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Abstract

Relational database systems represent the current standard technology for implementing database app

cations. Now that the object-oriented paradigm becomes more and more mature in all phases of the

software engineering process, object-oriented DBMS are seriously considered for the seamless integra

tion of object-oriented applications and data persistence. When reengineering existing applications or

constructing new ones on top of relational databases, a large semantic gap between the new object mod

el and the legacy database’s model must still be bridged. We propose database migration to resolve thi

mismatch: the relational schema is transformed into an object-oriented one and the relational data is mi-

grated to an object-oriented database. Existing approaches for migration do not exploit the full potential

of the object-oriented paradigm so that the resulting object-oriented schema still “looks rather relation-

al” and retains the drawbacks and weaknesses of the relational schema. We propose a redesign enviro

ment which allows to transform relational schemas into adequate object-oriented ones. Schemas an

transformation rules are expressed in terms of a new data model, called semi object types (SOT). We

also propose a formal foundation for SOT and transformation rules. This formalization makes it possi-

ble to automatically generate the input of the data migration process.

1 Introduction

The presence of new technologies like the World Wide Web, E-commerce or data warehousing is a

gument for many companies to reengineer legacy information systems [34]. Now that the object-or

method is prevailing in modern software development, almost all components of new information sy

are developed within an object-oriented software engineering life cycle. The notable exception is in

cases the (relational or even hierarchical and CODASYL-) database component. Many organizatio

principally refrain from using object-oriented database management systems (OODBMS), for re

which are beyond the the scope of this paper. Other organizations are willing to give OODBMS a tr

then require the existing relational data to be available in the object-oriented database system (OO

This requirement raises the research problem of how to convert schemas and databases stored in

ing (relational) database system into those of an OODBS. To that end, mainly hybrid approaches s

object-oriented views over relational schemas have been proposed, but these do not resolve the da

mismatch, and the required conversions at runtime lead to performance degradations. We therefore
1
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database migration, i.e. the transformation of a relational schema into an object-oriented one and the

sequent migration of the data to the object-oriented DBMS.

Several database vendors now offer so-called connectivity tools to relational databases, some o

providing also load facilities. However, these and additional approaches proposed in research [1, 19

are not flexible enough, especially in supporting extensive schema restructuring operations. They pr

map each relation to a class and replace inclusion dependencies by references or inheritance relati

All approaches have in common that they provide aone-step mapping, i.e., every element of the target ob

ject schema is directly derived from an element of the relational source schema. These approaches

quate for small and well-designed schemas which, e.g., are derived from an entity-relationship s

and/or are in third Normal Form (3NF). However, connectivity tools and other proposals exhibit two m

inadequacies:

• Weaknesses and drawbacks of relational schemas:Relational legacy databases typically conta

“obscure” optimizations or are denormalized in order to avoid expensive join operations in querie

example, multiple tables conceptually related by aggregation or inheritance relationships are ofte

lapsed into a single table. A direct mapping of such structures into object-oriented ones preserve

equacies; consequently, schema transformation must be flexible (e.g., not in all cases sem

preserving), as overcoming such drawbacks enhances the semantic expressiveness of the sche

• Different design strategies:Relational and object-oriented database design are principally diffe

and follow different design strategies. Besides additional semantic features in object-oriented sch

such as aggregation or inheritance, object-oriented models comprise the concepts of methods

capsulation, objects as an abstraction level, but usually do not provide a view mechanism. As a

quence, the straightforward transformation of a well-designed relational schema does not nece

result in a well-designed object schema. These differences are extensively discussed in [10, 2

Again, flexible transformations need to be supported in order to obtain a well-designed object-or

schema.

Approaches supporting both, flexible schema transformation and an automatically generated da

gration process, do not yet exist. The main contributions of our approach therefore consist of:

• Flexible schema transformation: This allows transforming the relational schema into (any) “ad

quate” object-oriented schema as obtained by forward engineering, rigorously using an object-or

design method like OOD [11]. We therefore introduce aredesign environment.

• Automatically generated data mapping:The formal foundationof our approach is given by an alge

bra. This makes it possible to successively define and rewrite data mappings during schema rede
2
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consequence, the data migration process can be generated automatically as soon as the schema

mation process is completed.

Recently, object-relational DBMS (ORDBMS) have started to offer some object-oriented feature

fined in the SQL3 standard such as inheritance, user-defined types, etc. Other features are likely to

dressed in SQL4 (e.g., collection-valued attributes). ORDBMS will have the same problem as disc

here for OODBMS, namely to convert an existing relational schema into one exploiting object-orie

features, and to adapt existing databases. Thus, the results presented here for OODBS will also be

tant for (future) ORDBS.

The remainder of this paper is structured as follows. An overview of all migration activities is prese

in section 2. The basis of our approach is theredesign environmentwhich is illustrated in section 3. We in-

troduce a new data model, called semi object types (SOT), and an algebra, in which the activity of s

transformation is embedded. The migration process, embedded in this redesign environment, is pr

in section 4. The essential element of the migration process is the concept oftransformation ruleswhich

supports both, schema transformation and data mapping. The application of transformation rules i

trated by an example in section 5. Section 6 contains concluding remarks and open issues.

2 The Migration Framework

The framework of our view of the migration process is illustrated in Fig. 1. The part of the approach

sented in this paper resides in the grey box in the lower part of the figure.

The first step of database migration is a reverse engineering process of the relational schema. T

is necessary since no specific assumptions are made about the source schema (e.g., it might not be

Reverse engineering has found considerable attention in research in this decade, not only in the co

Figure 1: The Migration Framework

Schema Transform.

Rule ApplicationSemantic Inform.

Rel. Schema Transformation Object Schema

User

Reverse Engineering Applying Transformation Rules
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database migration but also for redocumentation, restructuring, maintenance or extension of existin

bases and applications [2, 14, 17, 12, 21, 22, 25, 30]. Its objective is to extract semantic informatio

primary keys or foreign keys from the database, which might not be explicitly available, e.g., as part

DDL code (note that older versions of relational DBMS did, e.g., not support foreign key constraints).

models capturing semantic information in the context of database migration have been proposed

36]. Semantic information can also be gathered by analysing queries from application programs [24,

data. The activity of adding semantic information to an existing schema is calledsemantic enrichment.

Even though various approaches for semantic enrichment exist, the extracted information is no

cient for anautomaticschema transformation process (recall the limitations of one-step, automatic

pings discussed above). Hence, similar to other recently devised approaches, we propose aninteractive

schema transformation process. The user is thereby supported by (i) semantic information and (ii) a

tional layer, calledschema transformation control, which supports the user through schema transformat

strategies. The latter can be implemented by extracting common transformation patterns, as will be

in subsequent examples. A detailed presentation of this layer is outside the scope of this paper.

The result of the schema transformation process is (i) an object-oriented schema and (ii) an alg

data mapping definition which enables an automatic migration of the database.

3 Redesign Environment

The redesign environment contains an intermediary model for the transformation of a relational sc

into an object-oriented one. It consists of two major parts: a data model in which schema transform

are expressed, and an algebra which supports to formulate data mapping expressions.

The central modelling construct of the data model aresemi object types(SOT), which are comparable to

relations or classes. The purpose of the SOT model is to express all (static) properties of object-o

schemas in a way that makes restructuring operations as easy as possible.

Neither the relational nor the object-oriented data model fulfils the requirements for schema transf

tion and data migration. The relational data model lacks (unique) identifiers and the support of co

structures. Identity is simulated through key attributes. Since key attributes may also represent cont

the universe of discourse, transformation rules relaxing the uniqueness requirement of these at

cause problems. As regards complex structures, aggregates and sets may be simulated through a

relations, however list or array structures cannot be expressed directly.
4



inher-

e of an

aken on

utes

we

Ts be-

stead of

etc.),

SOTs

ipating

fer-

se car-

In

al. In-

ts of

s alge-

ing a

a-

of sche-

provide

tors of

e alge-

guish
On the other hand, the object-oriented model is too restrictive with respect to object identity and

itance. Moreover, schema restructuring cannot easily be propagated to the data level. The interfac

object or its class membership (usually) cannot be changed once it is created. No influence can be t

object identifiers.

An SOT schema consists of a set of SOTs . Every SOT consists of a set of attrib

. SOTs and attributes are identified by unique (artificial) identifiers. In this way

avoided the problem of name conflicts and the need for defining default names for attributes and SO

ing created during the transformation process. However, in subsequent examples we use names in

identifiers for better readability. Attributes can be divided into basic attributes (of type integer, string,

collection attributes (of set, list or array type) and reference attributes. Binary relationships between

are expressed through reference attributes, which also define the cardinalities for both SOTs partic

in the relationship. A reference attribute of an SOT is a triple , where is the re

enced SOT, denotes the cardinality of -references to instances of , and denotes the inver

dinality. The cardinalities and are pairs where and .

other words, the cardinalities denote whether the relationship is injective, total, surjective or function

heritance is expressed as a special kind of one-to-one relationship between SOTs.

Data is expressed in form of objects which are elements of extensions. An objecto is an instance of an

SOT and consists of an identifier and a tuple value: . An extension consis

a set of objects .

The SOT algebra defines a number of operators for both metadata and data manipulation. Variou

bras for object-oriented data models exist [4, 16, 33, 32], most of them with the purpose of formaliz

query language. The SOT algebra was derived from NO2 [20] and extended with restructuring and metad

ta operators. Operators are distinguished in schema operators and data operators. The application

ma operators produces side effects on the SOT schema. Data operators are free of side effects and

various data restructuring operations. In the following, we briefly introduce a subset of those opera

the SOT algebra, which are used in subsequent examples. The complete and formal definition of th

bra is presented in [6].

• Image operator: The image operator , as known from [4], applies the functionf to every

object within an extension argument: .

• Projection: The projection operators has the same purpose as in the relational algebra. We distin

identifier projection andtuple projection , which can be applied to objects, andobject projection

, which can be applied to both, objects and extensions:

S s1 … sn, ,{ }= si

si.A a1 … am, ,{ }=

si r sj C1 C2, ,( )= sj

C1 si sj C2

C1 C2 Ci ci1
ci2

,( )= ci1
0 1,{ }∈ ci2

1 n,{ }∈

o id a1 v1: … an vn:, ,[ ],( )=

o1 … on, ,{ }

ι λx f x( ).[ ]

ι λx f x( ).[ ] o1 … on, ,{ } f o1( ) … f on( ), ,{ }=

πI πT

πO
5
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• Selection:This operator can be applied to all kinds of collection values, for example to extensions

-

• Map (extend): This variation of the map operator  extends an object with an attributea

whose value is computed by a functionf:

-

-

• Map (rename): This variation of the map operator  replaces attributes in an

object without changing their values such that attribute  is replaced by  and so on:

-

-

• Concatenation: Objects can be constructed through concatenation of an identifier and a tuple valu

-

• Union: The union operator unifies two extensions:

• New identifier: The operatornewidcreates a new identifier, derived from one (or more) existing iden

fier and one SOT identifier, e.g: . The novelty of this operator definition lies

the avoidance of side effects, that is, applying the operator for a certain identifierid1 and a certain SOT

s1 always results in the same identifierid2. In contrast, traditional (object creating) algebras alwa

yield a new identifier value when invoking operators creating a new object. Details as well as varia

of this operator can be found in [6].

An example of an SOT schema with two SOTs,Person andEmployee, is shown on the left side of Fig. 2.

The attributesname andfirstname are basic attributes of type string. The type of the collection attributeti-

tles is a list of strings. The reference attributesuperv_of denotes a recursive relationship between emplo

ees. It is represented as an arrow with cardinalities at both ends. An employee can supervise zero

employees whereas every employee is supervised by at most one other employee. The reference

person denotes an inheritance relationship, represented as a thick arrow. Instances of both SOTs a

sented on the right side.

πI id a1 v1: … an vn:, ,[ ],( ) id=

πT aπ1
… aπm

, ,{ } id a1 v1: … an vn:, ,[ ],( ) aπ1
vπ1

: … aπm
vπm

:, ,[ ]= π1 … πm, ,{ } 1 … n, ,{ }⊆

πO aπ1
… aπm

, ,{ } id a1 v1: … an vn:, ,[ ],( ) id aπ1
vπ1

: … aπm
vπm

:, ,[ ],( )=

πO aπ1
… aπm

, ,{ } o1 … on, ,{ } ι λx πO aπ1
… aπm

, ,{ }x.[ ] o1 … on, ,{ }=

σ λx f x( ).[ ] o1 … on, ,{ } oi oi o1 … on, ,{ }∈ p oi( ),|{ }=

χa λ: x f x( ).

χa λ: x f x( ). id a1 v1: … an vn:, ,[ ],( ) id a1 v1: … an vn a f id a1 v1: … an vn:, ,[ ],( )( ):,:, ,[ ],( )=

χa λ: x f x( ). o1 … on, ,{ } ι λy χa λ: x f x( ). y.[ ] o1 … on, ,{ }=

χ a11
… a1m

, ,〈 〉 a21
… a2m

, ,〈 〉:

a11
a21

χ a11
… a1m

, ,〈 〉 a21
… a2m

, ,〈 〉: id a11
v11

: … a1m
v1m

: a, , ,
2

v2: … an vn:, ,[ ],( )

id a21
v11

: … a2m
v1m

: a, , ,
2

v2: … an vn:, ,[ ],( )

=

χ a11
… a1m

, ,〈 〉 a21
… a2m

, ,〈 〉: o1 … on, ,{ } ι λx χ a11
… a1m

, ,〈 〉 a21
… a2m

, ,〈 〉: x.[ ] o1 … on, ,{ }=

id a1 v1: ... an vn:, ,[ ]⊕ id a1 v1: ... an vn:, ,[ ],( )=

o11
... o1n

, ,{ } o21
... o2m

, ,{ }∪ o11
... o1n

o21
... o2m

, , , , ,{ }=

id2 newid id1 s1,( )=
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4 The Migration Process

In this section, the complete migration process from relational schemas and data to object-oriente

mas and data is presented. An overview of the migration process within the SOT redesign environm

shown in Fig. 3. The schema transformation process is subdivided into three sequential tasks:

1. Transformation of the relational schema into an SOT schema

2. Redesign of the SOT schema

3. Transformation of the SOT schema into an object-oriented schema

The data migration process is generated automatically after completing these three steps of s

transformation.

4.1  Transformation of the Relational Schema into an SOT Schema
The transformation of the relational schema into an SOT schema is a straightforward process. Fo

relation in the relational schema, composed of relations , one SOT is created containin

same attributes. The initial SOT schema thus consists of a set of SOTs . Then, a setin-

itial extensions is computed, which contains all the instances of the initial SOTs. These

stances are composed by concatenating tuples of the corresponding relation and (unique) object ide

The initial extensions remain constant throughout the entire process.

During the schema transformation process, every SOT within the schema has its owncurrent exten-

sion which consists of an algebraic expression determining the current instances of . Conseq

the current extensions of the initial SOT schema are initialised as  for .

Figure 2: SOT schema and instances

Person
name: string
firstname: string

1,1

0,1

Employee
person
superv_of
titles: list(string) 0,n

0,1

Person

Employee

id name firstname

id1
id2
id3
id4

Benn
Berge
Felli
Kumar

Chris
Glenn
Paul
Irina

id person superv_of titles

id5
id6
id7

id1
id2
id3

{id 6, id7}
{}
{}

<Prof,Dr>
<Dr>
<>

r1 … r n, ,{ }

SI s1 … sn, ,{ }=

es1
… esn

, ,{ }

si

Esi
si

Esi
esi

= si SI∈
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4.2  Redesign of the SOT Schema
Redesign of the SOT schema means transforming the initial SOT schema into a schema having

object-oriented flavour, i.e., an object-oriented schema as created by forward engineering using rigo

an object-oriented design method like OOD [11]. We now introduce the concept oftransformation rules,

which supports a consistent modification of schema and data.

Schema transformations are well-known in both, the relational [23, 27, 3] and the object-oriente

context. On the relational side, schema transformations have been used for reverse engineering

quality improvement [3], in order to reduce deficiencies of the relational schema like denormalizati

optimization. On the object-oriented side, schema transformations have been used for the detailed

phase [9]. Some of those transformation rules have been adopted. We currently propose 22 transfo

rules, which are presented in detail in [7]; new transformation rules can easily be added. All transform

rules have a common structure which consists of five parts: a pattern, definitions, preconditions, s

operations and data operations:

• Pattern: The pattern defines to which elements of the SOT schema the rule can be applied. The

ments also serve as input of the subsequent operations parts.

Figure 3: Overview of the migration process
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• Definitions: In this part, new SOTs or attributes are defined which result from applying the transfo

tion rule.

• Preconditions: This part contains a number of conditions which must hold when the transformati

rule is applied for a certain pattern. All predicates are first order logic expressions of the SOT alg

and contain pattern elements as variables.

• Schema Operations:The way a transformation rule is executed is defined in the schema and data

ations parts. This part contains a set of SOT schema operations which add, modify or remove S

attributes.

• Data Operations:The last part of a transformation rule contains a set of data operations modifying

extension expressions  of modified or added SOTssi. Suppose a transformation rule creates a new

SOTs3 derived from two SOTss1 ands2. The extension  is then expressed as

wheref is a sequence of algebraic operators.

In the following we introduce two concrete transformation rules, both of which are used in the exa

in section 5. The first transformation rule vertically splits an SOT, as shown in Fig. 4. The formalism o

transformation rule is presented in Fig. 5. Vertically splitting an SOTs1 means creating a new SOTs2

which contains a proper subset of the attributes ofs1. In turn, these attributes are removed froms1. The pat-

tern consists of the SOTs1 which has to be split, and a set of attributesA1 which are moved to the new

SOT. Thedefinitionspart creates the new SOTs2 which contains the attributesA1 and a new attributea,

referencings2 in an exactly-one-to-exactly-one relationship. The precondition states thatA1 must be a

proper subset of the attributes ofs1. The effects of schema operations are modifying the attributes ofs1 and

includings2 in the SOT schema, denoted by a global variableSOT. The data operators compute the exte

sions ofs1 ands2. The extension results from a projection on those attributes remaining ins1 and a

mapping of the reference attributea. The map operator adds the attributea to each object in

the argument extension. The value of the attribute is computed by applying the functionf(x) captured in the

lambda expression to the object. The extension is computed by creating one new object for eve

isting object within . Each new instance of is composed of a new object identifier and th

tributesA1.

Two variations of this transformation rule exist which are not presented here. The first variation do

create an instance ofs2 for those instances ofs1 where all attributes ofA1 contain null values. Thus, the ref-

erence attributea2 denotes a zero-or-one-to-exactly-one relationship. The second variation eliminate

plicates such thata2 denotes a one-to-many relationship.

Esi

Es3
Es3

f Es1
Es2

,( )=

Es1

χa λx f x( ).:

Es2

Es1
Es2
9
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The second transformation rule merges two SOTss1 ands2 into a single one, as shown in Fig. 6. Th

formalism of this transformation rule is presented in Fig. 7. The original rule is rather complex and

has been simplified in this context. In this case, all attributes ofs1 are mapped to the attributes ofs2 and

both SOTs do not contain reference attributes. The pattern consists of two SOTss1 ands2, denotings2 is

merged intos1. Two attribute lists and denote the order i

which the attributes are mapped, i.e., is mapped to and so on. The definitions part is empt

preconditions state that the participating SOTs must be different, all attributes of both SOTss1 ands2 ap-

pear in the pattern’s attribute lists, and the types of corresponding attributes must be equal, i.e., the

must be the same as the type of and so on. Schema operators removes2 from the SOT schema and

modify all reference attributes referencing eithers1 or s2. The new extension ofs1 is computed by unifying

 and  whereby the instances of  undergo the attribute mapping.

Figure 4: Vertical split of an SOT

Pattern

Definitions

Preconditions

Schema Operations

Data Operations

Figure 5: Transformation rule: vertical split of SOT

Figure 6: Merging two SOTs
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4.3  Transformation of the SOT Schema into an Object-Oriented Schema
The last step of an SOT-schema redesign is the computation of target extensions .

this step has been completed, the target SOT schema is transformed into an obje

ented schema. Extensions can be computed either by successive computation of the incurred dat

tions (without the possibility of optimization) or by recursively rewriting the extension expressions

that all target extensions are expressed as functions defined over the initial exten

. These expressions can be optimized, which is outside the scope of this pape

gle terms can be optimized by applying predefined algebraic rewriting rules. Common subexpress

different extensions have to be computed only once. All resulting target extensions are independent

other, therefore parallel computation is possible. Optimization for relational and object-oriented alg

has been extensively studied in [5, 15, 16, 28, 33, 35]. The resulting expressions are then compil

queries against the relational database.

The target SOT schema can then, again in a straightforward process, be transformed into an obj

ented schema. The object-oriented database is populated by creating objects from the SOT targe

sions. This can be performed by creating code in the ODMG object interchange format (OIF) [13],

generating a migration program. An example of OIF code for the instances presented in Fig. 2 is sh

Fig. 8. One employee object is composed of one SOTEmployee object and one SOTPerson object. This

step concludes the migration process.

Pattern

Definitions

Preconditions

Schema Operations
for (s∈ SOT)

for (a ∈ s.R)
if (a.S = s2)

a.set_S(s1)
if (a.S = s1)

a.set_c21(0)

Data Operations

Figure 7: Transformation rule: merge SOTs
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s2 S:
al1 list A( ):
al2 list A( ):

s1 s2≠
members al1( ) s1.A=
members al2( ) s2.A=

i indexlist al1( )∈( ) type al1 i[ ]( ) type al2 i[ ]( )=( )∀
SOT SOT set s2{ }–=

Es1
Es1

χal2 al1: Es2
∪=

Est1
… Estm

, ,{ }
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… stm
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f ti
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5 A Migration Example

The examples presented in this section illustrate most issues introduced in this paper. In particu

present an example for schema transformation, and afterwards consider a subset of this example

demonstration of two transformation rules and data migration.

5.1  Schema Transformation
The relational schema in Fig. 9 is composed of seven relations and contains information abou

tutes, employees, students and hardware. For simplicity we omitted the type of each attribute. Most

relations are self-explanatory. The relationInstitute contains five description attributes representing a te

tual field of at most five lines. The relationEmployee contains information about name, office and addre

of employees. Students are characterized by a name, a local address and a home address. The

Hardware contains information about workstations and monitors, which are distinguished by the attr

type. An IP can be applied to workstation entities and a screen size can be applied to monitors. Th

tion InstEmp defines a many-to-many relationship betweenInstitute andEmployee.

The initial SOT schema is presented in Fig. 10. After applying various transformation rules, the r

ing target SOT schema is shown in Fig. 11. Finally the class structure of the object-oriented schema

sented in Fig. 12, expressed by the interface notation of the ODMG object definition language (ODL) [

Two aspects are worth mentioning in this example. First, traditional migration tools are only able

place the relationInstEmp by a many-to-many relationship. The remaining relations will be mapped

classes having the same attributes. Second, the schema contains three typical examples of transfo

patterns. The first one is the multiple occurrence of common attribute groups like the address att

street, zip andcity, or the office attributesoffice_floor andoffice_nr. The second example is the implemen

id4 Person  {
name  “Kumar”,
firstname  “Irina”}

id5 Employee  {
name  “Benn”,
firstname  “Chris”,
superv_of  {id6, id7},
titles  {“Prof”, “Dr”}}

id6 Employee  {
name  “Berge”,
firstname  “Glenn”,
superv_of  {},
titles  {“Dr”}}

id7 Employee  {
name  “Felli”,
firstname  “Paul”,
superv_of  {},
titles  {}}

Figure 8: Example of OIF code
12



titute.

ed, e.g.,

al data-
tation of a multivalued attribute through multiple separated attributes as in the description of an ins

Finally, the last example consists of the variant attributetype of the relationHardware, whose purpose it

is, to distinguish workstation and monitor entities.

In the first step of the transformation process, reference attributes are created. They are determin

through inclusion dependencies, which have been gathered from reverse engineering of the relation

Employee (emp_id, name, office_floor, office_nr, adr_street, adr_zip, adr_city)

Institute (name, street, zip, city, descr1, descr2, descr3, descr4, descr5)

Student (stud_id, name, adr_street, adr_zip, adr_city, home_street, home_zip, home_city)

Hardware (serial_nr, office_floor, office_nr, type, ip, screen_size)

InstEmp (emp_id, inst_name)

Primary Keys: Employee (emp_id) Foreign Keys: InstEmp (inst_name) -> Institute (name)

Institute (name) InstEmp (emp_id) -> Employee (emp_id)

Student (stud_id)

Hardware (serial_nr)

InstEmp (emp_id, inst_name)

Figure 9: Relational schema

Figure 10: Initial SOT schema

Figure 11: Target SOT schema

Employee
emp_id
name
office_floor
office_nr
adr_street
adr_zip
adr_city

Institute
name
ntreet
zip
city
descr1
descr2
descr3
descr4
descr5

Student
stud_id
name
adr_street
adr_zip
adr_city
home_street
home_zip
home_city

Hardware
serial_nr
office_floor
office_nr
type

InstEmp
emp_id
ins_name

ip
screen_size

0,1

Person
name
address

Student
person
stud_id
home_address

Employee
person
office
institutes

Address
street
zip
city

Institute
name
employees
address
description

Text
content: list()

Office
floor
number Hardware

serial_nr
office

Monitor
hardware
screen_size

Workstation
hardware
ip

0,1

1,11,1

employees
hardware

0,1
0,1

0,1

0,1

0,1

0,1

0,1

1,1

1,1

1,11,11,1

1,1

1,1 0, n

0,n

0,n
0,n
13
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base. The cardinalities of a reference attribute can be determined through the presence of primar

candidate keys and null values in the relational schema.

Most existing transformation rules change the structure of the SOT schema. SOTs can be split ve

or horizontally. Vertical split was applied for all SOTs exceptInstEmp, such that the address attribute

street, zip andcity, and the office attributesoffice_floor andoffice_nr have been moved to new SOTs. A

an example of horizontal splitting, hardware has been specialized into workstations and monitors, d

ing on the value of the attributetype. Afterwards, the attributesip andscreen_size have been shifted to

Workstation andMonitor, respectively. Merging two SOTs into a single one was applied for those S

obtained from splitting addresses and offices, resulting in single SOTsAddress andOffice.

It can be distinguished whether duplicates lead to multiple objects or a single object. In case of th

Address, every address is mapped into one object, such that identical addresses lead to distinct obj

case of the SOTOffice, duplicates have been removed, such that every combination ofoffice_floor and

office_nr leads to one object. Applying the first variation results in a one-to-one relationship, wherea

second variation results in a one-to-many relationship.

interface  Person {
attribute string  name;
attribute  Address address;};

interface  Student : Person {
attribute string  stud_id;
attribute  Address parent_address;};

interface  Employee : Person {
attribute string  emp_id;
relationship  Office office

inverse  Office::employees;
relationship set <Institute> institutes

inverse  Institute::employees;};

interface  Institute {
attribute string  name;
attribute  Address address;
attribute  Text description;
relationship set <Employee> employees

inverse  Employee::institutes;};

interface  Text {
attribute list <string > content;};

interface  Address {
attribute string  street;
attribute string  zip;
attribute string  city;};

interface  Hardware {
attribute string  serial_nr;
relationship  Office office

inverse  Office::hardware;};

interface  Workstation : Hardware {
attribute string  ip;};

interface  Monitor : Hardware {
attribute string  screen_size;};

interface  Office {
attribute string  floor;
attribute string  number;
relationship set <Employee> employees

inverse  Employee::office;
relationship set <Hardware> hardware

inverse  Hardware::office;};

Figure 12: Object-oriented schema
14
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The initial SOTInstEmp has been replaced by a many-to-many relationship betweenInstitute andEm-

ployee in both SOTs. This relationship is denoted by a bidirected arrow linking the attributesinstitutes and

employees, and represents an inverse relationship as known from the ODMG standard [13].

Another group of transformation rules supports the creation of collection attributes. This way the

description attributes ofInstitute have been transformed into a single list attribute. Finally, SOTs and

tributes which became obsolete can be removed, for example, the SOTInstEmp.

5.2  Data Migration
For the following subset of the university example, we demonstrate the use and the effects of two

formation rules. The example in Fig. 13 presents an initial SOT schema comprising two SOTsInstitute and

Person. The initial extensions of both SOTs are shown on the right side. The transformation rules as

duced in section 4.2 have to be applied for obtaining the target SOTs presented in Fig. 15.

The effects on schema and instance level of applying this transformation rule for bothInstitute andPer-

son are illustrated in Fig. 14. The pattern is initialized with and

as well as with and . The resulting current extensio

of the SOTsInstitute, Person, Address andPersAddr are defined by the following algebraic expression

based on the initial extensions  and :

The effects on schema and instance level of applying this transformation rule is illustrated in Fi

The pattern is initialised with , , and

. The current extension of the SOTAddress is defined by the follow-

ing algebraic expression, in the second case again based on the initial extensions  and

Figure 13: Subset of SOT schema with extensions

Institute

Name
Street
ZIP
City

Person

Name
AdrStreet
AdrZip
AdrCity

Institute

Person

id Name Street ZIP City

id1
id2

IfI
GIUZ

Winterthurerstr. 190
Winterthurerstr. 190

8057
8057

Zurich
Zurich

id Name AdrStreet AdrZIP AdrCity

id3
id4

Oeler
Berger

Gujerstr. 10
Rigistr. 23

9200
3855

Gossau
Brienz

s1 Institute= A1 Street ZIP City, ,{ }=

s1 Person= A1 AdrStreet AdrZIP AdrCity, ,{ }=

eInstitute ePerson

EInstitute χAddress λx newid πI x Address,( ).: π
O Name{ }

eInstitute=

EAddress ι λx newid πI x Address,( ) πT Street ZIP City, ,{ }
x⊕.[ ]eInstitute=

EPerson χAddress λx newid πI x PersAddr,( ).: π
O Name{ }

ePerson=

EPersAddr ι λx newid πI x PersAddr,( ) πT AdrSreet AdrZIP AdrCity, ,{ }
x⊕.[ ]ePerson=

s1 Address= s2 PersAddr= al1 Street ZIP City, ,〈 〉=

al2 AdrStreet AdrZIP AdrCity, ,〈 〉=

eInstitute ePerson
15



tor, and
This expression can be rewritten such that the map operator is embedded in the image opera

only one iteration over the objects in the extension  is necessary.

Figure 14: Effects of applying vertical SOT split

Figure 15: Effects of merging SOTs

1,1

Institute

Name
Address

Person

Name
Address

Address
Street
ZIP
City 1,1

1,11,1

PersAddr
AdrStreet
AdrZIP
AdrCity

Institute Person

Address

PersAddr

id Name Address id Name Address

id1
id2

IfI
GIUZ

id5
id6

id3
id4

Smith
Glenn

id7
id8

id Street ZIP City

id5
id6

Winterthurerstr. 190
Winterthurerstr. 190

8057
8057

Zurich
Zurich

id AdrStreet AdrZIP AdrCity

id7
id8

Gujerstr. 10
Rigistr. 23

9200
3855

Gossau
Brienz

EAddress EAddress χ AdrStreet AdrZIP AdrCity, ,〈 〉 Street ZIP City, ,〈 〉: EPersAddr∪=

EAddress ι λx newid πI x Address,( ) πT Street ZIP City, ,{ }
x⊕.[ ]eInstitute

χ AdrStreet AdrZIP AdrCity, ,〈 〉 Street ZIP City, ,〈 〉: ι λx newid πI x PersAddr,( )
πT AdrSreet AdrZIP AdrCity, ,{ }

x

⊕.[
]ePerson

(
)

∪=

ePerson

EAddress ι λx newid πI x Address,( ) πT Street ZIP City, ,{ }
x⊕.[ ]eInstitute

ι λx χ AdrStreet AdrZIP AdrCity, ,〈 〉 Street ZIP City, ,〈 〉: newid πI x PersAddr,( )
πT AdrSreet AdrZIP AdrCity, ,{ }

x

⊕(
)

.[
]ePerson

∪=

0,1

Institute

Name
Address

Person

Name
Address

Address
Street
ZIP
City

0,1

1,11,1

Institute Person

Address

id Name Address id Name Address

id1
id2

IfI
GIUZ

id5
id6

id3
id4

Smith
Glenn

id7
id8

id Street ZIP City

id5
id6
id7
id8

Winterthurerstr. 190
Winterthurerstr. 190
Gujerstr. 10
Rigistr. 23

8057
8057
9200
3855

Zurich
Zurich
Gossau
Brienz
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6 Conclusions and Future Work

In this paper we studied the problem of migrating relational databases into object-oriented database

paradigms follow different design strategies. Moreover, legacy databases often contain specific draw

which should be overcome when reengineering them. The differences in design strategies motivate

transformation techniques being more powerful and flexible than existing ones, which mostly gen

structurally identical object-oriented schemas.

In the second part, we presented a framework which provides a formal foundation for the migrat

legacy relational schemas and data into object-oriented databases. This is the first approach which s

automatic data migration for complex schema transformations. The concept presented here allows s

forward implementation of a tool. In particular we described:

• The complete migration process from relational schema and data to object-oriented schema and

• A data model in which the migration process is embedded.

• The concept of transformation rules supporting complex schema transformations.

We currently evaluate and validate our approach by migrating a large database managing bank ac

The relational schema consists of 100 relations with altogether 3.500 attributes and 180 views. Firs

riences indicate the feasibility of this approach. Furthermore, we are currently working on the follo

extensions:

• Tool support: how can a tool support or simplify the transformation of large schemas and how

control the transformation process? To what extent can heuristics support choosing the best

transformation rules?

• Updates: for simplicity we assumed that there are no updates on the database during the migratio

ess. How can updates on the source database be propagated through the migration process suc

cremental migration is possible?

• Optimization: How can the cost of the migration process be reduced by using algebraic rewritin

parallelization?
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