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Abstract

 

Most current object modeling methods and tools have weaknesses both in the concepts
of hierarchical composition and in the visualization of these hierarchies. Some methods
do not support hierarchical composition at all. Those methods which do, employ tools
that provide explosive zoom as the only means for the visualization of hierarchies.

In this paper we present an approach for the visualization of hierarchical object models
that is based on the notion of fisheye views. This concept can display local detail and
global context of a view in the same diagram, thus allowing a user to easily navigate in
hierarchical structures without offending the principle of abstraction. We introduce the
ideas behind the concept, illustrate the zooming mechanism and sketch the algorithm
for the implementation of this kind of zooming. The work presented here is part of an
effort to create a new method called Adora

 

4

 

 for object modeling that provides strong
support for hierarchical composition/decomposition.

 

1  Introduction

 

1.1  Graphical Requirements Models

 

Graphical requirements models follow a long tradition in the field of requirements elicita-
tion and specification. The basic idea is to specify requirements for a software system
through a model that describes structure, functionality and behavior of a software system.
Graphical models claim to be easy to understand, especially for non-specialists, and easy to
maintain. There exists a broad variety of graphical models, e.g. data flow diagrams, state
transition diagrams and statecharts [Hare87], petri nets, entity relationship models and now-
adays object-oriented models like those of [Booc94, Cha+93, Jac+94, OML96, Rum+91,
Sel+94, UML97, Wir+90] etc. The purposes of these models range from simple graphic
visualization up to achieving specific effects, for example reduction of complexity.
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1.2  Model Visualization

 

Using computer systems and software tools, graphical models can be visualized by display-
ing and manipulating the model on a display device using a graphic notation. A 

 

view

 

 is a
part of a model to be displayed. Visualization through views requires 

 

navigation

 

. Naviga-
tion has two aspects, a 

 

cognitive

 

 and a 

 

mechanical

 

 one. The cognitive aspect deals with the
mental effort to locate the current focus
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 or to move it. The mechanical aspect relates to the
mechanical effort (e.g. movement of a mouse) to achieve a cognitive navigation goal.

The cognitive, non-mechanical effort for navigational activities is called 

 

cognitive overhead

 

[Bea+90]. A good visualization concept is critical both for understandability and ease-of-
use of graphical models. A good concept should:

 

•

 

support 

 

orientation

 

 in the model by visualizing as much local detail as needed without
losing the global context of the focused elements

 

•

 

minimize the 

 

cognitive overhead

 

 for navigation 

 

•

 

increase 

 

expressiveness

 

 by including the semantics of the model in the visualization

 

•

 

foster 

 

understandability

 

 by supporting the abstraction mechanisms of the model

In order to assess the current state of visualization concepts of graphic requirements model-
ing tools, we have analyzed three groups of tools (table 1).

 

T

 

ABLE

 

 1. 

 

System modeling tools and supported methods/languages
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A focus is a location in a visualized model which is of momentary importance for the user [Sar+92].

 

Tool-Type Tool-Name Method/Language [reference]

 

Scientific prototype KOGGE Tool BONSAI KOGGE is a CASE-Tool-Generator; BONSAI 
supports the OO-Method BON [Koe+96]

SOM - Tool Semantic Object Modeling [Fer+94]

Macrotec Business process modeling with macronets/petri nets 
[Kel+95]

EGS1 Functional modeling, executable graphical 
specification, data flow diagrams [Gas+95]

Commercial Net-Modeling 
and Simulation-Tools

SystemSpecs Petri net simulation/animation [SysS96]

Statemate Statecharts modeling and simulation/animation 
[Stat96]

MicroSaint Discrete event modeling and simulation [Micr96]

Arena Discrete event simulation with SIMAN/CINEMA-
Tools [Aren96]

Commercial software 
development environments 
[Dart87] and/or CASE-
Tools [Fugg93]

ObjecTime® Toolset ROOM-Method [ObjT96]

Rational Rose OOA/D-Method [Rose96]

Software through Pictures StP Multi method; OMT [Rum+91], OOA/D [Booc94], ... 
[StP96]

Objectory OOSE [Objy96]

Innovator CASE Workbench OMT, OOSE, ... [Inno96]



 

Technical Report 98-09: Visualizing Adora Models 3/15

 

Most tools operating on flat or practically flat models support only scaling in order to handle
large sized models. Few tools have map windows for orientation and roam or scroll bars for
navigation [Bea+90, Kaen96].

Tools operating on hierarchical model structures normally visualize a single node with its
direct successors in one view. A few tools visualize all nodes in one view (for example
Statemate). Some tools of this kind offer scaling possibilities, map windows or hierarchy-
overviews (for example SystemSpecs) to manage the complexity of big models. Most tools
operating on hierarchical data structures offer just 

 

explosive zooming

 

, which means that a
zoomed node will explode entirely in the existing or in a new window with all its direct suc-
cessors. As a consequence, these tools offer either

 

 global context without local detail

 

 views
or 

 

local detail without global context

 

 information in the same view. 

Global context and local detail in one view are realized in very few tools, full flexibility in
scaling and zooming is 

 

not

 

 offered at all. Compared with the essential modeling tasks the
cognitive overhead increases too much when models become bigger.

 

1.3  Motivation and Basic Ideas

 

In this paper, we present a visualization concept for an object modeling language with a
strong mechanism for hierarchical model decomposition and part-of-abstraction. We con-
sider hierarchical decomposition of models with the semantics of a part-of-abstraction to be
crucial for the understandability and maintainability of large models (that means for the nor-
mal case in industrial practice). As none of the existing object-oriented requirements model-
ing languages fully support such a mechanism

 

3

 

, we are developing a language and method
(Adora

 

4

 

) which does

 

5

 

. Our work on visualization is based on this language.

The principal idea of our approach is to apply the notion of fisheye views [Furn86] to the
visualization of requirements models. We define fisheye views with multiple foci for navi-
gating in hierarchically clustered networks of objects. View generation is model driven. It
follows the structure and abstractions of the model. The concept integrates local detail and
global context in a single view, which eases orientation and navigation in the model, thus
minimizing the cognitive overhead.

As our concept allows less interesting elements to be visualized on an abstract level together
with the details of some elements of special interest, we have strong capabilities for sup-
porting abstraction mechanisms in the object model that is being visualized and thus foster
the expressiveness and understandability of the model.
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Most existing object-oriented requirements modeling languages either do not fully support a hierarchical 
model decomposition which employs a 

 

part-of-abstraction

 

 at all (e.g. [Shl+88]) or they provide only a 
clustering mechanism with weak semantics (e.g. [Rum+91] [Jac+94] [Booc94] [UML97]). Few 
approaches do provide such a decomposition mechanism ([Cha+93] [Wir+90]). However, they encounter 
modeling anomalies which are due to using class models instead of object models [Joo+97].

 

4

 

ADORA is an acronym and stands for 

 

Analysis and Description Of Requirements and Architecture

 

.
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An introduction to this language is not the focus of this paper.
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1.4  Organization of this Paper

 

Before we discuss the basics of visualization and our visualization concept in detail, it is
necessary to introduce the kind of models to be visualized. Since we visualize Adora mod-
els, section 2 gives a brief overview of the Adora language.

In section 3 we discuss and differentiate the concepts of scaling and zooming for navigation
and introduce the notion of fisheye views.

In section 4 we describe our visualization concept. Subsection 4.2 begins with a discussion
of the requirements that led to our design. In the subsections 4.3 we present our concept of
‘model-driven’ fisheye views. We concentrate on zooming which is the core mechanism for
handling these views and give a concrete example in subsection 4.4.

Section 5 sketches our zooming algorithm.

The paper concludes with a short discussion of achievements and of the state of work.

 

2  A Brief Overview of the Adora Language

 

Our work on visualization of hierarchical models was motivated by the need for an adequate
visualization mechanism for Adora

 

4

 

 but it is adaptable for similar languages, too. Adora is a
semiformal, object-oriented method for requirements modeling which is currently being
developed at the University of Zurich. In this section, we give a brief overview of Adora
concepts. In particular, we sketch the hierarchical structure of Adora models.

The basic idea of Adora is to model the aspects of data, functionality and behavior in a 

 

sin-
gle

 

 hierarchical object framework. Modeling is based on objects instead of classes. Thus,
we resolve modeling anomalies that occur in decompositions of class models [Joo+97].

Hierarchical decomposition and part-of-abstraction is a key feature of Adora. Compositions
are not simply clusters with no or weak semantics. A composition in Adora is a first class
object having full object semantics including structural relationships and behavior. These
structural relationships as well as the behavior of a composition are true abstractions of the
relationships and behavior of its components. The semantics of behavior decomposition is
based on an extension of the statechart [Hare87] mechanism to objects [Glin93, Glin95].

Figure 1 gives an example of an Adora model. It shows a view of a requirements model for
controlling a double elevator. This example illustrates some important features of Adora
models with respect to visualization. (1) The view contains compositions on various levels
of detail. For example, 

 

Control Panel

 

 is shown with all its components. 

 

Left Cage

 

 is displayed
without components (three periods following the name denote it to be a composition). The
components of 

 

Right Cage

 

 are displayed in full detail with exception of 

 

Inside Door

 

. (2) 

 

Left

Cage

 

 and 

 

Right Cage

 

 are different objects of the same type. When this situation occurs in a
view, the type of these objects is annotated in square brackets. (3) Relationships are visual-
ized on the same level of abstraction as their corresponding objects. For example, between
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Left Cage

 

 and 

 

Floor

 

 there is only an abstract relationship 

 

stops at

 

, because 

 

Left Cage

 

 is displayed
without its components. For 

 

Right Cage

 

, there is also the component relationship 

 

recognize

 

from 

 

Cage Control

 

 to 

 

Floor

 

 visible because 

 

Right Cage

 

 is displayed in full detail.

We use the same style of visualization for hierarchical behavior models. For the sake of
brevity, we have omitted behavior modeling from our example.

The most important feature of Adora in the context of this paper is the notation for nested
hierarchical structure including the ability to represent objects and their relations on differ-
ent levels of abstraction in a single diagram.

The underlying data structure to be visualized in our approach is a kind of 2D network of
components and relationships. Each component is part of exactly one composition and com-
positions can be higher level components as well. Therefore our object model can resemble
the Higraph structure [Hare88] or hierarchically clustered networks [Sch+96]. When gener-
ating views, this explicit hierarchy of objects will be used by the visualization algorithm
(see section 5) to determine how detailed each element will be displayed.

The definition of the Adora language is yet not fully complete. However, the principles of
the language are stable enough that we can derive the requirements for an adequate visual-
ization of Adora object hierarchies.

adjust to

recognizes

drives

opens/
closes

controls

Right Cage [:Cage]
Control Panel

controls

controls

uses

1..✱

1..✱

1

moves

1

Fan

1..✱

Button

(n,n)

moves

object A has a relationship with
n to m objects B; n, m = 0, 1 … ∗

n..mA B

general relation

set of pattern objects (n,m)
  (n minimal, m maximal amount
   of objects)

instantiated or pattern objectA

B is a component of AA B

Super Relation

Legend

A (n, m)

Name

Name

stops at

stops at

1..✱

1

1..✱ 1

Cage Control

Current Floor
Display
[:Display]

Inside Door...

Fan
Switch

Reservation
Keyswitch

Security
Keyswitch

Engine System

Left Engine...
[:Engine]

Right Engine...
[:Engine]

Left Cage...
[:Cage]

Floor

(n,m)

Outside Door...

Current Floor
Display
[:Display]

Call Cage
Button

(1,3)

controls

controls

drives

drives

FIGURE 1. System structure of a double elevator
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3  Basic Terms

 

3.1  Navigation in Hierarchical Models

 

When we visualize hierarchically structured models, we differentiate between two distinct
types of navigation, a physical and a logical one (see figure 2)

 

Physical navigation

 

 is necessary when the actual visualized model (view) exceeds the size
of the available display. This kind of navigation requires the ability to 

 

scale

 

 the size of the
visualized model by shrinking or growing the size of the visualized elements. With 

 

scrolling

 

or with the use of a map window [Bea+90, Kaen96] we can change the displayed part of a
view. Physical navigation is well known as it is the normal way of navigation in flat models.

As the model has a hierarchical structure and the visualization should allows us to show dif-
ferent hierarchical levels of the whole or of a part of the model, we must be able to navigate
through the hierarchy. 

 

Logical navigation

 

 in a hierarchical structure means that we need to
find the actual position of a local element in the global context of the hierarchy, or that we
would like to change the foci of certain visualized elements. To handle this type of naviga-
tion adequately, we 

 

zoom-in

 

 or 

 

-out

 

. Zooming-in means that more details of a deeper hierar-
chical level will be visualized. Zooming-out means that a more abstract view of the selected
elements will be produced. Using 

 

explosive zooming

 

, the global context gets lost, while the
zoomed node will explode entirely in the existing or in a new window with all its direct suc-
cessors/child-nodes. 

 

Fisheye zooming

 

 produces a local detail view while preserving the global context in the
same view. A fisheye view [Furn86] is an information visualization concept, which com-
bines and balances local detail and global context together into a single view. As the term
indicates, the fisheye view concept is based on the idea of a fish’s eye which works like a
wide-angle lens. The idea is to show local detail (the objects of interest to the user) in full,
while displaying successively less detail for information being further away from the focus.

There exist several fisheye concepts for visualizing large information spaces. The differ-
ences between them are mainly the type of data structure they are able to display and the
dependencies on their application semantics. An extension to the traditional fisheye view
concepts allows to show multiple areas of interest in detail simultaneously [Sch+96]. This

navigation in a hierarchical object model

physical logical

SCALING / SCROLLING ZOOMING

FIGURE 2. Types of navigation
explosive fisheye
zooming zooming



 

Technical Report 98-09: Visualizing Adora Models 7/15

 

means, for example that zooming into more than one composition in an object model will
result in a view with 

 

multiple foci

 

.

 

4  Visualization Concept

 

4.1  Context

 

The tool environment for Adora (which we are currently developing) consists of a reposi-
tory, a graphical model editor and a model animator/simulator. The general architecture is
conventional and straightforward: All functional tool components are grouped around the
repository. We will not discuss the general architecture here and concentrate on the visual-
ization concept for the graphical model editor and animator/simulator. This leads us to the
core requirements concerning the visualization, which form the basis of our concept.

 

4.2  Requirements

 

We analyzed the intended use of the tool and set up navigational scenarios. From these sce-
narios (

 

S1 – S3

 

), we derived core requirements for our visualization concept. The most
important ones (

 

R1

 

 – 

 

R7

 

) can be found below.

 

Navigational Scenarios

 

S1

 

The user wants to select one (

 

S1.1

 

), many (

 

S1.2

 

) or all compositions (

 

S1.3

 

) to be dis-
played more detailed, which means to explode their structure and visualize their com-
ponents and relations.

 

S2

 

The user wants to select one (

 

S2.1

 

), many (

 

S2.2

 

) or all exploded compositions (

 

S2.3

 

) to
be displayed less detailed, which means to hide/abstract from their internal structure
and visualize their components and relations.

 

S3

 

The user wants to change the size of the visualized elements without changing logic
structure of the view (and amount of information) which is currently displayed. This
means to shrink or grow all elements.

 

Core Requirements

R1 The degree of detail must be freely selectable (S1, S2).
R2 A view should provide local detail and global context (S1, S2, see also section 1.2).
R3 Displayed objects must not overlap (S1, S2, see also section 1.2).
R4 Temporal scrolling activities must not distort the view (S3).
R5 Zooming and scaling are each independent user tasks, which can be combined in a

free order (S1, S2 vs. S3).
R6 It must be possible to set up an arbitrary number of foci simultaneously in a view

(S1.2, S1.3, S2.2, S2.3; please note, excessive use of multiple foci of course increases the
cognitive overhead. However, in several scenarios it is convenient to see the details of
co-operating objects but not details of their context. This results in the necessity to
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keep at least two or three compositions exploded. This constraint lead us to (R6)).
R7 It must be possible to select one, many or all compositions in a view to be focused on

or to be removed from the focused elements (S1, S2).

4.3  Concepts

The basic principle for our ‘model-driven’ adaption of fisheye views is to generate views
according to the decomposition structure of the model and its abstractions.

Navigation

Logical navigation based on explosive zooming is not suitable for our purpose because the
global context of an object gets lost when a zoom step is performed. A view in our concept
represents the whole model. The degree of detail and thus the level of abstraction may vary,
but a view always shows the whole context.

In order to minimize the cognitive overhead for navigation (see section 1.2) and to fulfill
(R6), multiple foci must be allowed in the same view. So, the visualized degree of detail of
each object can be freely adjusted, independently from other objects (R1). To navigate
through the model, fisheye zooming and scaling/scrolling is possible. Zooming is the tech-
nique for changing the focus and the degree of detail of a view. Scaling operates on a view
as well but the logical structure of the view remains unchanged. Scrolling operates just on
the displayed part of a view and also does not change the logical structure of a view.

Zooming

Zooming changes the visualized part of the model structure in a view. Zooming takes
advantage of the hierarchical structure and explicit decomposition of the model to allow
views with different levels of abstraction. These abstractions are ‘real’ abstractions because
they are not based just on the omission of language elements but on the utilization of an
explicit model decomposition and part-of-abstraction, respectively.

• By Zooming-In the user selects a specific element as a (new, additional) focus mean-
ing that he wants to see the components of this composition. Zooming-in is a stepwise
uncovering of the underlying structures. 

• By Zooming-Out the user removes a specific element from the set of defined foci
meaning that he wants to see less detail than before. Zooming-out of a selected com-
position leads to an abstraction of the underlying structure of this composition. The
selected composition will be shown as a black box, hiding internal structures, behav-
ior and sub-relations etc.

Zooming can be done by selecting an element in the model, by fully qualifying the name of
the element to be zoomed or by selecting an element in a map window displaying the hierar-
chy structure. In any visualized configuration, each composition can be focused on; this
means that each composition can be zoomed-in or zoomed-out independently of the visual-
ized context surrounding this composition. With this idea we realize multiple foci.
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Scaling and Scrolling

Scaling of the elements in a view preserves the currently visualized structure with respect to
the existing foci while changing the size of all elements by the same scaling factor.

• Scrolling preserves proportions. Only the displayed part of a view will be changed.
• Scaling up/down elements in a view may result in displaying/omitting some language

elements, for example names of object attributes, event names etc. The omission of
language elements of a specific type, e.g. object attributes, relation names etc. clarifies
a view but allows only limited abstraction, merely on a ‘syntactic’ level, because scal-
ing cannot exploit an appropriate model decomposition to gain abstraction and
abstract views, respectively.

Scaling and scrolling are well known and widely implemented. Therefore we confine our-
selves to a more detailed description of the zooming mechanism, which we currently are
implementing in a tool prototype.

4.4  Example

The starting point for the illustration of the zooming concept is the situation presented in
figure 3: The double elevator system is visualized with its top level compositions Floor, Left

Cage, Engine System and Right Cage as black boxes. The objects currently displayed in the view
are marked by filled black circles in the following figures. The example will illustrate a
sequence of zoom-in and zoom-out requests to demonstrate view generation and navigation.
The magnifying glass indicates the composition which will be zoomed.

In the example, we proceed as follows: We zoom-in until all objects of the hierarchy (repre-
sented in the tree as nodes) are visible (same view as in figure 1). Finally one zoom-out step
is performed. The first step is a zoom-in request on the Floor composition. The Floor compo-
sition will be exploded and its internal structure will become visible.

Figure 4 shows the view after a zoom-in on the Floor composition has been performed. Floor

is shown with its direct successor components Call Cage Button, Current Floor Display and Outside

Door. The next step is to set two additional foci; first to the Right Cage composition and then to
the Control Panel composition inside the Right Cage composition.

Double Elevator

Floor Left
Cage

Engine System Right Cage

Floor Eng.Syst.

L. Cage

R. Cage

FIGURE 3. Zoom-in request on the Floor composition; the left side the figure shows the
hierarchic structure of the double elevator, and the right side the corresponding view. A black
node on the left side denotes a visible object whereas a white node denotes a hidden object.
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Figure 5 shows the view after zoom-ins on the Right Cage composition and then on the Control

Panel composition. Right Cage is shown with its successor components. Control Panel also has
been exploded and its components Button, Fan Switch, Reservation Keyswitch and Security Keyswitch

are now visible. Now a final zoom-in request on Engine System will be performed.

In figure 6 (see below) all objects are visible. The same components as in figure 1 are visi-
ble. To illustrate a zoom-out step, the Right Cage composition will be imploded (see figure 7).

Figure 7 shows the view after the zoom-out step on the Right Cage composition has been per-
formed. Right Cage has been imploded and the view shown is again similar to figure 4. 

Zooming will be further discussed in the next section (section 5), where the zooming algo-
rithm will be explained in detail.

Double Elevator

Floor Left
Cage

Engine System Right Cage

FIGURE 4. Zoom-in request on the Right Cage

Double Elevator

Floor Left
Cage

Engine System Right Cage

FIGURE 5. Zoom-in request on the Engine System

Double Elevator

Floor Left
Cage

Engine System Right Cage

FIGURE 6. Zoom-out request on Right Cage

Double Elevator

Floor Left
Cage

Engine System Right Cage

FIGURE 7.  View after the zoom-out request
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5  The Zooming Algorithm

In principle the algorithm resizes just the zoomed object and shifts objects away from this
object as necessary. When a composition has to be exploded, all objects on the same level
will be shifted away from this composition. If necessary the enclosing composition will be
resized and all other objects on this level will be shifted. Then the enclosing composition of
the enclosing composition will be resized, and so on.

The algorithm operates on any existing layout, adjusting it incrementally. This means that if
the user chooses to re-arrange things somewhat, and then expands something, his or her
overall rearrangement remains mostly preserved, modulo the incremental repositioning the
algorithm performs (a characteristic which is far harder to achieve with an approach that
tries to completely automate the entire layout process).

We found that existing fisheye view algorithms were not suitable for visualizing Adora
models, because they exclusively provide the automatic generation of a view but do not
foresee interactive modification and re-arrangements, respectively. This led us to the algo-
rithmic approach outlined above which is based on a shift of displayed elements on demand.
Our realization offers a convenient and simple way to show local detail and global context
in one view. It also provides multiple foci and scrolling does not distort the view. Further,
we do not need an explicit degree-of-interest-function, which is cumbersome to understand
and implement when an arbitrary number of foci must be allowed.

Now we will introduce the algorithm in detail. 

Given the center point of a rectangle other than the rectangle to be expanded, figure out
which of the four quadrants P'1P'2, P'2P'3, P'3P'4, P'4P'1 (see figure 9) that center falls in. The
quadrant boundaries are lines through the expanded rectangle’s opposite corners. If the cen-
ter lies e.g. in quadrant P'4P'1, move the rectangle to the right by the amount of the expansion
of the expanded rectangle’s right side, and upwards by an amount proportional to the degree
to which the center point is above the center point (if the center lies in another quadrant
apply analogously).

So a rectangle whose center point happened to fall on one of those boundaries would get
moved both horizontally by the full horizontal expansion amount, and vertically again by
the full vertical expansion amount. This has the result that rectangles that were non-overlap-
ping to begin with, remain non-overlapping.

Based upon the elevator example, figure 8 shows schematically how the algorithm works.
First, the leftmost composition (Floor) is zoomed (see figure 8.1). To perform the operation,
the new size of the composition in its exploded state is calculated. Then the shift vectors
(see A, B, C in figure 8.1) are calculated. These vectors specify the direction and the amount
to shift the other three objects, which are on the same level as the composition to be
zoomed. All objects which are below the level of the composition to be zoomed and are not
components of this composition, must be components of other compositions, and therefore
do not need to be explicitly shifted because (see figure 8.2) they will be shifted and redrawn
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as their enclosing composition is redrawn. Objects above the level of the zoomed composi-
tion will be reshaped as necessary. Figure 8.3 shows the view after the Floor composition has
been zoomed. Figure 8.3 and 8.4 illustrate a second zooming step. The following pseudo-
code sketches how a zoom step is performed:

procedure  reshape( anObject : Object )
begin

calculate new size of anObject;
for each  otherObject on the same level as anObject

calculate shift_vector between anObject and otherObject;
shift otherObject by the shift_vector

hcae rof ;
if  surroundingCompositionOf( anObject ) must also be reshaped then

reshape( surroundingComposition( anObject ) )
fi

end  reshape

Floor
A

A

B

C B

C

D

E

F

F

D

E

1

2

3

4

5

Floor

Left Cage

Right Cage

Engine System

Engine System

Left Cage

Right Cage

Call Cage
Button

Outside
Door

Current
Floor

Display

Call Cage
Button

Outside
Door

Current
Floor

Display

Left Cage

Right Cage

Engine SystemControl
Panel

Cage
Control

FIGURE 8. Scheme of the zoom-in/reshape algorithm
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A lot of functionality is hidden behind the calculation of the shift vector , which has to be
calculated for each component to be moved. The shift vector is calculated in two main steps
as follows:

First step: calculate m and a for the function f(x), which is used in the next step to calculate
the shift vector for each object.

Second step: calculate the shift vector. The conditions are mutually exclusive and determine
in which quadrant the center of the object to be shifted falls in. Dependent of the quadrant
the center falls in the concrete values for the shift vector can be calculated.

V

P'4(xp'4,yp'4)
= (xp'1,yp'4)

P'3(xp'3,yp'3)
= (xp'2,yp'4)

P4(xp4,yp4)
= (xp1,yp4)

P1(xp1,yp1)

P3(xp3,yp3)
= (xp2,yp3)

P2(xp2,yp2)

V

P'1(xp'1,yp'1)P'2(xp'2,yp'2)

f(x)

C1(xc1,yc1)

C'2(xc'2,yc'2)

C2(xc2,yc2)

FIGURE 9. Illustration of the data necessary to calculate the shift vector V
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Please note that this is a simplified variant of the algorithm where the shape of an object in
its imploded and exploded state must be (similar) rectangles. If the shapes are allowed to be
different, the algorithm stays the same in principle, but to determine the shift vector some
additional functions are needed to handle a couple of additional conditions. The algorithm
has been generalized to handle non-similar rectangles or different shapes but for sake of
brevity it will not be described in this paper.

6  Conclusions, State of Work

In this paper we have identified selective zooming as a capability that is useful for, but is
lacking in, CASE tools that graphically portray hierarchical structures. We have presented a
general concept which transfers the idea of fisheye views to display object hierarchies in an
adequate way. We applied this concept to visualize Adora models and demonstrated a possi-
ble realization.

However, our visualization concept can also be used for the visualization of other hierarchi-
cal (object) models, for example Statecharts [Hare87] or ROOM models [Sel+94]. More-
over, it should be adaptable to the visualization of inheritance hierarchies in object-oriented
models, too.

For now, the development of the basic visualization concept for Adora models has been fin-
ished, and a first brief validation of this concept has been promising. Currently, we are
working on the details and are implementing a graphical model editor, in order to thor-
oughly validate the usability of the visualization concept. This validation will be done in the
Usability Lab of the FIDES Informatik in Zurich. For practical reasons the validation will
be done together with the validation of the Adora language.

Based on the results of the validation, our visualization concept will be revised and reimple-
mented. Furthermore, we plan to build an animator/simulator for Adora models using the
same concept.
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