April 1998

Technical Report 98.4

Analysis of the Java
Class File Format

Denis N. Antonioli, Markus Pilz

Department of Computer Science
University of Zurich
(antonioli, pilz)@ifi.unizh.ch

“Itis a capital mistake to theorize before
one has data.”
C. Doyle, Scandal in Bohemia

1.0

Since its release early in 1996, Java [7] enjoys a tremendous popularity [10]. Next
to the original tools provided by Sun, a wealth of competing compilers [4, 12] and
virtual machines [1, 2, 17] appeared in a relatively short time. Beside its interest as a
programming platform, Java may qualify as the most publicized and distributed
experiment in intermediate language since the days of UCSD-Pascal [15]. Two
years after its inception, it is time to harvest the first results. The purpose of this
paper is to gather statistics on the Java class files, which serve in Java both as an
object file for the Java Virtual Machine and as an intermediate program representa-
tion for cross-platform delivery. Such statistics are of interests to both the develop-
ers of Java tools and the designers of intermediate languages.

The goal of this work is to study the properties of the Java class file format and par-
ticularly to answer these questions:

1. It is often claimed that programs written in Java are compiled to a compact and
efficient format. What are the sizes of typical class files?

2. The class file is structured around several parts of variable length. How do they
add to the size of the file?

3. The Java Virtual Machine defines a rich instruction set of over 200 instructions.
Are all these instructions used? How often?

The paper is thus structured as follows: Section 1.0 lists the programs that were ana-
lysed. The size of the classes are examined in section 2.0. Section 3.0 analyses the
components of the class file, with special attention given to the constant part and the
attributes. Section 4.0 studies the instruction set of the virtual machine. Finally, sec-
tion 5.0 summarizes the findings and concludes the article.

The data set

The experience was conducted over six different programs totalling 4016 unique
classes. We tried to find both applications and libraries written at different organiza-
tions. The set contains:

Size of the files

2.0

1. The Java Developer’s Kit

The version 1.1.5 of the Java Developer’s Kit (JDK) consists of 1622 different
classes that make the standard Java class library, the jmals, javac , javap ,
javadoc ,jar ,...) and some libraries proprietary to Sun.

2. HotJava

HotJava is the web browser that introduced Java to the world. The version 1.1 of
Sun’s HotJava browser also contains the Java Runtime Environment, a subset of
the JDK. We measured only the 539 classes unique to the browser.

3. Java WorkShop

Java WorkShop (JWS) is an integrated developer’s environment (IDE) for Java
entirely written in Java. The JWS is a commercial product developed by Sun.
The version 2.0 contains an IDE, a dedicated run-time system and a complete
JDK. We measured only the 1408 classes unique to the IDE.

4. JavaCC

JavaCC is a compiler generator written in Java. JavaCC is developed at SunTest
and is freely available [14]. The version 0.7.1 of JavaCC contains 134 classes.

5. Java Generic Library

The Java Generic Library (JGL) is a collection of containers and algorithms
designed in the spirit of STL [16]. JGL is intended to supplement the JDK. The
JGL is developed by ObjectSpace and is freely available [3]. JGL version 3.0
contains 262 classes.

6. classViewer

ClassViewer is the Java program one of the author wrote to perform measure-
ments over the class files. It is an example of the kind of utilities written in Java;
classViewer contains 51 classes.

To our knowledge, it is not possible to determine the compiler used to produce the
classes analysed. Although it is most probable that the first four programs have been
compiled with some version of Suigwac , we are only certain that the 6th pro-
gram was compiled with the compiler included in the version 1.1.5 of Sun’s JDK.

Size of the files

[6] observed that, with modern architectures, the time to load a file from a local hard
disk is much larger than the time necessary to generate code on-the-fly. The size of
the binary file determines the program start-up time because the program load time
is bound by the speed of the I/O operations. The time necessary to bring the pro-
gram into main memory becomes even more important when, as is intended with
Java, the code is loaded over a network. This section explores the typical size of
class files.

Table 1 contains the average, the standard deviation (stdev) and the median size of
the classes in the data set. The four quantile columns are the maximum size for the
respective percentage of all the files and the last column indicates the size of the
biggest class in each program. The median is under 2’000 bytes, which reveals a
large number of very small files, but the large value of the standard deviation hints
at an important number of bigger files. The first three quantiles show that, although

Analysis of the Java Class File Format

Size of the files

the files get bigger, they stay within reasonable bounds until a few large and very
large files tip the scale. These large files can be traced toraaiewclasses.

average stdev median 80% 90% 95% 97.5% max.
JavaCC 5'856 16’630 798 6’055 9'928 28’926 38'797 121°316
classViewer 1790 1’884 1’147 2'498 4'286 6'285 8'006 8973
hotjava 3220 5229 1'648 3'860 6796 10’350 17'814 49'384
jdk 5372 16’404 1’766 4’568 8'243 12’350 50’403 193’716
gl 3'650 4177 1792 5983 10’232 12908 15’755 20772
jws 4’230 11445 1921 5614 8'908 12946 18'819 365'470
all 4’541 13017 1746 4'898 8'302 12’650 23’140 365'470

Table 1 File size [byte]

Figure 1 is a graphical representation of the distribution of the sizes of the files. The
cumulative frequencies show what percentage of the whole program size a given
fraction of the class files occupies. The two programs plotted enclose the response
domain. The progression of the maximal size between the 95 percent, 97.5 percent
and 100 percent quantiles in table 1 already hinted at a small number of large files.
Their presence is visible in the sharp upturn at around 95 percent. The steepness of
the curves shows how much larger these files are: 50 percent of the files hardly
make more than 20 percent of the total size, and 50 percent of the total size come
from less than 10 percent of the files.

100 T T T T T T T T
+ JavaCC
X classViewer
90 X
f
80 | X
X
70 A
X
g 6OF « +
K X +
2 s0f x +
ks y X .
g 40 %= !
L R
X
x % " N
X +
30 X X o 4
+
x X " ++++
X £
20 x X =a -
x X ot
X -+
x X e
X o+
10 - X% ottt -
XXXXXX +++4+FWF+H’*’HWH’H++++
0 e R e I I I I I I
0 10 20 30 40 50 60 70 80 90 100

% of the classes

Figure 1 Cumulated frequencies of the file size

Figure 2 plots, for four different programs, the fraction of the classes that are of a
given size. It is limited to the 90-95 percent of the files whose sizes are under 10K

Analysis of the Java Class File Format 3

Parts

bytes. The large value of the standard deviation is apparent in the wide distribution
of those files.

% of the classes

JavaCC +
classViewer — x
jdk %
jg o
N i
% ¥ 7
H +
o
H +
XX K XXg X X X X X X X B
e ¥ x « o % + +
U D0 * o *
+ %&%*%Wx DB};&,@% S o+t O+t % x+ +
o FGl go NG R SRR, B2 T BB SEE i LD
2000 4000 6000 8000 10000

class size [byte]

Figure 2 Distribution of the file sizes (cut at 10Kb)

3.0 Parts

The Java class file is built from the aggregation of five parts. [9] sets the succession
of the parts and their contents, yet allows flexibility in some parts. We will explore
in this section how theses different parts contribute to the overall file size.

3.1 Parts of the class file

The format of the class file is fully described in [9]. Shortly, the class file consists of
a:

1. Header part. The header contains a magic number, which identifies Java class
files, and the version number of the format of the class file. The header part has a
fixed size of 8 bytes.

2. Constant part. The constant part is a variable sized structure that holds all the sym-
bolic informations used in the rest of the file. It is from here that the loader
extracts the linking information and the interpreter fetches the constants used in
the bytecodes.

3. Class part. The class part contains information defining the class stored in the file.
These informations are the access flags, the referenttés tpto super , to all
the interfaces implemented by the class, the number of fields, the number of
methods and an attribute pool. The attribute pool is a variable sized structure that

Analysis of the Java Class File Format

Parts

Table 2

3.2

holds arbitrary additional properties of the class. The size of the constant part
also belongs to the class gart

4. Field part. The field part is a table of descriptions for all the class and instance var-
iables defined. Each entry in the table contains the access flags, the name and the
type of the field and an attribute pool similar to the one in the class part.

5. Method part. The method part is a table of descriptions for the initializers, the con-
structors and the methods defined. Each description contains the access flags, the
name and the type of the procedure and an attribute pool. The bytecodes for the
procedure is stored inGode attribute in the attribute pool.

For each class, we measured the sizes of these five parts and computed how many
percent of the file they occupy. Table 2 presents the results computed over all the
classes and table 15 on page 16 gives the results for the individual programs.

average stdev median min. max.
header 0.74 0.81 0.45 0.00 5.00
constant 61.55 16.51 64.87 0.39 99.23
class 2.55 2.74 1.53 0.00 19.39
field 1.65 3.47 0.84 0.00 48.63
method 33.49 18.62 30.89 0.00 99.54

Summary of the repartition of the five parts of a class [% of the file size]

The constant part and the method part make up on average 95 percent of the file
size. This is not a surprise, but it is quite interesting to consider that the largest ele-
ment in a class file is actually the constant part and not the method part, which con-
tains the bytecodes to execute.

Constant part

The constant part is a table of variable length entrieC@NSTANBtructures.
They are:

1. TheCONSTANT_Utf8 structure stores a string of Unicode characters. The encod-
ing used is a slight variation of the standard UTF-8 format.

2. The CONSTANT _Integer , CONSTANT_LongCONSTANT_Float and
CONSTANT_Doublestructures store a value of the corresponding Java primitive
type.

3. The CONSTANT_String structure represents an object of the type
java.lang.String . The structure reference€@NSTANT_Utf8 entry that
contains the actual characters.

4. The CONSTANT_Class structure stands for classes or interfaces. The only mem-
ber of the structure is the index o€E@NSTANT_Utf8 entry that contains the
name of the class.

5. The CONSTANT_NameAndTypstructure brings together the name and the type
of a field or a method. They are stored as references tOOMSTANT_Utf8
entries.

1. The sizes of all the other parts are grouped in the class part to make empty parts more vis-
ible.

Analysis of the Java Class File Format 5

Parts

Table 3

6. The CONSTANT_Methodref , CONSTANT _InterfaceMethodref and
CONSTANT _Fieldref structures build the relation between a method or a field
and its class or interface. The three structures have the same members: they all
reference both @ONSTANT_Class, which hames the containing class, and a
CONSTANT_NameAndTypewhich identifies the method or the field.

We counted the different kind of structures in the constant paiCQNSTANT

structures representing the Java primitive types build a single catRigongric

because they appear rather infrequently. Table 3 presents these counts as a percent-
age of the number of entries.

average stdev median min. max.
utfs 59.06 10.55 56.36 0.57 96.77
Numeric 1.18 5.29 0.00 0.00 99.17
String 3.67 6.55 1.77 0.00 49.91
Class 9.30 4.50 8.45 0.03 38.57
NameAndType 12.83 5.81 14.29 0.00 29.07
FieldRef 4.11 3.86 3.50 0.00 22.95
MethodRef 9.50 5.35 10.26 0.00 28.58
InterfaceMethodRef 0.34 1.27 0.00 0.00 16.09

Count of the different CONSTANTEtructures [%]

The importance of theONSTANT_Utf8 structures is apparent in the 59 percent of
all the entries they represent on the average. It is interesting to consider that the sum
of the average number of entries that refer&@@RSTANT_Utf8 structures is less

than 40 perceft On the opposite, theONSTANT _String andNumericentries

make on the average less than 5 percent and the few cases where this proportion is
more important are interfaces or classes that only define constants, a common pat-
tern in Java programs. There are no classes WIiGONSTANT_Utf8 and
CONSTANT_Classstructures because these structures are used to expréss the

and thesuper references, two required members of any Java classes.

The constant part contains primarily the constants used in the bytecodes and the
symbolic information necessary to perform dynamic linking and type checking. But
the constant part is accessible from all the other parts of the class file and may hence
hold any other constants, as the discrepancy in the numBeNSTANT _Utf8

items suggested. We divided the entries of the constant part into three groups:

1. Constant. This group contains theONSTANT _Integer , CONSTANT_Long
CONSTANT _Float andCONSTANT_Doubleas well as th€ONSTANT_String
entries, as they are intended to represent constants used by the bytecodes. The
CONSTANT_Utf8 structures referenced IBONSTANT_String entries belong to
this group.

2. Type and link. The CONSTANT_Class, CONSTANT_NameAndType
CONSTANT_Methodref , CONSTANT_InterfaceMethodref and
CONSTANT_Fieldref entries constitute the second group. They encode the type
system and provide the linkage informations; with their help, the run-time sys-

1. String + Class + 2* NameAndType = 3.67+ 9.30 + 2*12.83 = 38.63

Analysis of the Java Class File Format

Parts

Table 4

tem performs type checking and dynamic linking. T@NSTANT_Utf8 entries
they reference pertain here.

3. Others. Any parts of the class file may reference the constant part, so there may be
CONSTANT _Utf8s that belong neither to the constants nor to the typing and link-
ing data; these entries build the third group.

Sun’sjavac minimizes the size of the constant part by writing every constant once,
so we had to check that tl@®ONSTANT_Utf8 structures were only counted once. In
case &CONSTANT _Utf8 structure should turn up in more than one group, it would

be added preferentially to the type and link category. Even though a compiler can
define an attribute that references any kind@NSTANBtructures, we did not

ensure that they were actually used as expected. Of all the attributes defined in [9],
theExceptions attribute is the only one to reference anything other than a
CONSTANT _Utf8 structure: thé&xceptions attribute employ€ONSTANT_Class
entries to check the type of thrown exceptions; this usage conforms to our classifica-
tion. Albeit this repartition appears rather conservative, it gives good practical
results.

To determine the importance of these three categories, we grouped the entries
according to the rules defined above and summed up the sizes of the structures in
each group. These absolute numbers, expressed as a percentage of the total size of
the constant part, build the basis for the tables 4, 5 and 6.

Table 4 shows the results for the amount of constant information. The small per-
centage occupied by the constants confirms the results of table 3; the small sizes of
the primitive types (5 to 9 bytes) and the overall small number of constants used
explain these values. We linked the high maxima to classes used as enumerations, a
design pattern whose usage is not equally represented in the programs studied.

average stdev median min. max.
JavaCcC 11.48 20.51 0.00 0.00 93.36
classViewer 4.05 9.78 0.65 0.00 59.63
hotjava 3.74 6.20 1.94 0.00 84.47
jdk 10.29 21.32 3.14 0.00 99.69
gl 6.18 6.95 2.96 0.00 31.63
jws 6.46 9.10 3.93 0.00 99.86
all 7.76 15.56 3.05 0.00 99.86

Constant information in the constant part [%]

Table 5 contains the results for the analysis of the typing and linking information.
Dynamic linking and run-time resolution of the method calls require an important
supply of information from the compiler. Whereas the relations between the types
are efficiently encoded in smalbDNSTANBtructures, the identification of the type

is delivered in a textual encoding @ONSTANT_Utf8 structures. This sparse encod-
ing appears clearly in the hefty fraction occupied. The classes with low minima

Analysis of the Java Class File Format 7

Parts

Table 5

Table 6

3.3

have in common a high number of constants in the bytecodes and the use of primi-
tive types instead of other classes.

average stdev median min. max.
JavaCC 54.90 20.43 51.62 3.53 95.97
classViewer 62.78 14.18 60.54 17.74 85.51
hotjava 72.27 16.23 76.99 6.02 92.42
jdk 57.55 22.24 60.41 0.18 96.48
gl 62.94 13.01 66.25 13.46 87.07
jws 59.33 16.16 63.51 0.07 86.16
all 60.48 19.45 64.80 0.07 96.48

Type and link information in the constant part [%]

The results for the last group are in table 6. The entries of this group fill up on the
average 31 percent of the constant part and 20 percent of the class file! This is a big
fraction, especially when considering that this data is not required to use the class or
execute its bytecodes.

average stdev median min. max.
JavaCcC 33.62 22.96 36.91 0.88 86.56
classViewer 32.87 16.17 35.13 4.05 83.29
hotjava 24.00 17.13 19.34 2.26 86.57
jdk 32.16 20.22 29.94 0.13 97.73
gl 30.89 14.67 30.11 9.88 85.21
jws 34.22 17.89 29.50 0.07 93.90
all 31.76 19.03 28.19 0.07 97.73

Other information in the constant part [%]

Debugging information

The field, the method and the class parts of the class file have a variable length
Attribute table, the attribute pool. [9] defines the general structure of an

Attribute , describes the attributes produced by the version 1.0 of the JDK and
states on p. 107 “Of the predefined attributesCibie, ConstantvValue , and

Exceptions attributes must be recognized and correctly read by a class file reader
for correct interpretation of the class file by a Java Virtual Machine.” [18] proposed

to reduce the size of class files by stripping them of those attributes deemed dispen-
sable.

The debugging information is constituted by the entries in the constant part that rep-
resent neither constant nor typing information as well as by all the attributes other
thanCode, ConstantValue andExceptions . Table 7 contains the average, the

Analysis of the Java Class File Format

Parts

standard deviation (stdev) and the median of the percentage of the class file it occu-
pies. The last two columns give the minimal and the maximal percentages.

average stdev median min. max.
JavaCC 32.64 14.38 32.88 10.23 72.21
classViewer 31.60 11.11 3151 14.57 64.16
hotjava 26.23 11.79 22.66 3.42 72.25
jdk 31.23 15.69 28.95 0.58 82.75
gl 30.06 10.21 28.91 16.43 66.88
jws 38.50 11.61 37.03 0.08 78.97
all 33.09 14.12 31.43 0.08 82.75

Table 7 Amount of debugging information [%6]

This result expands what was found by analysing the constant part: the 33 percent
of the file used by debugging information are made up of one third attributes and
two thirds strings.

3.4 Code

The bytecodes are the most visible part of the class file, they eaisds d’'étre

We already saw in section 3.1 that the method part amounted to about 30 percent of
the size of the file. But the method part itself is more than raw bytecodes: a method
structure can include other attributes next todbee attribute. Besides, theode
attribute itself brings together the bytecodes with its exceptions table and may in
turn include further attributes.

We first measured the percentage of the class file taken by the bytecodes. Table 8
shows that the bytecodes make on the average 12 percent of the class file. The
classesunw.html.dtds.htm|32 andjava.lang.Character are the two
extremely high extrema in hotjava and jdk. They both have a very large static initial-
izer for static arrays and they both reference only two or three other classes. This
keeps the type and link part of the constant part small.

average stdev median min. max.
JavaCC 12.63 12.21 6.14 0.00 48.05
classViewer 8.47 7.84 5.30 0.00 34.85
hotjava 10.72 7.99 9.83 0.00 84.31
jdk 15.29 13.31 12.05 0.00 94.46
gl 9.27 6.30 8.13 0.00 37.51
jws 10.54 7.50 9.61 0.00 73.31
all 12.44 10.68 10.03 0.00 94.46

Table 8 Amount of bytecodes as a percentage of the whole class [%]

Analysis of the Java Class File Format 9

Bytecode

The section 3.3 introduced the notion of debugging information. Table 9 shows that
in classes stripped of all this debugging information the bytecodes take on the aver-
age only 18 percent of the file size.

average stdev median min. max.
JavaCC 17.12 15.53 9.98 0.00 87.92
classViewer 11.39 9.05 8.40 0.00 41.72
hotjava 13.97 10.31 12.71 0.00 95.37
idk 23.21 25.02 15.26 0.00 99.31
gl 12.63 8.21 11.54 0.00 44.89
jws 16.10 10.46 14.61 0.00 83.13
all 18.44 18.32 13.91 0.00 99.31
Table 9 Amount of bytecodes as a percentage of the stripped class [%]
4.0 Bytecode
The Java Virtual Machine defines an instruction set rich of 212 different instruc-
tions. Two features of this instruction set explain its size. First, many instructions
exist in different versions according to the type of the argument(s) they use; this
eases the verification of the bytecodes. Second, there are special instructions to effi-
ciently access small constants and frequently used fields.
4.1 Instruction size

A Java Virtual Machine instruction consists of an opcode followed by zero or more
bytes that provide the operands. The opcode is encoded in one byte for 200 instruc-
tions and two bytes for the 12 remaining instructions. The opcode specifies the
operation to be performed and the number of operands; two instrutdikas,
upswitch andtableswitch , have a variable number of operands yet they have a
minimum size of 9, respectively 13, bytes. Table 10 summarizes the actual sizes of
the instructions.
size of the instruction [byte] number of instructions % of the instruction set

1 147 69%

2 14 %

3 33 16%

4 12 6%

5 1%

6 0%

9 or more 2 1%
Table 10 Repartition of the instruction size

We measured the size of the instructions present in the programs. Table 11 shows
that the average size lies just under 2 bytes at 1.92 bytes. The largest means of
JavaCC and classViewer are due to the influence afliteh statements. In class-

10

Analysis of the Java Class File Format

Bytecode

Table 11

% of the instructions

Figure 3

4.2

Viewer, for example, the largest instruction is compiled from a singleeh state-
ment that contains 200 cases.

average stdev median min. max
JavaCC 2.41 5.87 2.00 1.00 148.46
classViewer 2.18 11.42 2.00 1.00 822.00
hotjava 1.97 2.05 2.00 1.00 201.00
jdk 1.91 1.89 2.00 1.00 332.00
gl 1.98 1.17 1.00 1.00 27.33
jws 1.96 1.75 2.00 1.00 443.00
all 1.96 2.39 2.00 1.00 822.00

Size of the instructions [byte]

We counted the number of instructions of the different sizes and expressed the
counts as a percentage of the instructions in the class file. Figure 3 plots this for the
fixed-size instructions. If we compare the result to the classification made in table

10, we see that the 2-bytes and, above all, the 3-bytes instructions are over-repre-
sented, as these 7 percent and 16 percent of the instruction set represent 14 percent
and 40 percent of the occurrences.

60 T T T T T

JavacC

+
classViewer x
hotjava *
] jdk o
50 - jgl =
e * jws ©
*
40 | 2 -
al
n
n
30 B
20 —
*
®
10 | © E
| |
| |
0 1 1 1 = =] m
1 2 3 4 5 6

instruction size [bvtel

Repartition of the instruction by size

Usage of the different instructions

To explain the difference between the expected and the measured distributions of
the instructions that was just revealed, we studied the usage of the different instruc-

Analysis of the Java Class File Format 11

Bytecode

Table 12

% of the instructions

Figure 4

4.3

tions. Table 12 shows that the programs considered use on the average 25 of the 212
instructions or 12 percent of the instruction set.

average stdev median min. max
JavaCC 22.79 22.30 11.00 0.00 100.00
classViewer 18.06 15.22 11.00 0.00 55.00
hotjava 25.68 18.24 22.00 0.00 98.00
idk 24.95 19.94 20.00 0.00 113.00
gl 22.77 15.46 21.00 0.00 73.00
jws 26.86 18.64 23.00 0.00 92.00
all 25.42 19.09 21.00 0.00 113.00
Number of different instructions
Figure 4 shows the frequency of occurrences for the different instructions. The
instructions with a frequency less than 0.1 percent were omitted to enhance the
readability.
25 oT T T T T T T T T
JavaCC +
classViewer x
hotjava *
jdk o
jgl =
20 jws o
[m]
15 | .
n X
*
Q +
10| . 0 .
O
X
n
51 K ®
% %; % &t
o B 3 *
JEhr AR, SRy el kL pa
0 80

s 5 Nan .l- .l |
100 120 140 160 180 200
instruction

Frequency of occurrences of the instructions [> 0.1%)]

The figure shows the wide difference in usage count between the instructions but
also between the programs considered. Even though five clusters are visible, only a
few instructions are clearly preferred by a majority of the programs. Five instruc-
tions individually account for more than 5 percent of the occurrences in at least two
programs; they andc (0x12),aload 0 (Ox2a),dup (0x59),getfield (Oxb4)
andinvokevirtual (Oxb6). Finally, the good performance of tiup (0x00)

instruction in jws is astounding.

Entropy & Redundancy

These variations in the usage frequencies of the instructions lead us to wonder if
using a fixed size opcode was a good idea. The field of information theory provides

12

Analysis of the Java Class File Format

Bytecode

Table 13

Table 14

a measure for the actual information content of a message, the adtroépwapply
this metric to this case, we have to consider the bytecodes as a message whose sym-
bols are the instructions of the Java Virtual Machine.

For a message in which the probability of occurrence atiihgymbol isP; , the
entropyH is defined as:

H = —2 P; x logP;

Since we are representing information in bits, the logarithm is to the badé two;
becomes a measure of the average number of bits of information in each bytecode
instruction. Table 13 shows the entropy for the classes in the data set: with an opti-
mal encoding, the average opcode size would be 4 bits instead of the 8 or 16 bits
used now.

average stdev median min. max.

JavaCC 3.31 1.01 3.18 0.00 5.30
classViewer 3.25 0.97 3.30 0.00 4.84
hotjava 3.64 111 3.93 0.00 5.48
jdk 3.22 1.47 3.48 0.00 5.81
jgl 3.64 1.09 3.95 0.00 5.12
jws 3.66 1.24 3.99 0.00 5.32
all 3.46 1.32 3.85 0.00 5.81
Entropy H

An other measure of the quality of the encoding is the redundancy of the message,
which ranges from O (no redundancy) to 1 (infinite redundancy). &ith the actual
average symbol size, the redundancy is defined as:

Redundancy= 1—%

The results in table 14 are remarkably homogeneous; the average redundancy is in
all the cases between 54 percent and 59 percent.

average stdev median min. max.

JavaCC 0.58 0.12 0.60 0.33 1.00
classViewer 0.59 0.12 0.58 0.39 1.00
hotjava 0.54 0.13 0.50 0.31 1.00
jdk 0.59 0.18 0.56 0.27 1.00
jgl 0.54 0.13 0.50 0.36 1.00
jws 0.54 0.15 0.50 0.33 1.00
all 0.56 0.16 0.51 0.27 1.00
Redundancy

These two results together suggest that there is a more space efficient representation
of the opcodes.

Analysis of the Java Class File Format 13

Conclusions

5.0

Conclusions

This work aimed at answering three basic questions: What can be said about the
size of the class files? How do the different parts of the class file contribute to its
total size? How are the bytecode instructions used?

We analysed six programs totalling 4016 unique classes. These programs belong to
what we can call the first generation of Java applications: they are monolithic soft-
wares intended to be installed on a machine and used like programs written in con-
ventional languages, e.g. C, C++. A second generation of applications is announced
[13] that will be build around smaller and versatile components, the JavaBeans [8].
The influence of this new model on the distribution of the file sizes has not yet been
determined. The class files analysed were probably compiled with Sun’s compiler
and the impact of other compilers on the composition of the class files is a question
left open for further investigations.

Our analyses bring forth the following facts:

1. Java class files are small in the average. We found that 50 percent take less than
2’000 bytes, 80 percent less than 6’000 and 95 percent less than 13’000 bytes.
However we found that complete programs also contain a few files as large as
365470 bytes. The size of the Java class file is important because the time to
read the file is the dominant factor in the start-up time.

2. The biggest part of the Java class files is the constant part (61 percent of the file)
and not the method part that accounts for only 33 percent of the file size. The
other parts of the class file share the remaining 5 percent.

3. About 32 percent of the size of the file is constituted by unessential or debugging
information, such as the name of the source file or tables associating offsets into
the bytecodes to line numbers in the Java source code. The file can safely be
reduced to 70 percent of its size and stay perfectly functional.

4. On the average, the bytecodes take only 12 percent of the class file and only 18
percent of the class file stripped of its superfluous content.

5. The average size of an instruction is slightly less than 2 bytes.

6. The programs typically use 25 different instructions and at most 113 instructions,
when 212 are defined.

7. The frequencies of the instructions used vary considerably. There are five instruc-
tions that individually account in at least two programs for more than 5 percent
of the occurrences.

8. The theoretical minimum average number of bits needed to encode the opcode is
4 bits instead of the 8 or 16 used today.

14

Analysis of the Java Class File Format

Conclusions

6.0 References

[1] HP Offers Virtual-machine Technology to Embedded-device MaPedd Alto, Cal-
ifornia. March 20, 1998, <http://www.hp.com/pressrel/mar98/20mar98b.htm>

[2] Japhar <http://www.hungry.com/products/japhar/>

[3] ObjectSpace JGL: The Generic Collection Library for Jaskatp://www.object-
pace.com/jgl>

[4] Barry D. BowenDeveloper EnvironmentdavaWorld, May 1996, <http://
www.javaworld.com/javaworld/jw-05-1996/jw-05-devenvirons.htm|>

[5] Jens Ernst, William Evans, Christopher W. Fraser, Steven Lucco and Todd A.
ProebstingCode Compressiom Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI'AZM SIGP-
LAN Notices, v32(5), p. 358-365, June 1997

[6] Michael Franz and Thomas Kistles)im Binaries Technical Report, Department of
Computer Science, University of California at Irvine, 1996

[7] James Gosling, Bill Joy and Guy Ste€lde Java Language Specificatjgxddison
Wesley, 1996

[8] Tom R. Halfhill, JavaBeans: Cross-Platform Componergygte, v22(1), p. 74, Jan.
1997

[9] Tim Lindholm and Frank YellinThe Java Virtual Machine Specificatioihddison
Wesley, 1996

[10] David S. LinthicumJava EvolvesByte, v23(1), p. 60, Jan. 1998
[11] Glenford J. MyersAdvances in Computer Architectyrdohn Wiley & Sons, 1978

[12] Martin Odersky and Philip WadleRizza into Java: Translating theory into practice
in Conference Record of POPL'97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languaggs 146-159, Jan. 1997

[13] Dick Pountain,The Component EnterprisByte, v22(5), p. 93-98, May 1997

[14] Sriram Sankar, Sreenivasa Viswanadha and Rob DudaeaCC: The Java Com-
piler Compiler <http://www.suntest.com/JavaCC/>

[15] K. A. Shillington and G. M. AcklandJCSD Pascal Version 1,.Institute for Infor-
mation Systems, University of California, San Diego, 1978

[16] A. A. Stepanov and M. Le&he Standard Template Librarfechnical Report
HPL-94-34, revised July 7, 1995

[17] Tim J. Wilkinson KAFFE - A virtual machine to run Java cqdéhttp://
www.kaffe.org/>

[18] Matt T. Yourst,Inside Java Class FilePr. Dobb’s Journal, n. 281, p. 46-52, Jan.
1998

Analysis of the Java Class File Format 15

Annexe: Results for the individual programs

7.0 Annexe: Results for the individual programs

7.1 The five parts of the class file format

average stdev median min. max.
JavaCC header 0.98 0.77 1.00 0.01 2.72
constant 62.92 13.84 63.22 5.98 84.31
class 2.96 231 3.01 0.02 8.16
field 2.29 4.41 0.49 0.00 25.74
method 30.85 16.37 28.85 5.23 93.77
classviewer header 0.91 0.78 0.70 0.08 3.54
constant 67.67 8.05 68.01 43.28 82.39
class 3.44 2.45 3.24 0.24 10.62
field 1.79 1.59 1.31 0.00 8.65
method 26.20 9.75 26.51 3.54 47.00
hotjava header 0.64 0.59 0.49 0.02 3.39
constant 67.96 11.62 69.55 2.19 90.72
class 2.33 2.10 1.54 0.06 10.17
field 1.67 3.40 1.06 0.00 47.90
method 27.39 13.21 25.83 0.00 97.65
jdk header 0.84 0.91 0.45 0.00 4.94
constant 58.79 21.55 64.77 0.39 99.23
class 2.59 2.78 141 0.01 14.82
field 1.55 3.54 0.45 0.00 48.63
method 36.23 23.76 31.06 0.00 99.55
gl header 0.65 0.60 0.45 0.04 3.16
constant 65.55 11.60 69.16 37.81 85.37
class 2.37 2.36 1.45 0.13 12.04
field 1.85 1.53 1.34 0.00 7.66
method 29.58 14.12 26.11 2.27 60.78
jws header 0.67 0.80 0.42 0.00 5.00
constant 61.22 10.81 62.57 16.42 89.58
class 2.55 3.02 1.56 0.01 19.39
field 1.66 3.62 0.89 0.00 38.03
method 33.90 13.35 33.37 0.00 81.44

Table 15 Repartition of the parts [%]

Analysis of the Java Class File Format

Annexe: Results for the individual programs

7.2 The constants
average stdev median min. max

JavaCC utf8 59.40 11.25 59.46 33.69 91.67
Numeric 1.10 4.46 0.00 0.00 24.56

String 5.34 8.92 0.00 0.00 43.83

Class 8.63 3.66 8.70 0.58 21.67
NameAndType 11.28 5.15 10.16 0.00 29.07

FieldRef 3.55 3.70 2.53 0.00 15.04
MethodRef 10.60 5.40 10.00 0.00 28.58
InterfaceMethodRef 0.11 0.52 0.00 0.00 4.00

classviewer ~ Utf8 61.84 9.29 64.15 45.71 84.62
Numeric 0.80 1.69 0.00 0.00 9.52

String 2.43 6.06 0.00 0.00 38.70

Class 11.02 3.93 11.32 2.30 23.53
NameAndType 11.52 441 11.77 0.00 18.82

FieldRef 3.93 3.66 2.84 0.00 14.46

MethodRef 8.43 5.14 7.14 0.00 20.97
InterfaceMethodRef 0.02 0.15 0.00 0.00 1.08

hotjava utf8 56.34 9.44 53.54 42.41 92.31
Numeric 0.56 2.72 0.00 0.00 31.88

String 2.56 3.82 1.39 0.00 47.06

Class 11.35 6.09 9.61 0.31 38.57
NameAndType 14.18 5.60 15.82 0.00 24.59

FieldRef 3.97 3.05 3.23 0.00 22.95

MethodRef 10.90 5.36 11.39 0.00 24.78
InterfaceMethodRef 0.15 0.53 0.00 0.00 5.71

jdk utf8 58.93 11.41 55.56 0.57 96.77

Numeric 1.78 7.18 0.00 0.00 99.17

String 4.21 8.27 1.75 0.00 47.81

Class 9.38 4.22 8.64 0.09 31.03
NameAndType 12.23 6.22 14.07 0.00 24.64

FieldRef 4.64 4.74 3.70 0.00 18.87

MethodRef 8.61 5.74 9.06 0.00 22.45
InterfaceMethodRef 0.22 0.91 0.00 0.00 15.85

igl utf8 57.77 9.83 55.88 41.87 90.24

Numeric 1.16 1.42 0.74 0.00 5.56

String 2.32 2.79 1.22 0.00 9.77

Table 16 Repartition of the constants [%]

Analysis of the Java Class File Format

17

Annexe: Results for the individual programs

stdev

median

average min. max
Class 9.90 4.84 9.59 1.79 25.58
NameAndType 14.08 5.84 15.07 0.00 23.98
FieldRef 3.11 2.90 2.67 0.00 9.77
MethodRef 9.25 4.73 10.37 0.00 24.19
InterfaceMethodRef 2.40 3.33 1.27 0.00 16.09

jws utf8 60.36 9.76 58.01 40.99 95.75
Numeric 0.75 3.81 0.00 0.00 45.10
String 3.61 5.12 2.29 0.00 49.91
Class 8.31 3.74 7.69 0.03 33.33
NameAndType 12.97 5.33 14.15 0.00 22.53
FieldRef 3.80 3.00 3.49 0.00 17.95
MethodRef 9.99 4.77 10.84 0.00 21.58
InterfaceMethodRef 0.22 0.79 0.00 0.00 15.39

Table 16

Repartition of the constants [%]

18

Analysis of the Java Class File Format

	Analysis of the Java Class File Format
	1.0 The data set
	2.0 Size of the files
	3.0 Parts
	3.1 Parts of the class file
	3.2 Constant part
	3.3 Debugging information
	3.4 Code

	4.0 Bytecode
	4.1 Instruction size
	4.2 Usage of the different instructions
	4.3 Entropy & Redundancy

	5.0 Conclusions
	6.0 References
	7.0 Annexe: Results for the individual programs
	7.1 The five parts of the class file format
	7.2 The constants

