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Abstract

Fast similarity search is important for time-sensitive applications.
Those include both enterprise and web scenarios, where typos, mis-
spellings, and noise need to be removed in an efficient way, in order
to improve data quality, or to find all information of interest to the
user. This paper presents a new algorithm called Fast Similarity Search
(FastSS) that performs an exhaustive similarity search in a dictionary,
based on the edit distance model of string similarity. The algorithm
uses deletions to model the edit distance. For a dictionary contain-
ing n words of average length m, and given a maximum number of
spelling errors k, FastSS uses a deletion dictionary of size O(nm*). At
search time each query is mutated to generate a deletion neighborhood
of size O(m*), which is compared to the indexed deletion dictionary.
As a deletion neighborhood is smaller than a neighborhood using dele-
tions, insertions and replacements, this contributes to a faster search.
FastSS looks up misspellings in a time which is independent of n for
a hash-based index, or logarithmic in the size of the dictionary, for a
tree-based one.

FastSS has been evaluated and compared with NR-grep, a keyword
tree, dynamic programming, n-grams, and neighborhood generation



algorithms, using an English and a random dictionary. All results show
that FastSS outperforms other algorithms with respect to the search
time and is a perfect candidate for time-critical applications requiring
approximate keyword searching. A web application compares n-grams
and FastSS in searching English Wikipedia articles and meta pages,
and times FastSS in Moby Dick [20].

Keywords: Edit distance, approximate string matching, indexing for text,
IR, deletion neighbourhood, n-grams, fast similarity search, neighborhood
generation.

1 Introduction

The increasing amounts of electronic information available on the web and
within enterprises call for fast similarity searches. A similarity search al-
gorithm should provide a list of data similar to an input query. Similarity
searches in time that is linear in the dictionary size may be too slow for
many applications, and therefore, it is important to focus on sub linear sim-
ilarity search algorithms. Such algorithms rely on indexing, as this is the
only way to ensure acceptable performance. Search engines like Google or
Yahoo offer fast similarity searches for large amounts of data found in the
World Wide Web. In the context of search engines, the terms document
similarity and query string similarity have to be distinguished. Document
similarity refers to the overall similarity of an entire document to the query,
while string similarity concerns just any two strings. The new algorithm,
Fast Similarity Search (FastSS), belongs to the second category.

A query string similarity search example is Google’s or Yahoo’s “Did
you mean” link, that suggests a more popular query string. This approach
is based on machine learning on the query string [13]. An evaluation of
spelling support tools [16] shows that approximately 10% of all queries are
not found, because of typos or misspellings. In Intranets and content man-
agement system solutions, such as Joomla! [5], Zope [10] or TYPO3 [9],
search engines are deployed without similarity search algorithms. This is
because algorithms based on statistical analysis may not be applied, as the
actual query strings are not produced in sufficient quantities. However, fast
similarity searches are a desirable application feature, and spelling correc-
tion tools would help users improve the way they express their information
need.

The edit or Levenshtein distance [19] can be used to measure the dis-
tance between two sequences of symbols without using statistical analysis.



However, the time complexity of the dynamic programming approach for
searching similar words in a dictionary is O(nm?), where m is the average
word length, and n the dictionary size. The goal of this work was to develop
a fast sub linear similarity search algorithm using the edit distance metric.
The main idea of FastSS consists in using an efficient variant of the
neighborhood generation algorithm [21, 12, 18, 29], adapted to use deletions
only. This produces a smaller neighborhood which is then looked up in the
index. The key findings are that neighborhood generation, using deletions
only, performs a lookup in O(km* log(nm*)), with a space usage of O(nm*),
where k is the number of edit operations. A variant of FastSS, Fast Block
Similarity Search (FastBlockSS), reduces the space usage even further by
splitting sequences into b-grams and by removing redundant b-grams.
Experiments presented in this paper were based on an English dictionary
and a randomly generated dictionary, and compared search performance for
NR-grep [24], dynamic programming, a keyword tree, neighborhood gen-
eration, and n-grams with index lookup. For both dictionaries, all three
FastSS variants outperform any other algorithm with respect to the search
time. A demonstration server [27] for FastSS finds in an indexed version of
Moby Dick [20] and in an indexed version of the English Wikipedia and meta
pages words similar to those submitted as a query. The test application uses
FastSS to search in an index stored in a database and displays the results
in the order of retrieval. The experimental evaluation shows the superiority
of FastSS over all other methods in both in-memory and database settings.
CONTRIBUTIONS. The first contribution of this paper is applying dele-
tions to solve the general edit distance problem for dictionaries. The second
contribution is a practical demonstration of the feasibility of this approach.
The rest of this paper is structured as follows. Section 2 discusses related
work, while Section 3 introduces the details of the new algorithm. Section 4
provides an experimental evaluation. Section 5 shows demonstrator appli-
cations using the new algorithm. Driven by the discussion in Section 6,
conclusions are drawn in Section 7.

2 Related Work

The review that follows focuses on exhaustive approaches, with the excep-
tion of the discussion of indexes to misspellings. The following exhaustive
algorithms are discussed: edit distance, NR-grep, n-grams and cosine simi-
larity, keyword trees and suffix indexes, and neighborhood generation.



2.1 Edit Distance

Edit distance, ED [19], is the minimum number of operations required to
transform one string into another, with operations being a deletion, an in-
sertion or a replacement. For example, ED(test,fest) = 1, requiring one
replacement of the first ¢ in test with an f. ED calculation uses dynamic
programming, DP, and a matrix d of size (|s1| 4+ 1)(|s2| + 1), where |s1| and
|s2| are the lengths of strings sI and s2, and i = 0..|s1|, j = 0..|s2|. d is
defined as follows.

dli,0] = 4,
dlo,j] = J,
dli,j —1] + 1,

dli — 1,5 — 1] + (if sl[i] = s2[j] then 0 else 1))

Table 1 shows a matrix for test and fest. The values in bold show a min-
imum edit cost path. The time complexity of DP is O(|s1||s2|). A simple
algorithm searching a dictionary for similar words using ED will iterate over
all dictionary words and use DP to align every word to the query. This
approach scales linearly with dictionary size, and, for large dictionaries, is
slow. Faster algorithms are described in the following.

Table 1: Example DP calculation matrix
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2.2 NR-grep

Navarro’s NR-grep [24] is an exhaustive online similarity search algorithm.
NR stands for non-deterministic reverse pattern matching, where non-
determinism refers to the pattern automaton used. NR-grep uses bit-
parallelism and forward and backward searching. It splits the query of
length m into words, to match register word size w. The number of such
words is [m/w]. This allows for efficient approximate matching by using a
strategy for query splitting and result assembly, combined with automata



accepting words with up to a certain number of errors. NR-grep uses ED en-
hanced with a swap operation, as misspellings often include transpositions.
Algorithm complexity is linear in the size of the target data, but, overall,
significantly better than other linear approaches.

2.3 N-grams and Cosine Similarity

An n-gram index of a target dataset is created by sliding a window of length
n over the data and noting the content and position of all such windows.
N-grams can be overlapping or non-overlapping and represent an offline ap-
proach, with the index being either memory- or disk-resident. As a similarity
metric one can use the number of shared n-grams in the query and the in-
dex. An example target abracadabra, split into 3-grams, produces (abr,1),
(aca,4), (dab,7), and (bra,9). With a query bbracadabra, having a 3-gram
list (bbr,1), (aca,4), (dab,7), (bra,9), ED is 1, as only the first two n-grams,
abr and bbr differ in one letter. Strings s1 and s2, with FD=Fk share at least
|s1| —n+ 1 — kn n-grams, which provides a filter, and requires a verification
phase [25].

An extension of this approach for large text collections uses cosine simi-
larity [23], which is a global measure. All n-grams present in the target data
are represented as a vector of their frequencies. A query is decomposed into
a n-gram vector of the same dimension, and a lookup in the index follows.
Similarity is measured by the scalar product (cosine) of these two vectors i
and 7: .

"J

divl

A similar approach is used in DB2 Net Search Extender [3] and Apache
Lucene [1].

S

cos(i, ) =

2.4 Keyword Trees and Suffix Indexes

Tree-shaped indexes in combination with DP can be used to find similar
words under ED model [28, 15, 17, 12, 18]. The complexity of search for a
word of length m over an alphabet of size s with k£ mismatches in suffix trees
without suffix links is O(s %)), as the tree is traversed to the depth m + k
and each node can have up to s children. This figure is smaller if suffix links
are used and search is terminated as soon as one can tell that a match is
not possible. Since a tree encodes only the strings present in the data, the
actual search space is often much smaller than the theoretical bound.



2.5 Search with Neighborhood Generation

Search with sub linear complexity was proposed by Myers [21], with focus
on DNA sequences consisting of letters A,C,G, and T. The target data are
indexed using n-grams arranged into bins, and hashing maps each word to
an integer. A query is split into words of length ¢q. For each such word
a neighborhood of all words with a given ED is generated and the candi-
date words are fetched from the index, and assembled into longer matches.
Neighborhood generation works well with low & and small alphabets [26].

2.6 Indexing Misspellings

Although seemingly inefficient, this is what actually happens in search en-
gines which show to the user an alternative spelling of the query term, but
are based on data mining and not on exhaustive search. In FLASH [14]
patterns with misspellings are indexed, and matching is based on statistics.
FLASH indexes proteins and uses heuristics to deliver fast matching of high
sensitivity. It could be said that FastSS follows a similar approach, by in-
dexing words with deletions, but with guarantees of exhaustivity. To our
knowledge, such an approach has not been reported on before, and next
section explains FastSS in detail.

2.7 Related Work Overview

Algorithms for similarity searching can be categorized as online or offline,
exhaustive or heuristic, and using a global or a local metric of similarity.
Online algorithms search without pre-processing the target data, and need to
traverse all data during the search. Offline algorithms pre-process the target
data and may store it in memory or on disk to speed up query processing. In
contrast to exhaustive algorithms which guarantee to find all occurrences of
the query in the target, heuristic algorithms may not find all similar data. In
heuristics, a reduction of the search time is achieved by evaluating only the
statistically interesting patterns. However, heuristics are not suitable where
all similar data needs to be found. Global metrics measure the similarity
of all target data to the query, while local metrics measure the similarity
between some part of the target and the query.

In this section all presented algorithms are exhaustive and based on the
local similarity model. Edit distance and NR-grep are online algorithms,
n-grams and cosine similarity, keyword trees and suffix indexes, and neigh-
borhood generation are offline algorithms. FastSS is an exhaustive, offline
search, based on the local similarity model.



3 Fast Similarity Search

This subsection motivates FastSS with selected examples and then presents
the newly developed algorithm in detail. Then, three variants of FastSS are
presented.

3.1 Examples

The following five examples demonstrate the basic concept of FastSS.

3.1.1 Example: Deletion

Expression d(w,p) stands for the transformation of word w by deletion of
the letter at position p, d(test,1)=est and d(test,2)=tst.

3.1.2 Example: Indexing

For a given maximal number of deletions k, the results of all possible dele-
tions in a given word are indexed. Deletions are applied recursively, and
indices of deleted letters are ordered. For a word super with k = 2 the follow-
ing relationships will be indexed. Zero deletions produces super — (super);
one deletion produces uper — (super,1), sper— (super,2), suer — (super,3),
supr — (super,4), and supe — (super,5); and two deletions produce for each
of the words with one deletion four variants, for instance for uper — (su-
per,1), adding a deletion produces per — (super,1,1), uer — (super,1,2),
upr — (super,1,3) and upe — (super,1,4).

3.1.3 Example: Single Deletion

Figure 1 shows that one deletion produces strings with edit distance=1,
since east can be transformed to est by deleting a.

Positions: 1 2 3 1234

E‘e@st

Deletion of position 1 St as t

Deletion of position 2 e t eDS t
a

Deletion of position 3 es e
Deletion of position 4 eas

Figure 1: Deletion of a at position 2 in east produces est.



3.1.4 Example: Two Deletions, Same Position

Figure 2 shows that d(test,1) = d(fest,1) = est. A replacement {—f at
position 1 corresponds to two simultaneous deletions, one in the query test
and the other in the target fest, and models one replacement, with ED=1.

Positions: 123 4 1234
testleest
‘Deletion of position 1 es t‘ es t‘
Deletion of position 2 t S t f St
Deletion of position 3 te t fe t
Deletion of position 4 te S fe S

Figure 2: Replacement t— fat position one of test, to generate fest, modelled
via deletions.

3.1.5 Example: Two Deletions, Different Positions

Figure 3 shows that two deletions at two different positions, d(test,1) and
d(east,2) can produce the same effect, est, but in this case ED(test,east)=2,
modeling a composition of two edit operations.

Positions: 1 23 4 1234

Hesti\e@st

‘ Deletion of position 1 LE ) t‘ as t

Deletion of posmon 2 t St
Deletion of position 3 te

Deletion of position 4 teS ea S

Figure 3: Deletion of ¢ at position one of test, and deletion of a at position
2 in east produce the same result est.

3.2 Formalization

A general form of applying the recursion for a k-deletion neighborhood Uy

of word v is:
[v]

= |J tald(v, 9), k — 1).
g=1

Theorem 1. For strings s1, s, character position x and recursion depth r,
if dy(s1,x,) = so then ed(s1,s2) =r. (see example in section 3.1.3)



Proof. A deletion is an edit distance operation and performing r deletions
produces edit distance r. ]

Theorem 2. For strings s1, sa, character position x and recursion depth
r, if dr(s1,x,) = dy(s2,x,) then the edit distance is ed(s1,s2) = r. (see
example in section 3.1.4)

Proof. Performing r deletions at the same position in two strings corre-
sponds to r character substitutions between the strings, resulting in edit
distance of r. O

Theorem 3. For the strings s1, s, character positions x, y, where r # vy,
and recursion depth r, if d,.(s1,2,) = d.(s2,y,) then ed(s1,s2) = 2r. (see
example in section 3.1.5)

Proof. First, r deletions are performed to transform s; into d,(s1,z,) and
then r inserts to transform d,(s1,,) into s9, using 2r edit operations. [

Theorem 4. Given two sorted lists of delete positions x, y, two equal strings
resulting from the application of those deletions, f(x,y) as defined below,
x = [xg,.., &), hd(x) = xo and tl(z) = [z1,..,2,], f(z,y) is equivalent to
the edit distance.

( 0 : az=[y=] (@

2| : £ y=] (2

f(ac ): ‘y| x:ﬂ>y7’éﬂ (3)
Y 1+ f(t(z),y) : hd(z) < hd(y) (4)
1+ fz,tl(y)) : hd(z) > hd(y) (5)

1+ f(tl(z),tl(y) : hd(z) =hd(y) (6)

Proof. (1)-(3) are stop conditions. (2) and (3) are explained by Theorem 1.
In (1) ED=0, as there are no delete positions to consider. (4) and (5) are
explained by Theorem 3, define the induction steps, and apply if a delete
position in z is not present in y and vice versa. (6) is explained by Theorem 2
and applies if a delete position is present in both z and y, which denotes a
replacement. O

3.2.1 Indexing

For all words in a dictionary, and a given number of edit operations k, FastSS
generates all variant spellings recursively and save them as tuples of type
vl € Uy(v, k) — (v,x) where v is a dictionary word and z a list of deletion
positions.



Theorem 5. Index uses O(nm**1Y) space, as it stores all the variants for n

dictionary words of length m with k mismatches.

Proof. There are C¥ = (7,?) ways of deleting k letters out of m. This is
equivalent to O(m¥). Since there are n words to index with word length m,
index size is O(nm"). O

3.2.2 Retrieval

For a query p and edit distance k, first generate the neighborhood Uy(p, k).
Then compare the words in the neighborhood with the index, and find
matching candidates. Compare deletion positions for each candidate with
the deletion positions in Uy(p, k), using Theorem 4.

Theorem 6. If the deletion dictionary is accessed using hashing, search
complexity is O(km").

Proof. Neighborhood generation requires O(m*) time. A hashed data struc-
ture finds all O(m*) candidates in O(m*) time. For each candidate two
sorted deletion lists of size k are compared. Thus the search complexity is
O(kmk). O

Theorem 7. Search complexity is O(km"*log(nm¥)) if the deletion dictio-
nary s stored in an index with logarithmic access time.

Proof. Neighborhood generation requires O(m*) time. A tree index needs
O(log(nm*)) time to find all candidates. A deletion list comparison needs
O(k). Thus the search complexity is O(km* log(nm*)). O

3.2.3 Generalization

In a natural language, such as English, m can be seen as constant, as the
longest word in the Oxford English Dictionary contains 30 letters. With m
and k constant, lookup time with hashed index access is O(1) and with log-
arithmic access is O(log(n)). The following sections present this algorithm
and two variants based on the above concepts.

3.3 FastSS

Figure 4 shows the pseudo code for FastSS. The index Indez stores all word
variants with deletions and positions of deletions for each variant. For a
query p, its deletion neighborhood is generated and stored in pVariants.
Then each variant pMatch is looked up on disk via the Indezx.get(pMatch)

10



FSS(String p, k) {
Resultlist results = new List<String>
Stringlist pVariants = precalculate(p, k)
for pMatch in pVariants {
for candidate in Index.get(pMatch) {
if (FastED (candidate, pmatch) <=k) {
results.add(candidate)

}

}
return results
}
//compare deletion lists, return ED
int FastED(p1[l, p2[1) {
int updates = O;
for (int i=0,j=0;i<pl.length && j<p2.length;) {

if (p1[i] == p2[jl) { //a substitution
updates++;
j++;
i++;

}

else if (p1[i]l < p2[jl) i++; //ins or del
else if (p1[i] > p2[jl) j++; //ins or del
}
return pl.length + p2.length - updates;

Figure 4: Search using FastSS.

method, deletion positions are compared for each candidate by the method
FastED, to find matches satisfying the edit distance k, and the results are
output. FastED implements Theorem 4, using deletion lists pl and p2. It
returns the sum of both array lengths minus the number of substitutions. If
pl=p2, the edit distance is |pl| = [p2| = updates.

3.4 FastSS with Candidates

This variant of FastSS, FastSS with candidates (FastSSwC), reduces space
requirements of the index, but increases the search time complexity by not

11



storing a list of deletions for each word in the neighborhood. Instead, dy-
namic programming (DP) is used to verify candidate matches.

3.4.1 Indexing

For each indexed word and a given k£ only the words in the deletion neigh-
borhood are stored, pointing to the original word, and no additional infor-
mation. The space bound is the same as for FastSS, O(nmF). Uy(fest,?2)
contains fest, est, fst, fet, fes, fe, fs, ft, es, et, st pointing to fest. As the
dictionary contains words like jest, best, also producing the misspelling est,
est will point to a list containing fest, best, jest and possibly other words.

3.4.2 Retrieval

Figure 5 shows the pseudo code for FastSS with candidates. A query neigh-
borhood pVariants is first generated. This is looked up in the index, to
return candidates that are within a given edit distance, and those with a
higher ED. Results are verified using the edit distance formula implemented
in procedure D P, see example in Table 1. The time complexity of the search
is composed of the lookup cost of a term in a deletion dictionary with nm®*
terms, and the cost of dynamic programming for each candidate, where
O(m*) words are compared to ¢ candidates in the deletion dictionary. With
hashed index access this leads to O(ecmF) time, and with log time index
access to O(cmFlog(nmF)), as DP needs O(m?) time for each candidate.

FSSwC(String p, int k) {
Stringlist results = new List<String>
Stringlist pVariants = precalculate(p, k)
for pMatch in (pVariants) {
for candidate in Index.get(pMatch) {
if ( DP (candidate, pMatch) <= k) {
results.add(candidate)

3

3

return results

Figure 5: FastSS with candidates and DP.

12



3.5 Fast Block Similarity Search

Theoretical time and space complexities are similar to FastSS with candi-
dates. However, due to the fact that the index stores only non-redundant
keys, the actual space usage is smaller that that of FastSSwC.

3.5.1 Indexing

The term b-gram or block is used here to represent distinct non-overlapping
substrings of the mutated dictionary words, of maximum length b. The
index in Table 2, right column, consists of non overlapping distinct b-grams
(blocks) of length 1 to 3 and shows six such b-grams. The example word in
the deletion neighborhood, est1, with b = 3 is split into [est/ and [1]. Only
unique b-grams are stored for each neighborhood, to remove redundancy.
For example, the 2nd mutated sequence for test, tst1, is split into [tst] and
[1]. As [1]is already a key, derived from est1, it is not repeated in the index.

Table 2: Uy(testl, 1) index keys for FastSSwC, and for FastBlocksSS with
b=3.

FastSSwC FastBlockSS
est1l [est][1]
tstl [tst]
tetl [tet]
tesl [tes]
test [t]
20 letters | 14 letters, 6 b-grams

3.5.2 Retrieval

Figure 6 shows the pseudo code for FastBlockSS. First, generate a neighbor-
hood preList of the query p, for up to k deletions. Second, for each word bl
in the neighborhood generate a list of b-grams of size b or smaller. Third,
process all the b-grams. For the first block, all matching blocks in the in-
dex, and all the words those blocks map to, are placed in a tmpList. Then,
for each subsequent b-gram, the intersection of the tmpList and the word
list pointed at from the next block are found. This finds all the dictionary
words with an identical list of blocks. Those candidates are then verified
using DP.

13



FastBlockSS(String p, int k, int b) {
Stringlist results = new List<String>
Stringlist candidates = new List<String>
Stringlist prelList = precalculate(p,k)
for bl in prelist {

Stringlist icand = new List<String>
Stringlist blocks = bl.split(b)
for block in blocks {
tmpList=Index.get (block)
if (first block)
icand.add(tmpList)
else
icand=intersect(icand,tmpList)
b

candidates.add(icand)

for cand in candidates {
if DP(cand,p)<=k results.add(cand)
}

return results

Figure 6: Search using FastBlockSS with DP.

4 Evaluation

This section describes the testing data, the evaluation environment, and the
experimental results.

4.1 Implementation

The benchmarks are presented in the following order: linear search based
on DP, NR-grep, keyword tree, n-grams, and FastSS. All the software with
the exception of NR-grep was implemented in Java and used String for
string manipulation, and HashMap, TreeMap, and HashSet classes as data
structures. To measure the index size, Java serialization is used.

14



4.1.1 Dynamic Programming

The DP algorithm was adapted from the Java implementation shown
at http://en.wikipedia.org/wiki/Levenshtein distance#Java. The
benchmark iterated over all dictionary words, and calculated a full DP ma-
trix for each query.

4.1.2 NR-grep

NR-grep was obtained from G. Navarro’s web pages [24]. NR-grep is a fast
and flexible text searching tool, which is written in C. It was run with the
parameter £ = 2, and set to use inserts, deletes and replacements, using
option -dis.

4.1.3 Keyword Tree

Keyword tree implements the algorithm described by Gusfield [17], page 266
and following, called hybrid dynamic programming. The index structure
represents each letter occurrence by a tree node, with hashed access to chil-
dren via a Java HashMap class. DP similarity search algorithm has been
implemented on top of this structure. To match a query of length p with &
mismatches, one uses a matrix of size (p +k+ 1) - (p + 1) to calculate the
minimum cost path. This algorithm starts by filling the matrix with the
pattern. The next step is to fill the matrix recursively with characters from
the keyword tree. The words which share a prefix are not fully re-evaluated
and their shared prefixes are effectively skipped while evaluating the mini-
mum cost path at every character in the tree. If the minimum cost path has
exceeded the specified number of edit operations, then this path will not be
evaluated further.

4.1.4 Neighborhood Generation

Neighborhood generation was implemented for an alphabet of 26 letters,
following [21]. It produces a large number of words not present in the dic-
tionary. Neighbors were generated for a given k£ and looked up in an index.
The index used Java class HashSet to store the dictionary.

4.1.5 N-grams

N-grams were implemented with n = 2,3,4 (2-gram, 3-gram, and 4-gram)
and stored in three separate HashMaps. Depending on the minimum number

15



of common subsequences (mcs), as defined by the factors n (n-gram length),
word length p, and number of mismatches k, one of the three HashMaps
was chosen to perform the lookup. A desired property is to search first in
4-grams, then 3-grams and then 2-grams, as the larger the n, the fewer the
n-grams. However, for short queries, no common subsequences may exist,
and the complete dictionary has to be scanned, in O(n) time. N-grams are
indexed in a HashMap. For a faster lookup, the position of the n-gram in
each word, together with the n-gram itself, have been indexed, resulting in
a larger index and, possibly, a shorter lookup time, as fewer candidates will
be found. Before a lookup is performed, the required number of minimum
common subsequences mcs is calculated, mes = [p| —n+1—kn. The lookup
is then performed to search mcs n-grams that match the n-grams from p.
2k 4+ 1 n-grams are fetched, as the position of an n-gram may vary 2k + 1
from the n-gram position in p. The results found are candidates and are
verified with DP.

4.1.6 FastSS

FastSS was implemented with default hash and string functions. For FastSS,
each tupel created via a deletion (mutated string, deletion position) points to
the original dictionary word in a HashMap. For FastSSwC, each variant string
points to the original dictionary word in the same way, and in FastBlockSS
each b-gram points to the original dictionary word. An implementation
of the same data structure using a TreeMap in Java was also undertaken,
but proved not to be competitive. This is briefly discussed in the following
section, with reference to Figure 7, which shows times for the HashMap.

4.2 In-Memory Measurements

This section provides details of in memory tests carried out. The evaluation
was performed on a Pentium 4, 3.6 GHz, with 1 GB RAM, 16 KB level
1 cache, 2 MB level 2 cache, Java HotSpot(TM) Client VM 1.5.0_.06, and
Debian Linux with the 2.4.29 kernel. The running time of all evaluations
was approximately one week. All tests were performed for 1000 queries,
50 times for each query, and from all test runs and queries the mean was
calculated. The test involved a lookup of a randomly chosen word from the
dictionary. The size of a b-gram for FastBlockSS was set to 4 for the English
dictionary and 8 for the randomly generated dictionary, the edit distance
was set to 2.

Figure 7 shows the average time for a lookup in an English dictionary
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containing between 1,000 and 42,869 words (dictionary size on the x-axis).
The dictionary is based on [4], but contains only characters [A-Za-z]. This
graph shows the three FastSS variants. FastSS which uses the knowledge
of delete positions is the fastest, and performs 1000 queries in less than
70 ms. FastSS with candidates requires the execution of DP and is up to
three times slower. FastBlockSS is the slowest of the three and returns
results in less than 900 ms, one order of magnitude slower than FastSS with
delete positions. This is due to the large amount of intermediate candidates
and candidate checking, involving DP calculation. The fluctuation in the
FastBlockSS graph is due to the variation in the number of blocks that are
shared between the query and the indexed dictionary, and the subsequent
variation in the amount of DP that is executed.
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Figure 7: Lookup time for the three FastSS variants in an English dictionary

At this point a comparision of TreeMap and HashMap for FastSS and
FastSSwC was undertaken. When TreeMap was used, lookup time doubled
for FastSS to 150 ms, and FastSSwC time was 1.5 times longer, averaging
300 ms.

An overview of all algorithms looking up words in an English dictionary
is presented in Figure 8 which uses a logarithmic scale for the y-axis. The
family of FastSS algorithms perform about one to two orders of magnitude
faster than the keyword map (keyword tree), n-grams, and NR-grep, which
show similar performance, although the keyword map and n-grams use in-
dexing and NR-grep does not. This is undoubtedly due to the fact that
NR-grep is highly optimized and exploits the computer architecture bet-
ter than our Java implementation of the keyword map. Both linear search
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and neighborhood generation are not competitive, and perform lookups in
40,000 words in 50 to 100 seconds on average. The n-grams graph is shaky,
as n-grams will not work for short words and the complete dictionary have
to be scanned.
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m Linear Search* Keyword Map 2« NRGrep @ FastSSwC¥ FastSS
» FastBlockSS#* Neighborhood Generationt N-grams

Figure 8: Lookup time in an English dictionary (log scale)

Figures 9 and 10 show average lookup time in ms in a randomly generated
dictionary. The dictionary contains up to 10,000 words and the length of a
word is chosen randomly to be between 3 and 30 characters. Figures 8 and 10
show that FastSS and its variants are considerably faster then all other
algorithms. For the random dictionary, FastSS and FastSS with candidates
perform the queries in under 250 ms, FastBlockSS in less than 750 ms. In
the order of performance n-grams come next, followed by NR-grep, followed
by the keyword map (keyword tree), and the linear search. Neighborhood
generation is the slowest, as for long words the neighborhood size grows
exponentially with word length.

It is interesting to observe that the keyword tree is slower with the
randomly generated dictionary than with the English dictionary. This is
due to the increased word length and artificial letter frequencies. Similar
frequencies for all letters will lead to a more bushy tree, and with uncommon
letter combinations, each node will have more children than is observed in
English words.

Figures 11 and 12 show index size for the English and for the randomly
generated dictionary. This is measured as the size of the serialized Java
index object on disk, and does not apply to NR-grep and linear search,
which are online approaches. Index sizes of the FastSS algorithms appear to
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Figure 10: Lookup time in a randomly generated dictionary (log scale)

be linear in dictionary size, due to the fact that dictionaries have a fixed word
length, and k is fixed at 2. The smallest here is the keyword map, followed
by n-grams, FastBlockSS, FastSS with candidates, and finally FastSS. The
largest of those indexes, FastSS index has the fastest performance, while the
smallest (FastBlockSS) is the slowest of the three. This allows an application
programmer to select the index best suited to the memory and performance
requirements of the application using the index.

Figure 12 shows increased index sizes for the FastSS family of algorithms
for the random dictionary, in comparison to Figure 11 showing an English
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Figure 11: Index size for an English dictionary
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Figure 12: Index size for a randomly generated dictionary

dictionary. This is despite the fact that the number of words in the English
dictionary is four times the number of words in the random dictionary, and
the total volume of indexed text is twice as large as in the randomly gener-
ated dictionary. Specifically, the dictionary size is 165 KB for the randomly
generated dictionary and 388 KB for the English dictionary. The increased
index size for the random dictionary is due to the increased word length,
and a larger number of possible variants that are stored. The keyword map

is the smallest index for random text.

Figure 13 illustrates the relationship between word length and index size
in the random dictionary for FastSS and FastBlockSS for 100 words of in-
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Figure 13: Space usage with increasing word lengths

creasing length. FastBlockSS uses the concept of blocks to avoid redundancy
and uses less space that FastSSwC.

Figures 14 and 15 show index creation time in ms for the English and the
random dictionary for offline algorithms that pre-calculate the dictionary.
An index to an English dictionary can be built in less than 8 seconds. 10,000
random words can be indexed in under 8 seconds. FastBlockSS is the fastest
with respect to index creation time, because redundant blocks are not stored.
The keyword map and n-grams algorithm build indexes much faster than
FastSS algorithms.
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Figure 14: Index creation time for an English dictionary
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Figure 15: Index creation time for a randomly generated dictionary

Overall, FastSS and its variants perform faster than dynamic program-
ming, NR-grep, keyword map, neighborhood generation and n-grams. The
benefit is a faster search time, but it is combined with the drawback of
having to manage a large index and an initial index creation time.

4.3 Large Database Measurements

To measure and compare FastSS with a large dataset, 53,177 English
Wikipedia articles and meta pages[2] with at least 1000 characters each
have been indexed in a MySQL database (MySQL 4.0.24)[22] using FastSS,
with k=1, 2, 3, and n-grams, with n=2,3,4. The user selects in a web GUI,
which runs with Apache 2.0.54-5sargel [8], the method to use, which is either
FastSS or n-grams, and the edit distance k. A PHP script (PHP Version
5.1.6 without acceleration) [6], accessed via the GUI, measures the time for
a lookup for both methods with k=1, k=2, and k=3. In the measurements
reported here, the first cold test run is ignored, the following 10 warm test
runs search for the first 100 words in the dictionary.

N-grams do not support searching for short words. Therefore, only longer
words have been tested for both methods. A word of length 7 with 2-gram
and k=3 cannot be exhaustively searched using n-gram filtering as there may
not be any common n-grams. The fallback strategy to search the complete
dictionary would take too long. From the first 100 words from the dictionary,
16 words were skipped for k=1, 61 words were skipped for k=2, and 84 were
skipped for k=3. Effectively, for k=1 84 test words were used, for k=2, 39
words, and for k=3, 16 words were timed.
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4.3.1 Implementation

The implementation of FastSS and n-grams using a database to store the
index and data are described in the following. The indexes for 2-grams, 3-
grams, and 4-grams are stored in a database, using the following relations,
where FK stands for foreign key referencing the word id in the words table,
see below, and INT for integer.

2gram (gram CHAR(2), wid INT FK)
3gram (gram CHAR(3), wid INT FK)
4gram (gram CHAR(4), wid INT FK)

The index for FastSS with k=1, k=2, k=3 is stored in the database in
the following relations.

precalcl (precalc CHAR(20), wid INT FK)
precalc2 (precalc CHAR(20), wid INT FK)
precalc3 (precalc CHAR(20), wid INT FK)

N-gram and precalc relations reference the primary key (PK) called id
in relation words.

words (id INT PK, word CHAR(20))

The remaining information about the text units is stored in relation
wordlist, which encodes the document id (tid), word id (wid), word posi-
tion, and the length of the article or chapter.

wordlist (tid INT, wid INT, position INT)

The position of the n-gram and the position of the deletions for FastSS
are not considered, and both approaches use DP.

4.3.2 Performance

Index sizes for 53,177 English Wikipedia articles are shown in Table 3 for
FastSS and in Table 4 for n-grams. The dictionary created from Wikipedia
articles and metapages contains 465,498 words, utilizing 18.5 MB.

Table 5 shows the average time for one lookup of FastSS and n-grams
in a large dataset. A similarity search for both methods with k=1 is faster
than k=2 which in turn is faster than a similartity search with k=3. FastSS
clearly outperforms n-grams.
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Table 3: Index size for FastSS in MySQL

FastSS, k=1 ‘ FastSS, k=2 ‘ FastSS, k=3
1173 MB | 495.3MB | 1.5GB

Table 4: Index size for n-grams in MySQL

2-gram ‘ 3-gram ‘ 4-gram
40.8 MB | 39.7 MB | 58.8 MB

Table 5: Lookup time for similar words in a subset of the English Wikipedia
and meta pages

k=1 k=2 k=3
FastSS 0.01s|0.07s| 0.57s
N-grams | 0.29 s | 3.13 s | 35.06 s

5 Demonstrations

FastSS indexes deletions. This index can be stored in an SQL database, or
can be kept in memory. Both versions can be downloaded from the FastSS
project site[27]. The similarity search demo applications run on Debian with
the 2.4.29 kernel, PHP Version 5.1.6 without acceleration, Apache 2.0.54-
bsargel, and SQLite 3.2.8. The machine has an Intel(R) Pentium(R) 4 CPU
3.60 GHz with 16 KB level 1 cache, 2 MB level 2 cache and 1 GB RAM.

5.1 Moby Dick Demonstration

Fast Similarity Search (FastSS) is used to find similar words in 135 chapters
from the book Moby Dick; or The Whale by Herman Melville [20]. If a
similar word is found, the result page is shown with the chapters where the
word has been found and how fast the lookup was. This application does
not consider ranking. It performs a fast similarity search and the results
are displayed in the order they are found. The index and the chapters are
stored in an SQLite database [7] of size 32 MB. The size of the text itself is
1 MB.

The application, see Figure 16, is available online [27]. The GUI has a
query field and two buttons. After the similarity or exact search button has
been pressed, the lookup time along with not more than 40 matches will
be shown. This restriction has been made because a similarity search with
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File Edit View Go Bookmarks Iools Help @1 ‘@|'_._|ﬂpm’astss.csg‘uzh‘ch/Faer\m\Iar\tySearch‘p_hp?search:specwa\itles&appM

FastSS, k=2, Search Results | sreciities |

Exact Search | Similarity Search | home

Chapter 58
... sea; and though taking a broad general view of the thing, this may very well be; yet coming to specialties, where, for example,

does the ocean furnish any fish that in disposition answers to the sagacious kindness...
chapterIiD=58, wordID=11611, position=342

Chapter 76
... all obedient to cne volition, as the smallest insect. So that when | shall hereafter detail to you all the specialities and

concentrations of potency everywhere lurking in this expansive monster; when | shall show you some of his more...
chapterlD=76, wordID=12844, position=602

Time used for index search and content generation: 0.105213880539 s
Time used for similarity search 0.0157480239868 s
Time used for the complete site: 0.122380018234 s, with 16649 words, 87 SQL queries L

Figure 16: Screenshot: FastSS demo web page with similarity search in
Moby Dick.

a large edit distance and a short query produces a high load, due to many
matches being found. A search for the word dew in an English dictionary
with approximately 42,000 entries results in 153 similar words for the edit
distance equal or less than 2.

Two query options are provided in the application. Ome is an exact
search, the other is a similarity search that uses FastSS with up to two mis-
matches. When we enter the query test, the exact search returns 4 results
containing the word test, while the similarity search returns 31 results con-
taining the words meet, get, that, these, pent, must, just, left, Let, most, set,
feet, yet, Tell. The similarity search stops at chapter 1, because, otherwise,
it would exceed the limit of 40 matches.

5.1.1 Implementation

The implementation of FastSS using a database to store the index and data
are described using the following relations.

words (id INT PK, word TEXT)}
precalc (id INT PX, precalc CHAR(32),
wid INT, deletion INT)

The word test is stored in the relation words. precalc.deletion contains

the number of deletions, and precalc.wid references words.id. The index for
the chapter information is stored in relation wordlist.
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N-grams, k=1 | N-grams, k=2 | N-grams, k=3 | FastSS, k=1 | Fastss, k=2
Results g | Ng | Ng | | |
Fastss, k=3 | home

Article

already listed under the same categories. It is also much more appropriate clicking and finding an article rather than turning up a no
result when in the Webcomics section. No longer on Hiatus The manga is being updated and hence not on hiatus, ...
textiD=6667517, word|D=15879, position=980, length=7

Article

... asked for, which is somebody to volunteer to act as a messenger between myself and Curps. Since Curps appears intent on turning
this thread into a debate about me, instead of a simple request for assistance, | chose to ask for mediation with Curps...
textlD=16356323, word|D=15879, position=36647, length=7

Article
... tgossip. | call for its deletion. [[User:Shorne|Shorne]] 08:01, 12 Oct 2004 (UTC) :::: agree. This page appears to be turning into a list of
...... S - SO AU SR o MO O N g 3 7 SN < NI 8 LR L &3]

Figure 17: Screenshot: FastSS demo web page with similarity Search in
English Wikipedia and meta pages.

wordlist (cid INT, wid INT, position INT,
pre TEXT, original TEXT, post TEXT)

The ids of the similar words (wid), which have been found using the
index, are looked up to find the corresponding chapter id (cid). The columns
position, pre, original and post are used to display the result.

5.2 Wikipedia Demonstration

FastSS is used in this demonstration, see Figure 17, to find similar words
in 53,177 English Wikipedia articles and meta pages stored in a MySQL
database. If a similar word is found, the result page is shown with an
overview of articles found. This application does not consider ranking.

The GUI [27] shows six buttons. Three buttons search with FastSS and
k=1, k=2, and k=3. The other three buttons search with n-grams and k=1,
k=2, and k=3. After pressing one of this six buttons, the lookup time along
with not more than 40 matches will be shown. The implementation has
been presented in Section 4.3.1.

6 Discussion and Future Work

The size of the neighborhood defined by insertions, deletions, and replace-
ments, U,q,, is defined by the length of the dictionary word m, the alphabet
size s, and ED, k. The space complexity is O(mFs*) [26] since each of the
k positions selected out of m positions can be filled by s letters. This is
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considerably larger than the size of the deletion neighborhood Uy which is
O(m*).

Although the search using neighborhood generation has sub linear time
complexity in the size of the target data, and it is appropriate and effi-
cient for DNA and protein sequences [21], it is the slowest algorithm in the
evaluation performed. The large number of neighbors when using a large
alphabet and long words makes the algorithm slow and reflects the size of
the neighborhood, as predicted by theory. For an alphabet of 26 characters,
neighborhood generation generated 23,883 unique neighbors for the word
test with ED=2. These neighbors have to be created first and secondly
looked up in the index, which contributes to poor performance.

N-grams are slower in the measurements shown in Section 4 than FastSS,
as the list of candidates returned by n-grams is larger. The higher the
number of mismatches k to be searched for with n-grams, the fewer common
blocks between a query and the n-grams are found, and the more candidates
are present. The result will be a slower search as these candidates have to be
checked with dynamic programming. N-grams could be evaluated faster if a
faster dynamic programming algorithm, such as NR-grep [24] is used. FastSS
could be speeded up as well by additionally indexing delete positions. The
indexing of all delete positions and combinations of delete positions would
result in a faster search with FastSS, as no candidates would have to be
checked with dynamic programming.

The experimental evaluation shown here also indicates that using Uy,
to drive the generation of variants does not make sense in natural language
as many of those variants are not likely to exist. In U;q4. generation there
is more processing to generate the variants but a smaller index containing
only the dictionary words. In a deletion-based neighborhood U, the index
is larger, but the neighborhood is smaller and can be generated significantly
faster.

A reduction of index size using stemming could reduce the search time.
The drawback is that stemming is language-dependent. For every language
a different stemming algorithm has to be used. Another reduction method
is to skip frequent words such as “the” or “of”. Further reduction of the
dictionary size can be achieved by compression. Lossless compression can be
used as well as lossy compression, but with lossy compression results have to
be double checked with dynamic programming. FastSSwC and FastBlockSS
check the candidates with DP, therefore lossy compression would integrate
best with FastSSwC and FastBlockSS.

Edit operations modeled in FastSS and its variants are insertions, dele-
tions, and updates. A possible extension could be adding more operations,
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for instance a transposition of characters that are next to each other [11].
This kind of operation can be added without modifying the index structure
or without adapting the algorithm significantly. One would expect similar
performance and index size.

One drawback of FastSS is that the index can be large. For an edit
distance 2, the English dictionary has been stored in an index that is up
to 250 times larger than the dictionary. The index size for FastSS and its
variants can vary from 10 to 100 MB, while the dictionary size is 388 KB.
FastSS has been implemented in both in-memory and disk models. For large
dictionaries, like the one gathered from Wikipedia, the database index is a
more appropriate solution. A demo application [27] stores all information
in a relational database, and demonstrates a server scenario.

Future work will focus on the index and algorithm tuning, to speed up
the search.

7 Summary and Conclusions

This paper presents a fast similarity search algorithm for large dictionar-
ies, which is faster than other existing algorithms. The equivalence of a
deletion-based neighborhood and edit distance is demonstrated, and sub-
stantial experimental evidence backs the claim that FastSS outperforms all
algorithms compared with respect to the search time. These findings show
that pre-calculating and indexing the dictionary with only a subset of possi-
ble mutation operations reduces the time complexity significantly. Addition-
ally, it is faster in practice. Although only a subset of mutation operations
is used, the algorithm returns results that are equal to the edit distance by
combining deletions.

The algorithms outlined here could be used by a search engine in an
Intranet, a spell checker, or by a desktop search engine. However, for a real-
world application that improves the quality of a search, the edit distance
has to be adaptable, and a percentage identity measure can be a viable
alternative. The quality of the search will not be increased when searching
a short word with a high edit distance. A search for the word such as dew
with the edit distance less or equal 2, equivalent to a 33% identity, results in
153 words, while a search for the word database with the same edit distance,
results in 2 similar words. Ranking is also necessary to return best matches
first.

Another aspect is whether the tradeoff between the index size and the
increased lookup time is affordable for a real-world application. There is no
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general answer to this question, but due to the fact that FastSS is suitable
for databases and disk space is cheap, in scenarios with many lookups and
few updates this solution is very appropriate.
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