Discourse Representation Structures for ACE 6.5

Technical Report ifi-2009.04

Norbert E. Fuchs, Kaarel Kaljurand, Tobias Kuhn

Department of Informatics, University of Zurich
{fuchs,kalju,tkuhn}@ifi.uzh.ch

Abstract

This technical report describes the discourse representation structures (DRS) derived from
texts written in version 6.5 of Attempto Controlled English (ACE 6.5). The description is done
by an exhaustive set of examples.

Among other things, ACE 6.5 supports modal statements, negation as failure, and sentence
subordination. These features require an extended form of discourse representation structures.

The discourse representation structure itself uses a reified, or ‘flat’ notation, meaning that
its atomic conditions are built from a small number of predefined predicates that take constants
standing for words of the ACE text as their arguments.

Contents

(1 Introductory Notes|

2.4

Complex Structures|

[2.4.1 Classical Negation|

[2.4.2 Negation As Fallure| . . .

[2.4.3 Implication and Disjunction|

|2.4.4 Possibility and Necessity|

[2.4.5 Recommendation and Admissibility|. oL

[3.1

Singular Countable Noun Phrases|

10

10

10

11

11

11

11

12

12

13

13

14

14

15

16

8.3 ProperNames| 18
8.4 Plural Noun Phrases| 18
[8.5 Indefinite Pronouns]. 18
8.6 EXpressions|. 20
3.6.1 Atomic Expressions| e 20
[3.6.2 Compound Expressions| 21
[86.3 ListsandSets| 21

8.7 Generalised Quantors| 21
3.8 Noun Phrase Conjunction|, 23
M rement Noun Phrases| 23

810 Nothing But| 24
[4_Verb Phrases]| 24
4.1 Intransitive Verbsl 24
4.2 Transitive Verbs| o 24
[4.3 Difransitive Verbs| 25
4.4 Copulal. 25
|4.4.1 Copula and Intransitive Adjectives| 25
4.4.2 Copula and Transitive Adjectives| L. 27
|4.4.3 CopulaandNounPhrase|, 28
|4.4.4 Copula and Prepositional Phrase| 28

4.5 Coordinated Verb Phrasesl. o 28
[4.5.1 Verb Phrase Conjunction| 28
|4.5.2 Verb Phrase Disjunction| 29

6 Modifying Nouns and Noun Phrases| 29
... 29

0.2 Variablesl e

[5.3.1 Simple Relative Sentences|,

[9.3.2 Relative Sentence Conjunction and Disjunction|

9.4 of-Prepositional Phrases|

|6 Modifying Verb Phrases|

6.1 Adverbsl

6.2 Prepositional Phrases|

[7 Composite Sentences|

7.1 nditional Sentences|

[7.2.1 Sentence Conjunction|

[7.2.2 Sentence Disjunction|

[8__Quantified Sentences|

8.1 Existential Quantification|. e

.2 niversal ntificationl

8.3 Global Quantification|. e

8.3.1 Global Existential Quantification|

8.3.2 _Global Universal Quantification|

9.1 Quantor Negation|

33

33

34

35

35

36

36

36

36

37

38

38

38

39

39

39

39

40

9.1.1 Negated Existential Quantor]

[9.1.2 Negated Universal Quantor|

9.2 Verb Phrase Negation|

9.3 Sentence Negation|. L

[9.4 Negationas Failure]. o o

[9.4.1 Verb Phrase Negationfor NAF|

9.4.2 Sentence Negationfor NAF[.

[12 Questions and Commands]|

112.1 Yes/No-Questions| i e e e e e

112.2 Who/What/Which-Questions|

112.3 How/Where/When-Questions|

45

45

46

48

49

50

51

51

52

52

53

53

54

54

55

55

1 Introductory Notes

This technical report describes the representation of discourse representation structures (DRS)
derived from version 6.5 of Attempto Controlled English (ACE 6.5). It uses illustrative ACE exam-
ples, but does not describe ACE itself. For a complete description of the ACE language please
refer to the Attempto web site [2]. An abstract grammar for ACE 6.5 can be found in [1].

We expect the reader to be familiar with the basic notions of Discourse Representation Theory
(DRT) [5] as, for instance, introduced in [3]. Consult [4] for the DRS representation of modality
and sentence subordination.

2 Notation

Using illustrative ACE examples, this report completely describes the language of DRSs derived
from ACE texts. For a complete description of the ACE language itself please refer to the relevant
documents on the Attempto web site [2].

2.1 Basics

The ACE parser translates an ACE text unambiguously into a DRS representation. The discourse
representation structure derived from the ACE text is returned as

drs(Domain,Conditions)

The first argument of drs/2 is a list of discourse referents, i.e. quantified variables naming objects
of the domain of discourse. The second argument of drs/2 is a list of simple and complex condi-
tions for the discourse referents. The list separator *, stands for logical conjunction. Simple con-
ditions are logical atoms, while complex conditions are built from other discourse representation
structures with the help of the logical connectors negation ‘-’, disjunction ‘v’, and implication ‘=>’.
Furthermore, we use non-standard logical connectors for possibility ‘<>’, necessity ‘[1’, recom-
mendation ‘should’, admissibility ‘may’, negation as failure *~’, and a connector for the assignment
of variables to sub-DRSs *:’.

A DRS like
drs([A,B], [condition(A),condition(B)])

is usually pretty-printed as

AB

condition(A)
condition(B)

2.2 Flat Notation

The discourse representation structure uses a reified, or ‘flat’ notation for logical atoms. For ex-
ample, the noun a card that customarily would be represented as

card(A)
is represented here as

object(A,card,countable,na,eq,1)
relegating the predicate ‘card’ to the constant ‘card’ used as an argument in the predefined pred-
icate ‘object’.

As a consequence, the large number of predicates in the customary representation is replaced
by a small number of predefined predicates. This allows us to conveniently formulate axioms for
the predefined predicates.

2.3 Predicate Declarations

2.3.1 object

The object-predicates stand for objects that are introduced by the different forms of nouns.

’ object (Ref,Noun,Quant,Unit,0Op,Count) ‘

Ref The variable that stands for this object and that is used for references.
Noun The noun (mass or countable) that was used to introduce the object.

Quant This is one of {dom,mass, countable} and defines the quantisation of the object. The tree
structure below shows the hierarchy of these values.

dom

PN

mass countable

Unit If the object was introduced together with a measurement noun (e.g. “2 kg of apples”) then
this entry contains the value of the measurement noun (e.g. kg). Otherwise, this entry is na.

Op One of {eq,geq,greater,exactly,na}. eq stands for “equal’ and geq for “greater or equal”.
Note that 1eq and less can not appear here but only in the quantity-predicate.

Count A positive number or na. Together with Unit and Op, this defines the cardinality or extent
of the object.

2.3.2 property

The property-predicates stand for properties that are introduced by adjectives. The references
can either be variables or expressions. See section [3.6|for the representation of expressions.

1-ary | property(Refl,Adjective,Degree)
2-ary | property(Refl,Adjective,Degree,Ref2)
3-ary | property(Refl,Adjective,Ref2,Degree,CompTarget,Ref3)

Ref1 The variable or expression that stands for the primary object of the property (i.e. the sub-
ject).

Ref2 The variable or expression that stands for the secondary object of the property.
Ref3 The variable or expression that stands for the tertiary object of the property.
Adjective The intransitive or transitive adjective.

Degree This is one of {pos,pos_as,comp,comp_than,sup} and it defines the degree of the ad-
jective. Positive and comparative forms can have an additional comparison target (“as rich

as .., “richer than ..”), and for those cases pos_as and comp_than are used.

CompTarget This is one of {subj,obj} and it defines for transitive adjectives whether the com-
parison targets the subject (“John is more fond-of Mary than Bill”) or the object (“John is
more fond-of Mary than of Sue”).

2.3.3 relation

The relation-predicates stand for relations that are introduced by of-constructs.

’ relation(Refl,of ,Ref2) ‘

Refl A variable that refers to the left hand side object. This variable is always associated with an
object-predicate.

Ref2 A variable or expression that stands for the right hand side object.

Note that the second argument is always of since no other prepositions can attach to nouns.

2.3.4 predicate

The predicate-predicates stand for relations that are introduced by intransitive, transitive, and
ditransitive verbs.

intransitive | predicate(Ref,Verb,SubjRef)
transitive predicate(Ref,Verb,SubjRef,0bjRef)
ditransitive | predicate(Ref,Verb,SubjRef,0bjRef,Ind0ObjRef)

Ref A variable that stands for this relation and that is used to attach modifiers (i.e. adverbs and
prepositional phrases).

Verb The intransitive, transitive, or ditransitive verb.
SubjRef A variable or expression that stands for the subject.
ObjRef A variable or expression that stands for the direct object.

IndObjRef A variable or expression that stands for the indirect object.

2.3.5 modifier_adv

The modifier_adv—predicates stand for verb phrase modifiers that are introduced by adverbs.

’ modifier_adv(Ref,Adverb,Degree) ‘

Ref A variable that refers to the modified verb.
Adverb The adverb.

Degree This is one of {pos,comp,sup} and defines the degree of the adverb.

2.3.6 modifier_pp

The modifier_pp—predicates stand for verb phrase modifiers that are introduced by prepositional
phrases.

’ modifier _pp(Refl,Preposition,Ref2) ‘

Ref1 A variable that refers to the modified verb.
Preposition. The preposition of the prepositional phrase.

Ref2 A variable or expression that stands for the object of the prepositional phrase.

2.3.7 has_part

The has_part-predicates define the memberships of objects in groups of objects.

’ has_part (GroupRef ,MemberRef) ‘

GroupRef A variable that refers to a group of objects.

MemberRef A variable or expression that stands for the object that is a member of the group.

10

2.3.8 query

A query-predicate points to the object or relation a query was put on.

’ query(Ref,QuestionWord)‘

Ref A variable that refers to the object or relation of the query.

QuestionWord One of {who,what,which,how,where,when}.

2.4 Complex Structures
2.4.1 Classical Negation

A negated DRS like

AB

— | condition(A)
condition(B)

is internally represented as

-drs([A,B], [condition(A),condition(B)])

The prefix operator -/1 stands for the logical negation ‘—'.

2.4.2 Negation As Failure

A DRS that is negated using negation as failure (NAF) is marked with a tilde sign:

AB

™~ | condition(A)
condition(B)

It is represented as

~drs([A,B], [condition(A),condition(B)])

The prefix operator /1 stands for negation as failure.

11

2.4.3 Implication and Disjunction

In a DRS, all variables are existentially quantified unless they occur in the precondition of an
implication. The implication

A B
condition(A) condition(B)

is internally represented as

drs([A], [condition(A)]) => drs([B], [condition(B)])

The disjunction

A B
condition(A) condition(B)

is likewise internally represented as

drs([A], [condition(A)]) v drs([B], [condition(B)])

The predicates =>/2 and v/2 are defined as infix operators.

2.4.4 Possibility and Necessity

Possibility and necessity are modal extensions for DRSs. Consult [4] for details about such modal
constructs and their representations in first-order logic. Possibility is represented with a diamond
sign

AB

< | condition(A)
condition(B)

and is internally represented as

<>drs([A,B], [condition(A),condition(B)])

Necessity is represented with a box sign

AB

0| condition(A)
condition(B)

12

and is internally represented as

[Jdrs([A,B], [condition(A),condition(B)])

The prefix operators <>/1 and [1/1 are used to represent possibility and necessity, respectively.

2.4.5 Recommendation and Admissibility

Recommendation and admissibility are structures for which no general semantics are defined.
Depending on the domain, they can be interpreted in different way. Recommendation is marked
by the word ‘should’

AB

SHOULD condition(A)
condition(B)

and is internally represented as

should(drs([A,B], [condition(A),condition(B)]))

In the same way, admissibility is marked by the word ‘may’

AB

MAY | condition(A)
condition(B)

and is internally represented as

may (drs([A,B], [condition(A),condition(B)]))

The predicates should/1 and may/1 are used to represent recommendation and admissibility.

2.4.6 Sentence Subordination

For sentences like ‘John believes that Mary sleeps’ we need an extended DRS syntax. For that
reason we introduce a new notation that allows us to attach labels to sub-DRSs. Consult [4] for
details.

AB

X : | condition(A)
condition(B)

13

This is internally represented as

X:drs([A,B], [condition(A),condition(B)])

The infix operator : /2 is used to attach labels to sub-DRSs.

2.4.7 Questions and Commands

Questions are marked in the DRS by the word ‘question’

AB
QUESTION condition(A)
condition(B)

and is internally represented as

question(drs([A,B], [condition(A),condition(B)]))

In the same way, commands are marked by the word ‘command

AB
COMMAND condition(A)
condition(B)

and is internally represented as

command (drs ([A,B], [condition(A),condition(B)]))

The predicates question/1 and command/1 are used to represent questions and commands.

2.4.8 Nesting

In nested discourse representation structures, a DRS can occur as an element of the conditions
list of another DRS. Therefore

AB
condition(A)

condition(B)

14

is represented as

drs([A,B], [condition(A),-drs([], [condition(B)])])

2.5 Sentence and Token Numbers

Logical atoms occurring in drs/2 are actually written as Atom-SID/TID (using - and / as infix
operators) where the number SID refers to to the sentence from which Atom was derived and TID
to the token within that sentence.

The example text

John enters a card. Every card is green.

the DRS of which is

AB

object(A,card,countable,na,eq, 1)
predicate(B,enter,named(‘John’),A)

c DE
- —. | property(D,green,pos)
object(C,card,countable,na,eq, 1) predicate(E.be,C.D)

will thus internally be represented as

drs([A, Bl, [
object(A, card, countable, na, eq, 1)-1/4,
predicate(B, enter, named(’John’), A)-1/2,

drs([C], [

object(C, card, countable, na, eq, 1)-2/2
D
=>

drs([D, El, [
property(D, green, pos)-2/4,
predicate(E, be, C, D)-2/3
D
D

15

3 Noun Phrases

3.1 Singular Countable Noun Phrases

a card

A
object(A,card,countable,na,eq, 1)

no card

A
— | object(A,card,countable,na,eq,1)

Note that the representation of “no card” depends on the context (see section|9.1.1).

every card

A
object(A,card,countable,na,eq,1) | =

not every card

A
object(A,card,countable,na,eq,1) | =

16

3.2 Mass Nouns

some rice

A
object(A,rice,mass,na,na,na)

no rice

A
' | object(A,rice,mass,na,na,na)

Note that the representation of “no rice” depends on the context (see section[9.1.1). Furthermore,
the determiner no is ambiguous between countable and mass. For nouns that can be countable
or mass, e.g. money, preference to countable is given. Mass reading can be forced by using
sentential negation, e.g. It is false that some money is omnipotent.

all rice

A
object(A,rice,mass,na,na,na) | =

not all rice

A
object(A,rice,mass,na,na,na) | —

17

3.3 Proper Names

John waits.

A
predicate(A,wait,named(‘John’))

3.4 Plural Noun Phrases

some cards

A
object(A,card,countable,na,geq,2)

2 cards

A
object(A,card,countable,na,eq,2)

five cards

A
object(A,card,countable,na,eq,5)

3.5 Indefinite Pronouns

someone / somebody

A
object(A,somebody,countable,na,eq, 1)

something

A
object(A,something,dom,na,na,na)

18

no one / nobody

A
— | object(A,somebody,countable,na,eq,1)

nothing

A
| object(A,something,dom,na,na,na)

Note that the representations of “no one”,

section[9.1.9).

everyone / everybody

nobody”, and “nothing” depend on the context (see

A
object(A,somebody,countable,na,eq,1) | =

everything

A
object(A,something,dom,na,na,na) | =

19

not everyone / not everybody

A

object(A,somebody,countable,na,eq, 1)

not everything

A
object(A,something,dom,na,na,na) | =

3.6 Expressions
3.6.1 Atomic Expressions

A number is 14.

AB

object(A,number,countable,na,eq, 1)
predicate(B,have,A,int(14))

3.5 is greater than 2.3.

AB

property(A,great,comp_than,real(2.3))
predicate(B,be,real(3.5),A)

20

“abcd” is entered by John.

A
predicate(A,enter,named(‘John’),string(abcd))

3.6.2 Compound Expressions

Avalueis (1+2)/X*4.

ABC

object(A,value,countable,na,eq, 1)
object(B,something,dom,na,na,na)
predicate(C,be,A,expr(*,expr(/,expr(+,int(1),int(2)),B),int(4)))

“abc” & 7123 is a valid password.

AB

object(A,password,countable,na,eq, 1)
property(A,valid,pos)
predicate(B,be,expr(&,string(abc),string(‘123°)),A)

3.6.3 Lists and Sets

3 is the first element of [3,4.5,”ab”,John,1+2].

AB

predicate(A,be,int(3),B)

relation(B, of list([int(3),real(4.5),string(ab),named(‘John’),expr(+,int(1),int(2))]))
property(B,first,pos)

object(B,element,countable,na,eq,1)

{3,6,[1,2]} contains 6.

A
predicate(A,contain,set([int(3),int(6),list([int(1),int(2)])]),int(6))

3.7 Generalised Quantors

If the generalised quantor implies only a minimality condition then the DRS representation is flat.

21

A customer has at least 2 cards that are valid.

ABCDE

object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,geq,2)
property(C,valid,pos)
predicate(D,be,B,C)
predicate(E,have,A,B)

A customer has more than 2 cards that are valid.

ABCDE

object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,greater,2)
property(C,valid,pos)
predicate(D,be,B,C)
predicate(E,have,A,B)

If the generalised quantor implies a maximality condition then the conditions inside of the scope
of the maximality are bracketed. This is necessary because we need to capture the scope of the
maximality restriction.

A customer has exactly 2 cards that are valid.

ABCDE
object(A,customer,countable,na,eq, 1)

object(B,card,countable,na,exactly,2)
property(C,valid,pos)
predicate(D,be,B,C)
predicate(E,have,A,B)

A customer has at most 2 cards that are valid.

ABCDE
object(A,customer,countable,na,eq, 1)

object(B,card,countable,na,leq,2)
property(C,valid,pos)
predicate(D,be,B,C)
predicate(E,have,A,B)

22

A customer has less than 2 cards that are valid.

ABCDE
object(A,customer,countable,na,eq, 1)

object(B,card,countable,na,less,2)
property(C,valid,pos)
predicate(D,be,B,C)
predicate(E,have,A,B)

3.8 Noun Phrase Conjunction

a customer and a clerk

ABC

object(A,customer,countable,na,eq, 1)
object(B,clerk,countable,na,eq,1)
has_part(C,A)

has_part(C,B)
object(C,na,countable,na,eq,2)

3.9 Measurement Noun Phrases

2 kg of apples

A
object(A,apple,countable, kg,eq,2)

2 kg of rice

AB
object(A,rice,mass,kg,eq,2)

John’s weight is 80 kg.

AB

relation(A,of,.named(‘John’))
object(A,weight,countable,na,eq, 1)
predicate(B,be,A,int(80,kg))

23

3.10 Nothing But

John eats nothing but apples.

AB CcD
predicate(A,eat,named(‘John’),B) —. | object(C,apple,countable,na,eq,1)
object(B,something,dom,na,na,na) predicate(D,be,B,C)

No man but John waits.
AB C

predicate(A,wait,B)
object(B,man,countable,na,eq,1)

predicate(C,be,B,named(‘John’))

4 Verb Phrases

4.1 Intransitive Verbs

A customer waits.

AB

object(A,customer,countable,na,eq, 1)
predicate(B,wait,A)

4.2 Transitive Verbs

The following two sentences are parsed identically.

John enters a card.
A card is entered by John.

AB

object(A,card,countable,na,eq, 1)
predicate(B,enter,named(‘John’),A)

24

4.3 Ditransitive Verbs

The following four sentences are parsed identically.

A clerk gives a password to a customer.

A clerk gives a customer a password.

A password is given to a customer by a clerk.
A customer is given a password by a clerk.

ABCD

object(A,clerk,countable,na,eq, 1)
object(B,password,countable,na,eq, 1)
object(C,customer,countable,na,eq, 1)
predicate(D,give,A,B,C)

4.4 Copula
4.41 Copula and Intransitive Adjectives

A customer is important.

ABC
object(A,customer,countable,na,eq, 1)
property(B,important,pos)
predicate(C,be,A,B)

A customer is as important as John.

ABC

object(A,customer,countable,na,eq, 1)
property(B,important,pos_as,named(‘John’))
predicate(C,be,A,B)

A customer is more important.

ABC
object(A,customer,countable,na,eq, 1)

property(B,important,comp)
predicate(C,be,A,B)

25

A customer is more important than John.

ABC

object(A,customer,countable,na,eq, 1)
property(B,important,comp_than,named(‘John’))
predicate(C,be,A,B)

A customer is most important.

ABC
object(A,customer,countable,na,eq, 1)
property(B,important,sup)
predicate(C,be,A,B)

A card is valid and correct.

ABC

object(A,card,countable,na,eq, 1)
property(B,valid,pos)
property(B,correct,pos)
predicate(C,be,A,B)

2 codes are valid.

ABC
object(A,code,countable,na,eq,2)
property(B,valid,pos)
predicate(C,be,A,B)

Each of 2 codes is valid.

A
object(A,code,countable,na,eq,2)

B cD
—. | property(C,valid,pos)
has.part(A.B) predicate(D,be,B,C)

26

4.4.2 Copula and Transitive Adjectives

John is fond-of Mary.

AB

property(A, ‘fond-of’,pos,named(‘Mary’))
predicate(B,be,named(‘John’),A)

John is as fond-of Mary as Bill.

AB

property(A, ‘fond-of’,named(‘Mary’),pos_as,subj,named(‘Bill’))
predicate(B,be,named(‘John’),A)

John is as fond-of Mary as of Sue.

AB

property(A, ‘fond-of’,named(‘Mary’),pos_as,obj,named(‘Sue’))
predicate(B,be,named(‘John’),A)

John is more fond-of Mary.

AB

property(A, ‘fond-of’,comp,named(‘Mary’))
predicate(B,be,named(‘John’),A)

John is more fond-of Mary than Bill.

AB

property(A, ‘fond-of’,named(‘Mary’),comp_than,subj,named(‘Bill’))
predicate(B,be,named(‘John’),A)

John is more fond-of Mary than of Sue.

AB

property(A, ‘fond-of’,named(‘Mary’),comp_than,obj,named(‘Sue’))
predicate(B,be,named(‘John’),A)

27

John is most fond-of Mary.

AB

property(A, ‘fond-of’,sup,named(‘Mary’))
predicate(B,be,named(‘John’),A)

4.4.3 Copula and Noun Phrase

John is a rich customer.

AB

property(A,rich,pos)
object(A,customer,countable,na,eq, 1)
predicate(B,be,named(‘John’),A)

4.4.4 Copula and Prepositional Phrase

John is in the bank.

AB
predicate(A,be,named(‘John’))
modifier_pp(A,in,B)
object(B,bank,countable,na,eq, 1)

4.5 Coordinated Verb Phrases

4.5.1 Verb Phrase Conjunction

A screen flashes and blinks.

ABC
object(A,screen,countable,na,eq, 1)
predicate(B,flash,A)
predicate(C,blink,A)

28

4.5.2 Verb Phrase Disjunction

A screen flashes or blinks.

A

object(A,screen,countable,na,eq, 1)

B C

predicate(B,flash,A) | V | predicate(C,blink,A)

5 Modifying Nouns and Noun Phrases

5.1 Adjectives

An important customer waits.

AB

object(A,customer,countable,na,eq, 1)
property(A,important,pos)
predicate(B,wait,A)

A more important customer waits.

AB

object(A,customer,countable,na,eq, 1)
property(A,important,comp)
predicate(B,wait,A)

The most important customer waits.

AB

object(A,customer,countable,na,eq, 1)
property(A,important,sup)
predicate(B,wait,A)

A rich and old customer waits.

AB

object(A,customer,countable,na,eq, 1)
property(A,rich,pos)
property(A,old,pos)
predicate(B,wait,A)

5.2 Variables

A customer X greets a clerk. The clerk is happy. X is glad.

ABCDEFG

object(A,customer,countable,na,eq,1)
object(B,clerk,countable,na,eq,1)
predicate(C,greet,A,B)
property(D,happy,pos)
predicate(E,be,B,D)
property(F.glad,pos)
predicate(G,be,A,F)

Note: Variables do not appear in the DRS. They only establish anaphoric references.

5.3 Relative Sentences

5.3.1 Simple Relative Sentences

A customer enters a card which is valid.

ABCDE

object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,eq,1)
property(C,valid,pos)
predicate(D,be,B,C)
predicate(E,enter,A,B)

30

Every card the code of which is correct is valid.

ABCD

object(A,card,countable,na,eq, 1) EF

prop fzrty (B,correct,pos) —. | property(E,valid,pos)
predicate(C,be,D,B) redicate(F,be,A,E)
relation(D,of,A) p 08 A,
object(D,code,countable,na,eq,1)

Everything which eats is animate.

AB CD
object(A,something,dom,na,na,na) | —, | property(C,animate,pos)
predicate(B,eat,A) predicate(D,be,A,C)

John who is a clerk waits.

ABC

predicate(A,wait,named(‘John’)
object(B,clerk,countable,na,eq,1)
predicate(C,be,named(‘John’),B)

There is a card X. X which a customer possesses is valid.

ABCDE

object(A,card,countable,na,eq, 1)
object(B,customer,countable,na,eq,1)
predicate(C,possess,B,A)
property(D,valid,pos)
predicate(E,be,A,D)

31

5.3.2 Relative Sentence Conjunction and Disjunction

A customer enters a card which is green and which is valid.

ABCDEFG

object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,eq,1)
property(C,green,pos)
predicate(D,be,B,C)
property(E,valid,pos)
predicate(F,be,B,E)
predicate(G,enter,A,B)

A customer enters a card which is green or which is red.

ABC
object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

DE FG
property(D,green,pos) | \, | property(Fred,pos)
predicate(E,be,B,D) predicate(G,be,B,F)

5.4 of-Prepositional Phrases

The surface of the card has a green color.

ABCD

object(A,surface,countable,na,eq, 1)
object(B,card,countable,na,eq,1)
relation(A,of,B)
object(C,color,countable,na,eq, 1)
property(C,green,pos)
predicate(B,have,A,C)

5.5 Possessive Nouns

Possessive nouns are introduced by a possessive pronoun or a Saxon genitive. While possessive
nouns are equivalent to of PPs, Saxon genitives in general are not because of the scoping rules
of quantifiers:

32

e aman’s dog (1 man with 1 dog) = a dog of a man (1 man with 1 dog)

e every man’s dog (several men each with 1 dog) # a dog of every man (1 dog of several
men)

The customer’s card is valid.

ABCD

object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,eq,1)
relation(B,of,A)
property(C,valid,pos)
predicate(D,be,B,C)

Note: There are no recursive Saxon genitives. “A customer’s card” is in ACE, but “A customer’s
card’s code” is not.

There is a customer. His code is correct.

ABCD

object(A,customer,countable,na,eq, 1)
object(B,code,countable,na,eq, 1)
relation(B,of,A)
property(C,correct,pos)
predicate(D,be,B,C)

6 Modifying Verb Phrases

6.1 Adverbs

The following two sentences are parsed identically.

A customer quickly enters a card.
A customer enters a card quickly.

ABC

object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,eq,1)
predicate(C,enter,A,B)
modifier_adv(C,quickly,pos)

The following two sentences are parsed identically.

33

A customer more quickly enters a card.
A customer enters a card more quickly.

ABC

object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,eq,1)
predicate(C,enter,A,B)
modifier_adv(C,quickly,comp)

The following two sentences are parsed identically.

A customer most quickly enters a card.
A customer enters a card most quickly.

ABC

object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,eq,1)
predicate(C,enter,A,B)
modifier_adv(C,quickly,sup)

6.2 Prepositional Phrases

John enters a card in a bank.

ABC

object(A,card,countable,na,eq, 1)
predicate(B,enter,named(‘John’),A)
object(C,bank,countable,na,eq,1)
modifier_pp(B,in,C)

A customer enters a card quickly and manually in a bank in the morning.

ABCDE

object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)
modifier_adv(C,quickly,pos)
modifier_adv(C,manually,pos)
object(D,bank,countable,na,eq,1)
modifier_pp(C,in,DD)
object(E,morning,countable,na,eq,1)
modifier_pp(C,in,E)

34

7 Composite Sentences

7.1 Conditional Sentences

If the code is valid then the machine accepts the request.

ABC DEF
object(A,code,countable,na,eq, 1) object(D,machine,countable,na,eq, 1)
property(B,valid,pos) = | object(E,request,countable,na,eq,1)
predicate(C,be,A,B) predicate(Faccept,D,E)

Conditional sentences always take wide scope. Narrow scope requires starting a new sentence.

If the code is valid then the machine accepts the request and the transaction succeeds.

DEF
ABC object(D,machine,countable,na,eq, 1)
object(A,code,countable,na,eq, 1) object(E,request,countable,na,eq, 1)
property(B,valid,pos) = | predicate(Faccept,D,E)
predicate(C,be,A,B) object(G,transaction,countable,na,eq, 1)
predicate(H,succeed,G)

If the code is valid then the machine accepts the request. The transaction succeeds.

AB
CDE FGH
object(C,code,countable,na,eq, 1) object(F,machine,countable,na,eq, 1)
property(D,valid,pos) = | object(G,request,countable,na,eq,1)
predicate(E,be,C,D) predicate(H,accept,F,G)

object(A,transaction,countable,na,eq, 1)
predicate(B,succeed,A)

35

7.2 Coordinated Sentences

7.2.1 Sentence Conjunction

The screen blinks and John waits.

ABC

predicate(A,blink,B)
object(B,screen,countable,na,eq, 1)
predicate(C,wait,named(‘John’))

7.2.2 Sentence Disjunction

A screen blinks or John waits.

AB c
object(A,screen,countable,na,eq,1) | \, - - y ;
predicate(B,blink, A) predicate(C,wait,named(‘John’))

7.3 Sentence Subordination

A customer believes that his own card is correct.

ABC

object(A,customer,countable,na,eq, 1)
predicate(B,believe,A,C)

DEF

relation(D,of,A)

C - | object(D,card,countable,na,eq,1)
property(E,correct,pos)
predicate(F,be,D,E)

Sentence subordination takes narrow scope unless the word “that” is repeated.

36

A customer believes that his own card is correct and the machine is broken.

ABCDEF

object(A,customer,countable,na,eq, 1)
predicate(B,believe,A,C)

GHI

relation(G,of,A)

C - | object(G,card,countable,na,eq,1)
property(H,correct,pos)
predicate(l,be,G,H)

object(D,machine,countable,na,eq, 1)
property(E,broken,pos)
predicate(F,be,D,E)

A customer believes that his own card is correct and that the machine is broken.

ABC

object(A,customer,countable,na,eq, 1)
predicate(B,believe,A,C)

DEFGHI

relation(D,of,A)
object(D,card,countable,na,eq, 1)
property(E,correct,pos)

C: | predicate(Fbe,D,E)
object(G,machine,countable,na,eq, 1)
property(H,broken,pos)
predicate(l,be,G,H)

7.4 Positive Sentence Marker

For consistency reasons, we support the sentence-initial phrase “It is true that ...".

It is true that a customer waits.

AB

object(A,customer,countable,na,eq, 1)
predicate(B,wait,A)

37

7.5 Formulas

10=4+6.

formula(int(5),=,int(3))

5> 3.

formula(int(5),>,int(3))

X>= 13.4.

A

object(A,something,dom,na,na,na)
formula(A,>=,real(13.4))

3<4and 3=<5.

formula(int(3),<,int(4))
formula(int(3),=<,int(5))

8 AQuantified Sentences

8.1 Existential Quantification

A card ... / There is a card.

A
object(A,card,countable,na,eq, 1)

John enters a card.

AB

object(A,card,countable,na,eq, 1)
predicate(B,enter,named(‘John’),A)

38

8.2 Universal Quantification

John enters every code.

A B

object(A,code,countable,na,eq,1) | = | predicate(B,enter,named(‘John’),A)

8.3 Global Quantification
8.3.1 Global Existential Quantification

The following two sentences are parsed identically.

There is a code such that every clerk enters it.
There is a code that every clerk enters.

A
object(A,code,countable,na,eq, 1)

B C
object(B,clerk,countable,na,eq,1) | = | predicate(C,enter,B,A)

8.3.2 Global Universal Quantification

The following two sentences are parsed identically.

For every code a clerk enters it.
For every code there is a clerk such that he enters it.

a BC
- —. | object(B,clerk,countable,na,eq,1)
object(A,code,countable,na,eq, 1) predicate(C,enter,B,A)

39

9 Negation

Unless stated otherwise, we talk about classical negation. For negation as failure see subsec-
tion

9.1 Quantor Negation
9.1.1 Negated Existential Quantor

Note that negated existential quantors can produce different DRS representations, depending on
the context. Within “there is ...”, a negated sub-DRS is created. Otherwise, we get an implication
with a negated sub-DRS on the right hand side.

There is no code.

A
' | object(A,code,countable,na,eq,1)

John enters no code.

A
object(A,code,countable,na,eq,1) | =

B
' | predicate(B,enter,named("John’),A)

40

9.1.2 Negated Universal Quantor

John enters not every code.

A B

object(A,code,countable,na,eq,1) | = | predicate(B,enter,named('John’),A)

9.2 Verb Phrase Negation

A man does not enter a code.

A
object(A,man,countable,na,eq, 1)

BC

— | object(B,code,countable,na,eq,1)
predicate(C,enter,A,B)

Every man does not enter a code.

A

A BC

object(A,man,countable,na,eq,1) | = | _ | object(B,code,countable,na,eq,1)
predicate(C,enter,A,B)

41

A man does not enter every code.

A

object(A,man,countable,na,eq, 1)

B

object(B,code,countable,na,eq, 1)

C

predicate(C,enter,A,B)

A card is not valid.

A

object(A,card,countable,na,eq, 1)

BC

property(B,valid,pos)
predicate(C,be,A,B)

9.3 Sentence Negation

It is false that a screen blinks.

AB

object(A,screen,countable,na,eq, 1)
predicate(B,blink,A)

42

It is false that every screen blinks.

A B
object(A,screen,countable,na,eq,1) | = | predicate(B,blink,A)

Sentence negation takes narrow scope, but wide scope can be triggered by repeating the that
complementizer. Compare the following two examples.

It is false that a man waits and a woman sings.

AB

cD

object(C,man,countable,na,eq, 1)
predicate(D,wait,C)

object(A,woman,countable,na,eq, 1)
predicate(B,sing,A)

It is false that a man waits and that a woman sings.

ABCD

object(A,man,countable,na,eq, 1)
predicate(B,wait,A)
object(C,woman,countable,na,eq, 1)
predicate(D,sing,C)

9.4 Negation as Failure

There are two ways to express negation as failure (NAF). First, one can use the construct “... not
provably ...” for verb phrase negation. Second, the predefined phrase “It is not provable that ...”
can be used for sentence negation.

43

9.4.1 Verb Phrase Negation for NAF

The construct “... not provably ...” can be used for all the cases of verb phrase negation as
explained in section[9.2]

A customer does not provably enter a code.

A
object(A,customer,countable,na,eq, 1)

BC

~ | object(B,code,countable,na,eq,1)
predicate(C,enter,A,B)

A card is not provably valid.

A
object(A,card,countable,na,eq, 1)

BC

~ | property(B,valid,pos)
predicate(C,be,A,B)

Furthermore, classical negation can be directly nested inside of negation as failure.

A card is not provably not valid.

A
object(A,card,countable,na,eq, 1)

BC

—, | property(B,valid,pos)
predicate(C,be,A,B)

44

9.4.2 Sentence Negation for NAF

It is not provable that a screen blinks.

AB

~. | object(A,screen,countable,na,eq,1)
predicate(B,blink,A)

Concerning scoping, it behaves like the classical sentence negation (“/t is false that ...”) explained
in section[©.3

10 Modality

Each of the four forms of modality (possibility, necessity, recommendation, and admissibility) can
be represented in two different ways. First, we can use the modal auxiliary “can’, “must”, “should”,
or “may”, respectively. Second, we can use the sentence-initial phrase “It is possible that...”, “It is
necessary that ...”, “It is recommended that...”, or “It is admissible that...”, respectively. Negation
of these constructs is also allowed (see below for details).

Note that “a customer can enter a card” is not equivalent to “it is possible that a customer enters
a card” (see below).

10.1 Possibility

A customer can enter a card.

A
object(A,customer,countable,na,eq, 1)

BC

& | object(B,card,countable,na,eq,1)
predicate(C,enter,A,B)

The following three sentences are equivalent.

45

A customer can’t enter a card.
A customer cannot enter a card.
A customer can not enter a card.

A
object(A,customer,countable,na,eq, 1)

BC

& | object(B,card,countable,na,eq,1)
predicate(C,enter,A,B)

It is possible that a customer enters a card.

ABC
object(A,customer,countable,na,eq, 1)
% object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

It is not possible that a customer enters a card.

ABC

= object(A,customer,countable,na,eq, 1)
% object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

10.2 Necessity

The two synonyms “must” and “has to” can be used.

46

A customer must enter a card.
A customer has to enter a card.

A
object(A,customer,countable,na,eq, 1)

BC

O | object(B,card,countable,na,eq,1)
predicate(C,enter,A,B)

For the negation, only “does not have to” is allowed.

A customer does not have to enter a card.

A

object(A,customer,countable,na,eq, 1)

BC

1 | object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

It is necessary that a customer enters a card.

ABC
object(A,customer,countable,na,eq, 1)
U | object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

47

It is not necessary that a customer enters a card.

ABC

- object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

10.3 Recommendation

A customer should enter a card.

A
object(A,customer,countable,na,eq, 1)

BC

SHOULD | object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

The following two sentences are equivalent.

A customer shouldn’t enter a card.
A customer should not enter a card.

A

object(A,customer,countable,na,eq, 1)

BC

SHOULD | object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

48

It is recommended that a customer enters a card.

ABC

object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

SHOULD

It is not recommended that a customer enters a card.

ABC

= object(A,customer,countable,na,eq, 1)
SHOULD | object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

10.4 Admissibility

A customer may enter a card.

A
object(A,customer,countable,na,eq, 1)

BC

MAY | object(B,card,countable,na,eq,1)
predicate(C,enter,A,B)

49

A customer may not enter a card.

A
object(A,customer,countable,na,eq, 1)

BC

MAY | object(B,card,countable,na,eq,1)
predicate(C,enter,A,B)

It is admissible that a customer enters a card.

ABC

object(A,customer,countable,na,eq, 1)
MAY | object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

It is not admissible that a customer enters a card.

ABC

- object(A,customer,countable,na,eq, 1)
MAY | object(B,card,countable,na,eq, 1)
predicate(C,enter,A,B)

11 Plural Interpretations

In this section, we present the eight readings of the natural English sentence

2 girls lift 2 tables.

50

which can be expressed in ACE. For background information on the disambiguation of plurals
consult [6] and [7]. The numbers refer to [6]. Note that reading 4 has two interpretations 4a and
4b and that reading 5 is identical to reading 1.

In ACE, a plural noun phrase has a default collective reading. To express a distributive reading,
a noun phrase has to be preceded by the marker each of. The relative scope of a quantifier

corresponds to its surface position. We use there is/are and for each of to move a quantifier to
the front of a sentence and thus widen its scope.

11.1 Reading 1

girls tables

o)

2 girls lift 2 tables.

ABC
object(A,girl,countable,na,eq,2)
object(B,table,countable,na,eq,2)
predicate(C,lift,A,B)

11.2 Reading 2

girls tables

lift

@\ift
N

2 girls lift each of 2 tables.

AB

object(A,girl,countable,na,eq,2)
object(B,table,countable,na,eq,2)

(o D
has_part(B,C) | = | predicate(D,lift,A,C)

51

11.3 Reading 3

girls tables

lift—)@
lift—)@

°

°

Each of 2 girls lifts 2 tables.

A

B
has_part(A,B)

object(A,girl,countable,na,eq,2)

CcD

object(C,table,countable,na,eq,2)
predicate(D,lift,B,C)

11.4 Reading 4a

girls tables

liff

lift—>®

lift—>®
lift

Each of 2 girls lifts each of 2 tables.

A

B
has_part(A,B)

object(A,girl,countable,na,eq,2)

C

object(C,table,countable,na,eq,2)

D

E

has_part(C,D)

predicate(E,lift,B,D)

11.5 Reading 4b

girls tables

°

lift—>®

iff

[lift—>®

There are 2 girls and there are 2 tables such that each of the girls lifts each of the tables.

AB

object(A,girl,countable,na,eq,2)
object(B,table,countable,na,eq,2)

(o
has_part(A,C) | =

D E

has_part(B,D) | = | predicate(E,lift,C,D)

11.6 Reading 5

Reading 5 is identical to reading 1.

girls tables

o)

There are 2 tables such that 2 girls lift the tables.

ABC

object(A,girl,countable,na,eq,2)
object(B,table,countable,na,eq,2)
predicate(C,lift,A,B)

53

11.7 Reading 6

girls tables

°

\W\
()
lift

[]

There are 2 tables such that each of 2 girls lifts the tables.

AB

object(A,table,countable,na,eq,2)
object(B,girl,countable,na,eq,2)

(o

D

has_part(B,C)

predicate(D,lift,C,A)

11.8 Reading 7

girls tables

@—lift% [
G}wtﬁ» .

For each of 2 tables 2 girls lift it.

A

object(A,table,countable,na,eq,2)

B

cD

has_part(A,B)

object(C,girl,countable,na,eq,2)
predicate(D,lift,C,B)

54

11.9 Reading 8

girls tables

°
s

[]

[

liff

[]

lift—>®

lift—>®

For each of 2 tables each of 2 girls lifts it.

A

object(A,table,countable,na,eq,2)

C

B

object(C,girl,countable,na,eq,2)

has_part(A,B) | = D

E

has_part(C,D) | =

predicate(E,lift,D,B)

12 Questions and Commands

Questions introduce nested DRSs using the operator QUESTION.

12.1 Yes/No-Questions

Does John enter a card?

QUESTION

AB

object(A,card,countable,na,eq, 1)
predicate(B,enter,named(‘John’),A)

55

Is the card valid?

QUESTION

ABC

property(A,valid,pos)
predicate(B,be,C,A)
object(C,card,countable,na,eq, 1)

12.2 Who/What/Which-Questions

Who enters what?

QUESTION

ABC

query(A,who)
query(B,what)
predicate(C,enter,A,B)

Which customer enters a card?

QUESTION

ABC

query(A,which)
object(A,customer,countable,na,eq, 1)
object(B,card,countable,na,eq,1)
predicate(C,enter,A,B)

56

12.3 How/Where/When-Questions

How does John enter a card?

AB

object(A,card,countable,na,eq, 1)
QUESTION | predicate(B,enter,named(‘John’),A)
query(B,how)

Where does John wait?

A

QUESTION | predicate(A,wait,named(‘John’))
query(A,where)

When does John wait?

A

QUESTION | predicate(A,wait,named(‘John’))
query(A,when)

12.4 Commands

Commands introduce nested DRSs using the operator COMMAND.

John, get a beer!

AB

COMMAND | object(A,beer,countable,na,eq,1)
predicate(B,get,named(‘John’),A)

57

References

[1] ACE 6.5 Syntax Report. 2008.
http://attempto.ifi.uzh.ch/site/docs/ace/6.5/syntax_report.html

[2] Attempto project. Attempto website, 2008.
http://attempto.ifi.uzh.ch/site

[3] Patrick Blackburn and Johan Bos. Working with Discourse Representation Structures, volume
2nd of Representation and Inference for Natural Language: A First Course in Computational
Linguistics. September 1999.

[4] Johan Bos. Computational Semantics in Discourse: Underspecification, Resolution, and In-
ference. Journal of Logic, Language and Information, 13(2):139-157, 2004

[5] Hans Kamp and Uwe Reyle. From Discourse to Logic. Introduction to Modeltheoretic Se-
mantics of Natural Language, Formal Logic and Discourse Representation Theory. Kluwer
Academic Publishers, Dordrecht/Boston/London, 1993

[6] Uta Schwertel. Controlling Plural Ambiguities in Attempto Controlled English. In Proceedings
of the 3rd International Workshop on Controlled Language Applications, Seattle, Washington,
2000

[7] Uta Schwertel. Plural Semantics for Natural Language Understanding — A Computational
Proof-Theoretic Approach. PhD thesis, University of Zurich, 2004

58

http://attempto.ifi.uzh.ch/site/docs/ace/6.5/syntax_report.html
http://attempto.ifi.uzh.ch/site

	Introductory Notes
	Notation
	Basics
	Flat Notation
	Predicate Declarations
	object
	property
	relation
	predicate
	modifier_adv
	modifier_pp
	has_part
	query

	Complex Structures
	Classical Negation
	Negation As Failure
	Implication and Disjunction
	Possibility and Necessity
	Recommendation and Admissibility
	Sentence Subordination
	Questions and Commands
	Nesting

	Sentence and Token Numbers

	Noun Phrases
	Singular Countable Noun Phrases
	Mass Nouns
	Proper Names
	Plural Noun Phrases
	Indefinite Pronouns
	Expressions
	Atomic Expressions
	Compound Expressions
	Lists and Sets

	Generalised Quantors
	Noun Phrase Conjunction
	Measurement Noun Phrases
	Nothing But

	Verb Phrases
	Intransitive Verbs
	Transitive Verbs
	Ditransitive Verbs
	Copula
	Copula and Intransitive Adjectives
	Copula and Transitive Adjectives
	Copula and Noun Phrase
	Copula and Prepositional Phrase

	Coordinated Verb Phrases
	Verb Phrase Conjunction
	Verb Phrase Disjunction

	Modifying Nouns and Noun Phrases
	Adjectives
	Variables
	Relative Sentences
	Simple Relative Sentences
	Relative Sentence Conjunction and Disjunction

	of-Prepositional Phrases
	Possessive Nouns

	Modifying Verb Phrases
	Adverbs
	Prepositional Phrases

	Composite Sentences
	Conditional Sentences
	Coordinated Sentences
	Sentence Conjunction
	Sentence Disjunction

	Sentence Subordination
	Positive Sentence Marker
	Formulas

	Quantified Sentences
	Existential Quantification
	Universal Quantification
	Global Quantification
	Global Existential Quantification
	Global Universal Quantification

	Negation
	Quantor Negation
	Negated Existential Quantor
	Negated Universal Quantor

	Verb Phrase Negation
	Sentence Negation
	Negation as Failure
	Verb Phrase Negation for NAF
	Sentence Negation for NAF

	Modality
	Possibility
	Necessity
	Recommendation
	Admissibility

	Plural Interpretations
	Reading 1
	Reading 2
	Reading 3
	Reading 4a
	Reading 4b
	Reading 5
	Reading 6
	Reading 7
	Reading 8

	Questions and Commands
	Yes/No-Questions
	Who/What/Which-Questions
	How/Where/When-Questions
	Commands

	References

