip descr2 home_street screen_size
adr_city descr3 home_zip
descrd home_city
descrb
Figure 10: Initial SOT schema
Person Workstation
11
14| Name + hardware
| address ip
0,1 0,1 Office 01
Student |, L4l Employee floor :
person = person 01 01l number Hardware
stud_id 11 0, n| office ~4— employees 0,1 senal_nr
home_address institutes hardware —p| office
01 01
t Atddress &1 Institute ' Monitor
;;ee M on Q;ngﬁ) Jees = hardware
city <« | address L 1 Text screen_size
LY description  |~——{ content: list()

tation of a multivalued attribute through multiple separated attributes as in the description of an institute.

Finally, the last example consists of the variant attriiype of the relationHardware, whose purpose it

Figure 11: Target SOT schema

is, to distinguish workstation and monitor entities.

In the first step of the transformation process, reference attributes are created. They are determined, e.g.,

through inclusion dependencies, which have been gathered from reverse engineering of the relational data-
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interface Person { interface Address {
attribute string name; attribute string street;
attribute Address address;}; attribute string  zip;

attribute string city;};

interface Student : Person {

attribute string stud_id; interface Hardware {
attribute Address parent_address;}; attribute string serial_nr;
relationship Office office
interface  Employee : Person { inverse Office::hardware;};
attribute string emp_id;
relationship Office office interface Workstation : Hardware {
inverse Office::employees; attribute string ip;};
relationship set <Institute> institutes
inverse Institute::employees;}; interface Monitor : Hardware {

attribute string screen_size;};
interface Institute {

attribute string name; interface Office {
attribute Address address; attribute string floor;
attribute Text description; attribute string number;
relationship set <Employee> employees relationship set <Employee> employees
inverse Employee::institutes;}; inverse Employee::office;
relationship set <Hardware> hardware
interface Text { inverse Hardware::office;};

attribute list <string > content;};

Figure 12: Object-oriented schema

base. The cardinalities of a reference attribute can be determined through the presence of primary keys,
candidate keys and null values in the relational schema.

Most existing transformation rules change the structure of the SOT schema. SOTs can be split vertically
or horizontally. Vertical split was applied for all SOTs excémtEmp, such that the address attributes
street, zip andcity, and the office attributesffice_floor andoffice_nr have been moved to new SOTs. As
an example of horizontal splitting, hardware has been specialized into workstations and monitors, depend-
ing on the value of the attributgpe. Afterwards, the attributeip andscreen_size have been shifted to
Workstation andMonitor, respectively. Merging two SOTs into a single one was applied for those SOTs
obtained from splitting addresses and offices, resulting in single S@fess andOffice.

It can be distinguished whether duplicates lead to multiple objects or a single object. In case of the SOT
Address, every address is mapped into one object, such that identical addresses lead to distinct objects. In
case of the SODffice, duplicates have been removed, such that every combinatioffied_floor and
office_nr leads to one object. Applying the first variation results in a one-to-one relationship, whereas the

second variation results in a one-to-many relationship.
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The initial SOTInstEmp has been replaced by a many-to-many relationship betinsétute andEm-
ployee in both SOTSs. This relationship is denoted by a bidirected arrow linking the attriimgtéstes and
employees, and represents an inverse relationship as known from the ODMG standard [13].

Another group of transformation rules supports the creation of collection attributes. This way the five
description attributes dhstitute have been transformed into a single list attribute. Finally, SOTs and at-

tributes which became obsolete can be removed, for example, thimSBmp.

5.2 Data Migration

For the following subset of the university example, we demonstrate the use and the effects of two trans-
formation rules. The example in Fig. 13 presents an initial SOT schema comprising twadrtXlise and
Person. The initial extensions of both SOTs are shown on the right side. The transformation rules as intro-

duced in section 4.2 have to be applied for obtaining the target SOTs presented in Fig. 15.

Institute
Institute Person id Name | Street ZIP City
id; [l Winterthurerstr. 190 (8057 | Zurich
Name Name id, |GIUZ |Winterthurerstr. 190 [8057 |Zurich
Street AdrStreet
ZIP AdrZip Person
City AdrCity
id Name | AdrStreet AdrZIP| AdrCity
id3 |Oeler |Gujerstr. 10 9200 |Gossau
id, |Berger|Rigistr. 23 3855 Brienz

Figure 13: Subset of SOT schema with extensions

The effects on schema and instance level of applying this transformation rule fdnbtitite andPer-
son are illustrated in Fig. 14. The pattern is initialized wih = Institute afg = { Street, ZIP, City}
as well as withs; = Person andA; = {AdrStreet, AdrZIP, AdrCity} . The resulting current extensions
of the SOTdnstitute, Person, Address andPersAddr are defined by the following algebraic expressions,
based on the initial extensioRg e  ®lison

Elnstitute = XAddress : Ax. newidm Address)T[o Cinstitute
{ Name}
Eaddress = [AX. newidm, x, Address) [] L, Cily}x] Enstitute

EPerson = XAddress : Ax. newid x, PersAddr)T[o{ Name}ePerson

Epersadar = [AX. newidm X, PersAddr) [ TUT  pcisreet, AdiZIP, AdKCit) X] €person

The effects on schema and instance level of applying this transformation rule is illustrated in Fig. 15.
The pattern is initialised with s; = Address ,s, = PersAddr ,al; = [Street, ZIP, Cityd and
al, = [AdrStreet, AdrZIP, AdrCity[l The current extension of the SG\Wdress is defined by the follow-

ing algebraic expression, in the second case again based on the initial extengigRS  €pes@nd
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Institute Person
Institute Person id Name | Address id Name Addresp
id; [l idg id3 | Smith id;
Name 11 1,1 |Name id, [GIUZ |id id, |Gl id
Address Address %2 1% idy [Glenn |idg
Address
id Street ZIP City
ids | Winterthurerstr. 190 | 8057 Zurich
Address PersAddr idg | Winterthurerstr. 190 | 8057 Zurich
Street AdrStreet PersAddr
ZIP - - AdrZIP . :
City 1,1 11 |AdrCity id AdrStreet AdrzIP AdrCity
id; | Guijerstr. 10 9200 Gossau
idg | Rigistr. 23 3855 Brienz

Figure 14: Effects of applying vertical SOT split

EAddress = EAddress O XDAdrStreet, AdrZIP, AdrCity(l: [Street, ZIP, City[EPersAddr

Enddress = [AX. newidm, x, Address) [] T yeet 217 Ci) X] € nstitute U

X tAdrStreet, AdrzIP, AdrCity[: [Street, zIP, Cityrk| [AX . newid(Tg x, PersAddr) [

Tt X| €
T AdrSreet, AdrZIP, AdrCity} 1€person)

This expression can be rewritten such that the map operator is embedded in the image operator, and
only one iteration over the objects in the extenggn,, IS necessary.

Enddress = [AX. newidm, x, Address) [ T yeet 2 Ciy) X] € nstitute J

L[AX. X tadrstreet, AdrzIP, AdrCityT: [Street, zIP, Cityrk N€WI(TL X, PersAddr) [

Tt x)]e
T AdrSreet, AdrZIP, AdrCity} )1€person

Institute Person Institute person
Name 11 1.1/Name id |Name | Address id Name Addresp
Address Address idy [ Ifl ids idg [Smith  |id
id, |GIUZ |[idg id, |Glenn |idg
Address
0,1 01
id Street ZIP City
Address ids | Winterthurerstr. 190 | 8057 Zurich
Street idg | Winterthurerstr. 190 | 8057 Zurich
ZIP id; [Gujerstr. 10 9200 Gossau
City idg |Rigistr. 23 3855 Brienz

Figure 15: Effects of merging SOTs
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6 Conclusions and Future Work

In this paper we studied the problem of migrating relational databases into object-oriented databases. Both
paradigms follow different design strategies. Moreover, legacy databases often contain specific drawbacks
which should be overcome when reengineering them. The differences in design strategies motivate schema
transformation techniques being more powerful and flexible than existing ones, which mostly generate
structurally identical object-oriented schemas.

In the second part, we presented a framework which provides a formal foundation for the migration of
legacy relational schemas and data into object-oriented databases. This is the first approach which supports
automatic data migration for complex schema transformations. The concept presented here allows straight-
forward implementation of a tool. In particular we described:

» The complete migration process from relational schema and data to object-oriented schema and data.

» A data model in which the migration process is embedded.

» The concept of transformation rules supporting complex schema transformations.

We currently evaluate and validate our approach by migrating a large database managing bank accounts.
The relational schema consists of 100 relations with altogether 3.500 attributes and 180 views. First expe-
riences indicate the feasibility of this approach. Furthermore, we are currently working on the following
extensions:

e Tool support: how can a tool support or simplify the transformation of large schemas and how can it
control the transformation process? To what extent can heuristics support choosing the best-suited
transformation rules?

» Updates: for simplicity we assumed that there are no updates on the database during the migration proc-
ess. How can updates on the source database be propagated through the migration process such that in-
cremental migration is possible?

» Optimization: How can the cost of the migration process be reduced by using algebraic rewriting and

parallelization?
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