
April 1998 Technical Report 98.4
Analysis of the Java
Class File Format

Denis N. Antonioli, Markus Pilz
Department of Computer Science
University of Zurich
(antonioli, pilz)@ifi.unizh.ch

“It is a capital mistake to theorize before
one has data.”
C. Doyle, Scandal in Bohemia
ext
nd
as a

is
 an

enta-
lop-

 par-

nd

hey

ns.

ana-
s the
the

sec-

e
iza-
Since its release early in 1996, Java [7] enjoys a tremendous popularity [10]. N
to the original tools provided by Sun, a wealth of competing compilers [4, 12] a
virtual machines [1, 2, 17] appeared in a relatively short time. Beside its interest
programming platform, Java may qualify as the most publicized and distributed
experiment in intermediate language since the days of UCSD-Pascal [15]. Two
years after its inception, it is time to harvest the first results. The purpose of th
paper is to gather statistics on the Java class files, which serve in Java both as
object file for the Java Virtual Machine and as an intermediate program repres
tion for cross-platform delivery. Such statistics are of interests to both the deve
ers of Java tools and the designers of intermediate languages.

The goal of this work is to study the properties of the Java class file format and
ticularly to answer these questions:

1. It is often claimed that programs written in Java are compiled to a compact a
efficient format. What are the sizes of typical class files?

2. The class file is structured around several parts of variable length. How do t
add to the size of the file?

3. The Java Virtual Machine defines a rich instruction set of over 200 instructio
Are all these instructions used? How often?

The paper is thus structured as follows: Section 1.0 lists the programs that were
lysed. The size of the classes are examined in section 2.0. Section 3.0 analyse
components of the class file, with special attention given to the constant part and
attributes. Section 4.0 studies the instruction set of the virtual machine. Finally,
tion 5.0 summarizes the findings and concludes the article.

1.0 The data set

The experience was conducted over six different programs totalling 4016 uniqu
classes. We tried to find both applications and libraries written at different organ
tions. The set contains:
1



Size of the files

t

1 of
et of

va
.
te

Test
es.

he
0

e-
va;

 the
been

K.

ard
ize of
 time
ro-
ith
of

ize of
r the

he
s a
ints
ugh
1. The Java Developer’s Kit

The version 1.1.5 of the Java Developer’s Kit (JDK) consists of 1622 differen
classes that make the standard Java class library, the tools (java , javac , javap ,
javadoc , jar ,…) and some libraries proprietary to Sun.

2. HotJava

HotJava is the web browser that introduced Java to the world. The version 1.
Sun’s HotJava browser also contains the Java Runtime Environment, a subs
the JDK. We measured only the 539 classes unique to the browser.

3. Java WorkShop

Java WorkShop (JWS) is an integrated developer’s environment (IDE) for Ja
entirely written in Java. The JWS is a commercial product developed by Sun
The version 2.0 contains an IDE, a dedicated run-time system and a comple
JDK. We measured only the 1408 classes unique to the IDE.

4. JavaCC

JavaCC is a compiler generator written in Java. JavaCC is developed at Sun
and is freely available [14]. The version 0.7.1 of JavaCC contains 134 class

5. Java Generic Library

The Java Generic Library (JGL) is a collection of containers and algorithms
designed in the spirit of STL [16]. JGL is intended to supplement the JDK. T
JGL is developed by ObjectSpace and is freely available [3]. JGL version 3.
contains 262 classes.

6. classViewer

ClassViewer is the Java program one of the author wrote to perform measur
ments over the class files. It is an example of the kind of utilities written in Ja
classViewer contains 51 classes.

To our knowledge, it is not possible to determine the compiler used to produce
classes analysed. Although it is most probable that the first four programs have
compiled with some version of Sun’sjavac , we are only certain that the 6th pro-
gram was compiled with the compiler included in the version 1.1.5 of Sun’s JD

2.0 Size of the files

[6] observed that, with modern architectures, the time to load a file from a local h
disk is much larger than the time necessary to generate code on-the-fly. The s
the binary file determines the program start-up time because the program load
is bound by the speed of the I/O operations. The time necessary to bring the p
gram into main memory becomes even more important when, as is intended w
Java, the code is loaded over a network. This section explores the typical size 
class files.

Table 1 contains the average, the standard deviation (stdev) and the median s
the classes in the data set. The four quantile columns are the maximum size fo
respective percentage of all the files and the last column indicates the size of t
biggest class in each program. The median is under 2’000 bytes, which reveal
large number of very small files, but the large value of the standard deviation h
at an important number of bigger files. The first three quantiles show that, altho
2 Analysis of the Java Class File Format



Size of the files

ry

The
en
onse
rcent
files.
ess of
y
me

f a
10K
the files get bigger, they stay within reasonable bounds until a few large and ve
large files tip the scale. These large files can be traced to a fewmain  classes.

Figure 1 is a graphical representation of the distribution of the sizes of the files.
cumulative frequencies show what percentage of the whole program size a giv
fraction of the class files occupies. The two programs plotted enclose the resp
domain. The progression of the maximal size between the 95 percent, 97.5 pe
and 100 percent quantiles in table 1 already hinted at a small number of large 
Their presence is visible in the sharp upturn at around 95 percent. The steepn
the curves shows how much larger these files are: 50 percent of the files hardl
make more than 20 percent of the total size, and 50 percent of the total size co
from less than 10 percent of the files.

Figure 2 plots, for four different programs, the fraction of the classes that are o
given size. It is limited to the 90–95 percent of the files whose sizes are under 

average stdev median 80% 90% 95% 97.5% max.

JavaCC 5’856 16’630 798 6’055 9’928 28’926 38’797 121’316

classViewer 1’790 1’884 1’147 2’498 4’286 6’285 8’006 8’973

hotjava 3’220 5’229 1’648 3’860 6’796 10’350 17’814 49’384

jdk 5’372 16’404 1’766 4’568 8’243 12’350 50’403 193’716

jgl 3’650 4’177 1’792 5’983 10’232 12’908 15’755 20’772

jws 4’230 11’445 1’921 5’614 8’908 12’946 18’819 365’470

all 4’541 13’017 1’746 4’898 8’302 12’650 23’140 365’470

Table 1 File size [byte]

Figure 1 Cumulated frequencies of the file size

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 o

f t
he

 s
iz

e

% of the classes

JavaCC
classViewer
Analysis of the Java Class File Format 3



Parts

tion

sion
re

of

as a

ym-

d in

le.

f
that
bytes. The large value of the standard deviation is apparent in the wide distribu
of those files.

3.0 Parts

The Java class file is built from the aggregation of five parts. [9] sets the succes
of the parts and their contents, yet allows flexibility in some parts. We will explo
in this section how theses different parts contribute to the overall file size.

3.1 Parts of the class file

The format of the class file is fully described in [9]. Shortly, the class file consists
a:

1. Header part. The header contains a magic number, which identifies Java class
files, and the version number of the format of the class file. The header part h
fixed size of 8 bytes.

2. Constant part. The constant part is a variable sized structure that holds all the s
bolic informations used in the rest of the file. It is from here that the loader
extracts the linking information and the interpreter fetches the constants use
the bytecodes.

3. Class part. The class part contains information defining the class stored in the fi
These informations are the access flags, the references tothis , to super , to all
the interfaces implemented by the class, the number of fields, the number o
methods and an attribute pool. The attribute pool is a variable sized structure

Figure 2 Distribution of the file sizes (cut at 10Kb)

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

%
 o

f 
th

e
 c

la
ss

e
s

class size [byte]

JavaCC
classViewer

jdk
jgl
4 Analysis of the Java Class File Format



Parts

rt

var-
d the

n-
s, the
r the

many
the

file
t ele-
 con-

od-

ive

m-

e

re vis-
holds arbitrary additional properties of the class. The size of the constant pa

also belongs to the class part1.

4. Field part. The field part is a table of descriptions for all the class and instance
iables defined. Each entry in the table contains the access flags, the name an
type of the field and an attribute pool similar to the one in the class part.

5. Method part. The method part is a table of descriptions for the initializers, the co
structors and the methods defined. Each description contains the access flag
name and the type of the procedure and an attribute pool. The bytecodes fo
procedure is stored in aCode attribute in the attribute pool.

For each class, we measured the sizes of these five parts and computed how 
percent of the file they occupy. Table 2 presents the results computed over all 
classes and table 15 on page 16 gives the results for the individual programs.

The constant part and the method part make up on average 95 percent of the 
size. This is not a surprise, but it is quite interesting to consider that the larges
ment in a class file is actually the constant part and not the method part, which
tains the bytecodes to execute.

3.2 Constant part

The constant part is a table of variable length entries, theCONSTANT structures.
They are:

1. TheCONSTANT_Utf8 structure stores a string of Unicode characters. The enc
ing used is a slight variation of the standard UTF-8 format.

2. TheCONSTANT_Integer , CONSTANT_Long, CONSTANT_Float  and
CONSTANT_Double structures store a value of the corresponding Java primit
type.

3. TheCONSTANT_String  structure represents an object of the type
java.lang.String . The structure references aCONSTANT_Utf8 entry that
contains the actual characters.

4. TheCONSTANT_Class structure stands for classes or interfaces. The only me
ber of the structure is the index of aCONSTANT_Utf8 entry that contains the
name of the class.

5. TheCONSTANT_NameAndType structure brings together the name and the typ
of a field or a method. They are stored as references to twoCONSTANT_Utf8

entries.

1. The sizes of all the other parts are grouped in the class part to make empty parts mo
ible.

average stdev median min. max.

header 0.74 0.81 0.45 0.00 5.00

constant 61.55 16.51 64.87 0.39 99.23

class 2.55 2.74 1.53 0.00 19.39

field 1.65 3.47 0.84 0.00 48.63

method 33.49 18.62 30.89 0.00 99.54

Table 2 Summary of the repartition of the five parts of a class [% of the file size]
Analysis of the Java Class File Format 5



Parts

ld
y all

ercent-

f
sum

tion is
 pat-

he
ut

ence

 The

pe
s-
6. TheCONSTANT_Methodref , CONSTANT_InterfaceMethodref  and
CONSTANT_Fieldref  structures build the relation between a method or a fie
and its class or interface. The three structures have the same members: the
reference both aCONSTANT_Class, which names the containing class, and a
CONSTANT_NameAndType, which identifies the method or the field.

We counted the different kind of structures in the constant part; theCONSTANT

structures representing the Java primitive types build a single category,Numeric,
because they appear rather infrequently. Table 3 presents these counts as a p
age of the number of entries.

The importance of theCONSTANT_Utf8 structures is apparent in the 59 percent o
all the entries they represent on the average. It is interesting to consider that the
of the average number of entries that referenceCONSTANT_Utf8 structures is less

than 40 percent1! On the opposite, theCONSTANT_String  andNumeric entries
make on the average less than 5 percent and the few cases where this propor
more important are interfaces or classes that only define constants, a common
tern in Java programs. There are no classes withoutCONSTANT_Utf8 and
CONSTANT_Classstructures because these structures are used to express thethis

and thesuper  references, two required members of any Java classes.

The constant part contains primarily the constants used in the bytecodes and t
symbolic information necessary to perform dynamic linking and type checking. B
the constant part is accessible from all the other parts of the class file and may h
hold any other constants, as the discrepancy in the number ofCONSTANT_Utf8

items suggested. We divided the entries of the constant part into three groups:

1. Constant. This group contains theCONSTANT_Integer , CONSTANT_Long,
CONSTANT_Float  andCONSTANT_Double as well as theCONSTANT_String

entries, as they are intended to represent constants used by the bytecodes.
CONSTANT_Utf8 structures referenced byCONSTANT_String entries belong to
this group.

2. Type and link. TheCONSTANT_Class, CONSTANT_NameAndType,
CONSTANT_Methodref , CONSTANT_InterfaceMethodref  and
CONSTANT_Fieldref entries constitute the second group. They encode the ty
system and provide the linkage informations; with their help, the run-time sy

average stdev median min. max.

Utf8 59.06 10.55 56.36 0.57 96.77

Numeric 1.18 5.29 0.00 0.00 99.17

String 3.67 6.55 1.77 0.00 49.91

Class 9.30 4.50 8.45 0.03 38.57

NameAndType 12.83 5.81 14.29 0.00 29.07

FieldRef 4.11 3.86 3.50 0.00 22.95

MethodRef 9.50 5.35 10.26 0.00 28.58

InterfaceMethodRef 0.34 1.27 0.00 0.00 16.09

Table 3 Count of the different CONSTANT structures [%]

1. String + Class + 2* NameAndType = 3.67+ 9.30 + 2*12.83 = 38.63
6 Analysis of the Java Class File Format



Parts

y be
k-

ce,

d
an

n [9],

ifica-

s in
size of

r-
es of
d
ns, a

d.

n.
nt
es

-

tem performs type checking and dynamic linking. TheCONSTANT_Utf8 entries
they reference pertain here.

3. Others. Any parts of the class file may reference the constant part, so there ma
CONSTANT_Utf8s that belong neither to the constants nor to the typing and lin
ing data; these entries build the third group.

Sun’sjavac minimizes the size of the constant part by writing every constant on
so we had to check that theCONSTANT_Utf8 structures were only counted once. In
case aCONSTANT_Utf8 structure should turn up in more than one group, it woul
be added preferentially to the type and link category. Even though a compiler c
define an attribute that references any kind ofCONSTANT structures, we did not
ensure that they were actually used as expected. Of all the attributes defined i
theExceptions  attribute is the only one to reference anything other than a
CONSTANT_Utf8 structure: theExceptions  attribute employsCONSTANT_Class

entries to check the type of thrown exceptions; this usage conforms to our class
tion. Albeit this repartition appears rather conservative, it gives good practical
results.

To determine the importance of these three categories, we grouped the entries
according to the rules defined above and summed up the sizes of the structure
each group. These absolute numbers, expressed as a percentage of the total 
the constant part, build the basis for the tables 4, 5 and 6.

Table 4 shows the results for the amount of constant information. The small pe
centage occupied by the constants confirms the results of table 3; the small siz
the primitive types (5 to 9 bytes) and the overall small number of constants use
explain these values. We linked the high maxima to classes used as enumeratio
design pattern whose usage is not equally represented in the programs studie

Table 5 contains the results for the analysis of the typing and linking informatio
Dynamic linking and run-time resolution of the method calls require an importa
supply of information from the compiler. Whereas the relations between the typ
are efficiently encoded in smallCONSTANT structures, the identification of the type
is delivered in a textual encoding asCONSTANT_Utf8 structures. This sparse encod
ing appears clearly in the hefty fraction occupied. The classes with low minima

average stdev median min. max.

JavaCC 11.48 20.51 0.00 0.00 93.36

classViewer 4.05 9.78 0.65 0.00 59.63

hotjava 3.74 6.20 1.94 0.00 84.47

jdk 10.29 21.32 3.14 0.00 99.69

jgl 6.18 6.95 2.96 0.00 31.63

jws 6.46 9.10 3.93 0.00 99.86

all 7.76 15.56 3.05 0.00 99.86

Table 4 Constant information in the constant part [%]
Analysis of the Java Class File Format 7



Parts

rimi-

the
a big
ss or

h

d

der
ed
ispen-

rep-
her
have in common a high number of constants in the bytecodes and the use of p
tive types instead of other classes.

The results for the last group are in table 6. The entries of this group fill up on 
average 31 percent of the constant part and 20 percent of the class file! This is
fraction, especially when considering that this data is not required to use the cla
execute its bytecodes.

3.3 Debugging information

The field, the method and the class parts of the class file have a variable lengt
Attribute  table, the attribute pool. [9] defines the general structure of an
Attribute , describes the attributes produced by the version 1.0 of the JDK an
states on p. 107 “Of the predefined attributes, theCode, ConstantValue , and
Exceptions attributes must be recognized and correctly read by a class file rea
for correct interpretation of the class file by a Java Virtual Machine.” [18] propos
to reduce the size of class files by stripping them of those attributes deemed d
sable.

The debugging information is constituted by the entries in the constant part that
resent neither constant nor typing information as well as by all the attributes ot
thanCode, ConstantValue  andExceptions . Table 7 contains the average, the

average stdev median min. max.

JavaCC 54.90 20.43 51.62 3.53 95.97

classViewer 62.78 14.18 60.54 17.74 85.51

hotjava 72.27 16.23 76.99 6.02 92.42

jdk 57.55 22.24 60.41 0.18 96.48

jgl 62.94 13.01 66.25 13.46 87.07

jws 59.33 16.16 63.51 0.07 86.16

all 60.48 19.45 64.80 0.07 96.48

Table 5 Type and link information in the constant part [%]

average stdev median min. max.

JavaCC 33.62 22.96 36.91 0.88 86.56

classViewer 32.87 16.17 35.13 4.05 83.29

hotjava 24.00 17.13 19.34 2.26 86.57

jdk 32.16 20.22 29.94 0.13 97.73

jgl 30.89 14.67 30.11 9.88 85.21

jws 34.22 17.89 29.50 0.07 93.90

all 31.76 19.03 28.19 0.07 97.73

Table 6 Other information in the constant part [%]
8 Analysis of the Java Class File Format



Parts

 occu-

cent
nd

nt of
hod

 in

le 8
e

tial-
his
standard deviation (stdev) and the median of the percentage of the class file it
pies. The last two columns give the minimal and the maximal percentages.

This result expands what was found by analysing the constant part: the 33 per
of the file used by debugging information are made up of one third attributes a
two thirds strings.

3.4 Code

The bytecodes are the most visible part of the class file, they are itsraison d’être.
We already saw in section 3.1 that the method part amounted to about 30 perce
the size of the file. But the method part itself is more than raw bytecodes: a met
structure can include other attributes next to theCode attribute. Besides, theCode

attribute itself brings together the bytecodes with its exceptions table and may
turn include further attributes.

We first measured the percentage of the class file taken by the bytecodes. Tab
shows that the bytecodes make on the average 12 percent of the class file. Th
classessunw.html.dtds.html32  andjava.lang.Character  are the two
extremely high extrema in hotjava and jdk. They both have a very large static ini
izer for static arrays and they both reference only two or three other classes. T
keeps the type and link part of the constant part small.

average stdev median min. max.

JavaCC 32.64 14.38 32.88 10.23 72.21

classViewer 31.60 11.11 31.51 14.57 64.16

hotjava 26.23 11.79 22.66 3.42 72.25

jdk 31.23 15.69 28.95 0.58 82.75

jgl 30.06 10.21 28.91 16.43 66.88

jws 38.50 11.61 37.03 0.08 78.97

all 33.09 14.12 31.43 0.08 82.75

Table 7 Amount of debugging information [%]

average stdev median min. max.

JavaCC 12.63 12.21 6.14 0.00 48.05

classViewer 8.47 7.84 5.30 0.00 34.85

hotjava 10.72 7.99 9.83 0.00 84.31

jdk 15.29 13.31 12.05 0.00 94.46

jgl 9.27 6.30 8.13 0.00 37.51

jws 10.54 7.50 9.61 0.00 73.31

all 12.44 10.68 10.03 0.00 94.46

Table 8 Amount of bytecodes as a percentage of the whole class [%]
Analysis of the Java Class File Format 9



Bytecode

that
 aver-

-
s

is
o effi-

re
struc-

e a
es of

ows
f

The section 3.3 introduced the notion of debugging information. Table 9 shows
in classes stripped of all this debugging information the bytecodes take on the
age only 18 percent of the file size.

4.0 Bytecode

The Java Virtual Machine defines an instruction set rich of 212 different instruc
tions. Two features of this instruction set explain its size. First, many instruction
exist in different versions according to the type of the argument(s) they use; th
eases the verification of the bytecodes. Second, there are special instructions t
ciently access small constants and frequently used fields.

4.1 Instruction size

A Java Virtual Machine instruction consists of an opcode followed by zero or mo
bytes that provide the operands. The opcode is encoded in one byte for 200 in
tions and two bytes for the 12 remaining instructions. The opcode specifies the
operation to be performed and the number of operands; two instructions,look-

upswitch  andtableswitch , have a variable number of operands yet they hav
minimum size of 9, respectively 13, bytes. Table 10 summarizes the actual siz
the instructions.

We measured the size of the instructions present in the programs. Table 11 sh
that the average size lies just under 2 bytes at 1.92 bytes. The largest means o
JavaCC and classViewer are due to the influence of theswitch statements. In class-

average stdev median min. max.

JavaCC 17.12 15.53 9.98 0.00 87.92

classViewer 11.39 9.05 8.40 0.00 41.72

hotjava 13.97 10.31 12.71 0.00 95.37

jdk 23.21 25.02 15.26 0.00 99.31

jgl 12.63 8.21 11.54 0.00 44.89

jws 16.10 10.46 14.61 0.00 83.13

all 18.44 18.32 13.91 0.00 99.31

Table 9 Amount of bytecodes as a percentage of the stripped class [%]

size of the instruction [byte] number of instructions % of the instruction set

1 147 69%

2 14 7%

3 33 16%

4 12 6%

5 3 1%

6 1 0%

9 or more 2 1%

Table 10 Repartition of the instruction size
10 Analysis of the Java Class File Format



Bytecode

r the
ble
pre-
ercent

s of
struc-
Viewer, for example, the largest instruction is compiled from a singleswitch state-
ment that contains 200 cases.

We counted the number of instructions of the different sizes and expressed the
counts as a percentage of the instructions in the class file. Figure 3 plots this fo
fixed-size instructions. If we compare the result to the classification made in ta
10, we see that the 2-bytes and, above all, the 3-bytes instructions are over-re
sented, as these 7 percent and 16 percent of the instruction set represent 14 p
and 40 percent of the occurrences.

4.2 Usage of the different instructions

To explain the difference between the expected and the measured distribution
the instructions that was just revealed, we studied the usage of the different in

average stdev median min. max

JavaCC 2.41 5.87 2.00 1.00 148.46

classViewer 2.18 11.42 2.00 1.00 822.00

hotjava 1.97 2.05 2.00 1.00 201.00

jdk 1.91 1.89 2.00 1.00 332.00

jgl 1.98 1.17 1.00 1.00 27.33

jws 1.96 1.75 2.00 1.00 443.00

all 1.96 2.39 2.00 1.00 822.00

Table 11 Size of the instructions [byte]

Figure 3 Repartition of the instruction by size

0

10

20

30

40

50

60

1 2 3 4 5 6

%
 o

f t
he

 in
st

ru
ct

io
ns

instruction size [byte]

JavaCC
classViewer

hotjava
jdk
jgl

jws
Analysis of the Java Class File Format 11



Bytecode

e 212

e

but
nly a
c-
two

r if
des
tions. Table 12 shows that the programs considered use on the average 25 of th
instructions or 12 percent of the instruction set.

Figure 4 shows the frequency of occurrences for the different instructions. The
instructions with a frequency less than 0.1 percent were omitted to enhance th
readability.

The figure shows the wide difference in usage count between the instructions 
also between the programs considered. Even though five clusters are visible, o
few instructions are clearly preferred by a majority of the programs. Five instru
tions individually account for more than 5 percent of the occurrences in at least
programs; they areldc  (0x12),aload_0  (0x2a),dup  (0x59),getfield  (0xb4)
andinvokevirtual  (0xb6). Finally, the good performance of thenop  (0x00)
instruction in jws is astounding.

4.3 Entropy & Redundancy

These variations in the usage frequencies of the instructions lead us to wonde
using a fixed size opcode was a good idea. The field of information theory provi

average stdev median min. max

JavaCC 22.79 22.30 11.00 0.00 100.00

classViewer 18.06 15.22 11.00 0.00 55.00

hotjava 25.68 18.24 22.00 0.00 98.00

jdk 24.95 19.94 20.00 0.00 113.00

jgl 22.77 15.46 21.00 0.00 73.00

jws 26.86 18.64 23.00 0.00 92.00

all 25.42 19.09 21.00 0.00 113.00

Table 12 Number of different instructions

Figure 4 Frequency of occurrences of the instructions [≥ 0.1%]

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

%
 o

f t
he

 in
st

ru
ct

io
ns

instruction

JavaCC
classViewer

hotjava
jdk
jgl

jws
12 Analysis of the Java Class File Format



Bytecode

e sym-

code
opti-
its

age,
tual

 is in

tation
a measure for the actual information content of a message, the entropyH. To apply
this metric to this case, we have to consider the bytecodes as a message whos
bols are the instructions of the Java Virtual Machine.

For a message in which the probability of occurrence of theith symbol is , the

entropyH is defined as:

Since we are representing information in bits, the logarithm is to the base two;H
becomes a measure of the average number of bits of information in each byte
instruction. Table 13 shows the entropy for the classes in the data set: with an 
mal encoding, the average opcode size would be 4 bits instead of the 8 or 16 b
used now.

An other measure of the quality of the encoding is the redundancy of the mess
which ranges from 0 (no redundancy) to 1 (infinite redundancy). With  the ac
average symbol size, the redundancy is defined as:

The results in table 14 are remarkably homogeneous; the average redundancy
all the cases between 54 percent and 59 percent.

These two results together suggest that there is a more space efficient represen
of the opcodes.

average stdev median min. max.

JavaCC 3.31 1.01 3.18 0.00 5.30

classViewer 3.25 0.97 3.30 0.00 4.84

hotjava 3.64 1.11 3.93 0.00 5.48

jdk 3.22 1.47 3.48 0.00 5.81

jgl 3.64 1.09 3.95 0.00 5.12

jws 3.66 1.24 3.99 0.00 5.32

all 3.46 1.32 3.85 0.00 5.81

Table 13 Entropy H

average stdev median min. max.

JavaCC 0.58 0.12 0.60 0.33 1.00

classViewer 0.59 0.12 0.58 0.39 1.00

hotjava 0.54 0.13 0.50 0.31 1.00

jdk 0.59 0.18 0.56 0.27 1.00

jgl 0.54 0.13 0.50 0.36 1.00

jws 0.54 0.15 0.50 0.33 1.00

all 0.56 0.16 0.51 0.27 1.00

Table 14 Redundancy

Pi

H Pi Pilog×∑–=

σ

Redundancy 1 H
σ
----–=
Analysis of the Java Class File Format 13



Conclusions

he
its

ng to
oft-
 con-
nced
 [8].

een
iler
tion

 than
tes.
as
to

file)
e

ing
 into
e

y 18

ns,

truc-
nt

de is
5.0 Conclusions

This work aimed at answering three basic questions: What can be said about t
size of the class files? How do the different parts of the class file contribute to 
total size? How are the bytecode instructions used?

We analysed six programs totalling 4016 unique classes. These programs belo
what we can call the first generation of Java applications: they are monolithic s
wares intended to be installed on a machine and used like programs written in
ventional languages, e.g. C, C++. A second generation of applications is annou
[13] that will be build around smaller and versatile components, the JavaBeans
The influence of this new model on the distribution of the file sizes has not yet b
determined. The class files analysed were probably compiled with Sun’s comp
and the impact of other compilers on the composition of the class files is a ques
left open for further investigations.

Our analyses bring forth the following facts:

1. Java class files are small in the average. We found that 50 percent take less
2’000 bytes, 80 percent less than 6’000 and 95 percent less than 13’000 by
However we found that complete programs also contain a few files as large 
365’470 bytes. The size of the Java class file is important because the time 
read the file is the dominant factor in the start-up time.

2. The biggest part of the Java class files is the constant part (61 percent of the
and not the method part that accounts for only 33 percent of the file size. Th
other parts of the class file share the remaining 5 percent.

3. About 32 percent of the size of the file is constituted by unessential or debugg
information, such as the name of the source file or tables associating offsets
the bytecodes to line numbers in the Java source code. The file can safely b
reduced to 70 percent of its size and stay perfectly functional.

4. On the average, the bytecodes take only 12 percent of the class file and onl
percent of the class file stripped of its superfluous content.

5. The average size of an instruction is slightly less than 2 bytes.

6. The programs typically use 25 different instructions and at most 113 instructio
when 212 are defined.

7. The frequencies of the instructions used vary considerably. There are five ins
tions that individually account in at least two programs for more than 5 perce
of the occurrences.

8. The theoretical minimum average number of bits needed to encode the opco
4 bits instead of the 8 or 16 used today.
14 Analysis of the Java Class File Format



Conclusions

ium
6.0 References

[1] HP Offers Virtual-machine Technology to Embedded-device Market, Palo Alto, Cal-
ifornia. March 20, 1998, <http://www.hp.com/pressrel/mar98/20mar98b.htm>

[2] Japhar, <http://www.hungry.com/products/japhar/>

[3] ObjectSpace JGL: The Generic Collection Library for Java, <http://www.object-
pace.com/jgl>

[4] Barry D. Bowen,Developer Environments, JavaWorld, May 1996, <http://
www.javaworld.com/javaworld/jw-05-1996/jw-05-devenvirons.html>

[5] Jens Ernst, William Evans, Christopher W. Fraser, Steven Lucco and Todd A.
Proebsting,Code Compression in Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’97), ACM SIGP-
LAN Notices, v32(5), p. 358-365, June 1997

[6] Michael Franz and Thomas Kistler,Slim Binaries, Technical Report, Department of
Computer Science, University of California at Irvine, 1996

[7] James Gosling, Bill Joy and Guy Steele,The Java Language Specification, Addison
Wesley, 1996

[8] Tom R. Halfhill, JavaBeans: Cross-Platform Components, Byte, v22(1), p. 74, Jan.
1997

[9] Tim Lindholm and Frank Yellin,The Java Virtual Machine Specification, Addison
Wesley, 1996

[10] David S. Linthicum,Java Evolves, Byte, v23(1), p. 60, Jan. 1998

[11] Glenford J. Myers,Advances in Computer Architecture, John Wiley & Sons, 1978

[12] Martin Odersky and Philip Wadler,Pizza into Java: Translating theory into practice
in Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Sympos
on Principles of Programming Languages, p. 146-159, Jan. 1997

[13] Dick Pountain,The Component Enterprise, Byte, v22(5), p. 93-98, May 1997

[14] Sriram Sankar, Sreenivasa Viswanadha and Rob Duncan,JavaCC: The Java Com-
piler Compiler, <http://www.suntest.com/JavaCC/>

[15] K. A. Shillington and G. M. Ackland,UCSD Pascal Version 1.5, Institute for Infor-
mation Systems, University of California, San Diego, 1978

[16] A. A. Stepanov and M. Lee,The Standard Template Library, Technical Report
HPL-94-34, revised July 7, 1995

[17] Tim J. Wilkinson,KAFFE - A virtual machine to run Java code, <http://
www.kaffe.org/>

[18] Matt T. Yourst,Inside Java Class Files, Dr. Dobb’s Journal, n. 281, p. 46-52, Jan.
1998
Analysis of the Java Class File Format 15



Annexe: Results for the individual programs
7.0 Annexe: Results for the individual programs

7.1 The five parts of the class file format

average stdev median min. max.

JavaCC header 0.98 0.77 1.00 0.01 2.72

constant 62.92 13.84 63.22 5.98 84.31

class 2.96 2.31 3.01 0.02 8.16

field 2.29 4.41 0.49 0.00 25.74

method 30.85 16.37 28.85 5.23 93.77

classViewer header 0.91 0.78 0.70 0.08 3.54

constant 67.67 8.05 68.01 43.28 82.39

class 3.44 2.45 3.24 0.24 10.62

field 1.79 1.59 1.31 0.00 8.65

method 26.20 9.75 26.51 3.54 47.00

hotjava header 0.64 0.59 0.49 0.02 3.39

constant 67.96 11.62 69.55 2.19 90.72

class 2.33 2.10 1.54 0.06 10.17

field 1.67 3.40 1.06 0.00 47.90

method 27.39 13.21 25.83 0.00 97.65

jdk header 0.84 0.91 0.45 0.00 4.94

constant 58.79 21.55 64.77 0.39 99.23

class 2.59 2.78 1.41 0.01 14.82

field 1.55 3.54 0.45 0.00 48.63

method 36.23 23.76 31.06 0.00 99.55

jgl header 0.65 0.60 0.45 0.04 3.16

constant 65.55 11.60 69.16 37.81 85.37

class 2.37 2.36 1.45 0.13 12.04

field 1.85 1.53 1.34 0.00 7.66

method 29.58 14.12 26.11 2.27 60.78

jws header 0.67 0.80 0.42 0.00 5.00

constant 61.22 10.81 62.57 16.42 89.58

class 2.55 3.02 1.56 0.01 19.39

field 1.66 3.62 0.89 0.00 38.03

method 33.90 13.35 33.37 0.00 81.44

Table 15 Repartition of the parts [%]
16 Analysis of the Java Class File Format



Annexe: Results for the individual programs
7.2 The constants

average stdev median min. max

JavaCC Utf8 59.40 11.25 59.46 33.69 91.67

Numeric 1.10 4.46 0.00 0.00 24.56

String 5.34 8.92 0.00 0.00 43.83

Class 8.63 3.66 8.70 0.58 21.67

NameAndType 11.28 5.15 10.16 0.00 29.07

FieldRef 3.55 3.70 2.53 0.00 15.04

MethodRef 10.60 5.40 10.00 0.00 28.58

InterfaceMethodRef 0.11 0.52 0.00 0.00 4.00

classViewer Utf8 61.84 9.29 64.15 45.71 84.62

Numeric 0.80 1.69 0.00 0.00 9.52

String 2.43 6.06 0.00 0.00 38.70

Class 11.02 3.93 11.32 2.30 23.53

NameAndType 11.52 4.41 11.77 0.00 18.82

FieldRef 3.93 3.66 2.84 0.00 14.46

MethodRef 8.43 5.14 7.14 0.00 20.97

InterfaceMethodRef 0.02 0.15 0.00 0.00 1.08

hotjava Utf8 56.34 9.44 53.54 42.41 92.31

Numeric 0.56 2.72 0.00 0.00 31.88

String 2.56 3.82 1.39 0.00 47.06

Class 11.35 6.09 9.61 0.31 38.57

NameAndType 14.18 5.60 15.82 0.00 24.59

FieldRef 3.97 3.05 3.23 0.00 22.95

MethodRef 10.90 5.36 11.39 0.00 24.78

InterfaceMethodRef 0.15 0.53 0.00 0.00 5.71

jdk Utf8 58.93 11.41 55.56 0.57 96.77

Numeric 1.78 7.18 0.00 0.00 99.17

String 4.21 8.27 1.75 0.00 47.81

Class 9.38 4.22 8.64 0.09 31.03

NameAndType 12.23 6.22 14.07 0.00 24.64

FieldRef 4.64 4.74 3.70 0.00 18.87

MethodRef 8.61 5.74 9.06 0.00 22.45

InterfaceMethodRef 0.22 0.91 0.00 0.00 15.85

jgl Utf8 57.77 9.83 55.88 41.87 90.24

Numeric 1.16 1.42 0.74 0.00 5.56

String 2.32 2.79 1.22 0.00 9.77

Table 16 Repartition of the constants [%]
Analysis of the Java Class File Format 17



Annexe: Results for the individual programs
Class 9.90 4.84 9.59 1.79 25.58

NameAndType 14.08 5.84 15.07 0.00 23.98

FieldRef 3.11 2.90 2.67 0.00 9.77

MethodRef 9.25 4.73 10.37 0.00 24.19

InterfaceMethodRef 2.40 3.33 1.27 0.00 16.09

jws Utf8 60.36 9.76 58.01 40.99 95.75

Numeric 0.75 3.81 0.00 0.00 45.10

String 3.61 5.12 2.29 0.00 49.91

Class 8.31 3.74 7.69 0.03 33.33

NameAndType 12.97 5.33 14.15 0.00 22.53

FieldRef 3.80 3.00 3.49 0.00 17.95

MethodRef 9.99 4.77 10.84 0.00 21.58

InterfaceMethodRef 0.22 0.79 0.00 0.00 15.39

average stdev median min. max

Table 16 Repartition of the constants [%]
18 Analysis of the Java Class File Format


	Analysis of the Java Class File Format
	1.0 The data set
	2.0 Size of the files
	3.0 Parts
	3.1 Parts of the class file
	3.2 Constant part
	3.3 Debugging information
	3.4 Code

	4.0 Bytecode
	4.1 Instruction size
	4.2 Usage of the different instructions
	4.3 Entropy & Redundancy

	5.0 Conclusions
	6.0 References
	7.0 Annexe: Results for the individual programs
	7.1 The five parts of the class file format
	7.2 The constants



