
Equalizer Programming Guide
Version 1.0 for Equalizer 0.4

Stefan Eilemann

Eyscale Software GmbH
Visualization and MultiMedia Lab

Technical Report IFI-2007.11, Department of Informatics, University of Zurich

Abstract

Equalizer provides a framework for the development of parallel real-time 3D graphics applications using OpenGL.
Equalizer-based applications can run from a single shared-memory system with one or multiple graphics cards up to large-
scale graphics clusters. This Programming Guide introduces the programming interface, often using the Equalizer eqPly
demo example as a guideline.

Equalizer is the next step in the evolution of generic parallel programming interfaces for OpenGL-based visualization
applications. Existing solutions, such as OpenGL Multipipe SDK, Cavelib and VRJuggler, only implement a subset of the
core parallel and distributed rendering concepts similar to Equalizer. In other areas, e.g., tracking device support, they
provide more functionality. In order to adapt an application to Equalizer, the programmer structures the source code so that
the OpenGL rendering can be executed in parallel, potentially using multiple processes for cluster-based execution.
Equalizer provides the domain-specific parallel rendering know-how and abstracts configuration, multi-threading,
synchronization, windowing and event handling. It is similar to GLUT, but providing parallel and distributed execution,
scalable rendering features and fully customizable event handling.

October 29, 2007

Visualization and MultiMedia Lab www.ifi.uzh.ch/vmml/

Equalizer Programming Guide
http://www.equalizergraphics.com/documents/Developer/ProgrammingGuide.pdf

Eyescale Software GmbH

Version 1.0 for Equalizer 0.4

October 29, 2007

Equalizer 0.4 Programming Guide

Contributors

Written by Stefan Eilemann.
Engineering contributions by Maxim Makhinya and Jonas Bösch.

Copyright

©2007 Eyescale Software GmbH. All rights reserved. No permission is granted to
copy, distribute, or create derivative works from the contents of this electronic docu-
mentation in any manner, in whole or in part, without the prior written permission
of Eyescale Software GmbH.

Trademarks and Attributions

OpenGL is a registered trademark, OpenGL Multipipe is a trademark of Silicon
Graphics, Inc. Linux is a registered trademark of Linus Torvalds. Mac OS is a
trademark of Apple Inc. CAVELib is a registered trademark of the University
of Illinois. The CAVE is a registered trademark of the Board of Trustees of the
University of Illinois at Chicago. Qt is a registered trademark of Trolltech. All
other trademarks and copyrights herein are the property of their respective owners.

Feedback

If you have comments about the content, accuracy or comprehensibility of this
programming guide, please contact eile@equalizergraphics.com.

Previous Page

The images on the front page show: a terrain rendering application on a six-node
display wall [top left], the eqPly polygonal renderer in a three-sided CAVE [middle],
two volume rendering results from eVolve1 [bottom left and middle] and a six-node
sort-last database decomposition with parallel direct-send recomposition2 [bottom
right].

1Data sets courtesy of General Electric, USA and AVS, USA
2Data set courtesy of Stanford University Computer Graphics Laboratory

mailto:eile@equalizergraphics.com?subject=Equalizer%20Programming%20Guide

Contents

1 Introduction 1

2 Getting Started 1
2.1 Installing Equalizer and running eqPly 1
2.2 Equalizer Processes . 1

2.2.1 Server . 1
2.2.2 Application . 2
2.2.3 Render Clients . 2

3 Hello, World! 2

4 The Programming Interface 3
4.1 Task Methods . 3
4.2 Execution Modeal and Thread Safety 3
4.3 Config . 4

4.3.1 Node . 5
4.3.2 Pipe . 5
4.3.3 Window . 6
4.3.4 Channel . 6

4.4 Compounds . 6
4.4.1 Compound Channels . 6
4.4.2 Frustum . 6
4.4.3 Compound Classification . 7
4.4.4 Decomposition - Attributes 7
4.4.5 Recomposition - Frames . 7

5 The eqPly polygonal renderer 7
5.1 The main Function . 8
5.2 Application . 9

5.2.1 Main Loop . 9
5.2.2 Render Clients . 11

5.3 Distributed Objects . 12
5.3.1 InitData - a Static Distributed Object 12
5.3.2 FrameData - a Versioned Distributed Object 13

5.4 Config . 13
5.4.1 Initialization and Exit . 13
5.4.2 Frame Control . 15
5.4.3 Event Handling . 15

5.5 Node . 16
5.5.1 Frame Control . 17

5.6 Pipe . 19
5.6.1 Initialization and Exit . 19
5.6.2 Window System . 19
5.6.3 Carbon/AGL Thread Safety 20
5.6.4 Frame Control . 20

5.7 Window . 20
5.7.1 Initialization and Exit . 20
5.7.2 Object Manager . 22

5.8 Channel . 23
5.8.1 Initialization and Exit . 23
5.8.2 Rendering . 23

6 Advanced Features 27
6.1 Event Handling . 27

6.1.1 Threading . 28
6.1.2 Initialization and Exit . 28
6.1.3 Message Pump . 28
6.1.4 Event Data Flow . 29
6.1.5 Custom Events in eqPixelBench 29

6.2 Image Compositing for Scalable Rendering 30
6.2.1 Parallel Direct Send Compositing 31
6.2.2 Frame, Frame Data and Images 31
6.2.3 Custom Assembly in eVolve 32

6.3 Head Tracking . 34

Rev Date Changes
1.0 Oct 28, 2007 Initial Version for Equalizer 0.4

1 Introduction

Equalizer provides a framework for the development of parallel OpenGL applica-
tions. Equalizer-based applications can run from a single shared-memory system
with one or multiple graphics cards up to large-scale graphics clusters. This Pro-
gramming Guide introduces the programming interface, often using the Equalizer
eqPly example as a guideline.

Equalizer is the next step in the evolution of generic parallel programming in-
terfaces for OpenGL-based visualization applications. Existing solutions, such as
OpenGL Multipipe SDK, Cavelib and VRJuggler, implement a subset of concepts
similar to Equalizer. In other areas, e.g., tracking device support, they provide
more functionality.

In order to adapt an application for Equalizer, the programmer structures the
source code so that the OpenGL rendering can be executed in parallel, poten-
tially using multiple processes for cluster-based execution. Equalizer provides the
domain-specific parallel rendering know-how and abstracts configuration, thread-
ing, synchronization, windowing and event handling. It is a ‘GLUT on steroids’,
providing parallel and distributed execution, scalable rendering features and fully
customizable event handling.

If you have any question regarding Equalizer programming, this programming
guide, or other specific problems you encountered, please direct them to the eq-dev
mailing list3.

2 Getting Started

2.1 Installing Equalizer and running eqPly

Equalizer can be installed by downloading the distribution4 and compiling the
source code. After installing Equalizer, please take a look at the Quickstart Guide5

to get familiar with the capabilities of the eqPly example.
Compiling Equalizer is as simple as running make on Linux or building the Equal-

izer Visual Studio 2005 solution on Windows. On Mac OS X 10.4 (Tiger), some pre-
requisites have to be installed before running make, as explained in README.Darwin.
Mac OS X 10.5 Leopard does have all the prerequisites installed by default.

2.2 Equalizer Processes

The Equalizer architecture is based on a client-server model. The client library ex-
poses all functionality discussed in this document to the programmer, and provides
communication between the different Equalizer processes.

2.2.1 Server

Each Equalizer server is responsible for managing one visualization system, i.e., a
shared memory system or graphics cluster. It controls and launches the application’s
rendering clients. Currently, Equalizer only supports one application per server, but
it will provide concurrent and efficient multi-application support in future.

3see http://www.equalizergraphics.com/lists.html
4http://www.equalizergraphics.com/downloads.html
5http://www.equalizergraphics.com/documents/EqualizerGuide.html

1

http://www.equalizergraphics.com/lists.html
http://www.equalizergraphics.com/downloads.html
http://www.equalizergraphics.com/documents/EqualizerGuide.html

2.2.2 Application

The application connects to an Equalizer server and receives a configuration. Fur-
thermore, the application also provides its render client, which will be controlled by
the server. The application reacts on events, updates its database and controls the
rendering.

2.2.3 Render Clients

libeq.so
Application

libeq.so
Application

Render Client

libeq.so
Application

Render Client

libeq.so
Application

Render Client

provides controls

drives libeq.so

Equalizer
Server

Figure 1: Equalizer Processes

The render client implements the rendering part
of an application. Its execution is passive, it has
no main loop and is completely driven by Equal-
izer, based on the rendering tasks received from
the server. The tasks are executed by calling
the appropriate task methods (see Section 4.1)
in the correct thread and context. The appli-
cation either implements the task methods with
application-specific code or uses the default meth-
ods provided by Equalizer.

The application can also be a rendering client,
in which case it can also contribute to the render-
ing. If it does not implement any render client-related code, it is reduced to be the
application’s ‘master’ process without any OpenGL windows and rendering code.

The rendering client can be the same executable as the application, as it is the
case with all provided examples. When it is started as a render client, the Equalizer
initialization routine does not return and takes over the control by calling the render
client task methods. Complex applications usually implement a separate, light-
weight rendering client.

3 Hello, World!

Figure 2: Hello, World!

The eqHello example is a
minimal application to il-
lustrate the basic princi-
ple of an Equalizer appli-
cation: The application de-
veloper has to implement
the rendering method Chan-
nel::frameDraw, similar to the
glutDisplayFunc in GLUT ap-
plications. It can be run as a
stand-alone application from
the command line.

The eqHello redraw func-
tion renders six rotating, col-
ored quads around the origin.
The frameDraw method pro-
vided by the eq::Channel can
be used as a convience function to setup the frustum and other OpenGL state.
After setting up some additional lighting parameter, eqHello rotates the scene and
render the quads using immediate mode:

void Channel : : frameDraw (const u in t 32 t sp in)
{

// se tup OpenGL Sta te

2

eq : : Channel : : frameDraw (sp in) ;

const f loat l i gh tPos [] = { 0 .0 f , 0 . 0 f , 1 . 0 f , 0 . 0 f } ;
g l L i gh t f v (GL LIGHT0 , GL POSITION, l i gh tPos) ;

const f loat l ightAmbient [] = { 0 .2 f , 0 . 2 f , 0 . 2 f , 1 . 0 f } ;
g l L i gh t f v (GL LIGHT0 , GL AMBIENT, l ightAmbient) ;

// ro t a t e scene around the o r i g i n
g lRota t e f (static cast< f loat >(sp in) * 0 .5 f , 1 . 0 f , 0 . 5 f , 0 .25 f) ;

// render s i x axis−a l i gned co lored quads around the o r i g i n
[. . .]

}

The eqHello main function sets up the communication with the server, initializes
and drives the rendering. The details of this setup are explained in Section 5.

4 The Programming Interface

Working on the parallelization of customer applications in order to scale the display
size and performance for 3D rendering. Design and development of scalable, parallel
graphics applications, 3D graphics software and hardware consulting.

Equalizer uses a C++ programming interface. The API is minimally invasive,
so Equalizer imposes only a minimal, natural execution framework upon the appli-
cation. It does not provide a scene graph, or interfere in any other way with the
application’s rendering code. The restructuring work required for Equalizer is the
minimal refactoring needed to parallelize the application for rendering.

Methods called by the application have the form verb[Noun], whereas methods
called by Equalizer (‘Task Methods’) have the form nounVerb. For example, the
application calls Config::startFrame to render a new frame, which causes –among
other things– Node::frameStart to be called in all active render clients.

4.1 Task Methods

The application inherits from Equalizer classes and overrides virtual functions to im-
plement certain functionality, e.g., the application’s OpenGL rendering in eq::Chan-
nel::frameDraw. These task methods are similar in concept to C function callbacks.
The eqPly section will discuss the most important task methods. A full list can be
found on the website6.

4.2 Execution Modeal and Thread Safety

Using threading correctly in OpenGL-based applications is easy with Equalizer.
Equalizer creates one rendering thread for each graphics card. All task methods
for a pipe, and therefore all OpenGL commands, are executed from this thread.
This threading model is the OpenGL ‘threading model’, which maintains a current
context for each thread. If structured correctly, the application rarely has to take
care of thread synchonization or protection of shared data.

The main thread is responsible for maintaining the application logic. It reacts
on user events, updates the data model and requests new frames to be rendered. It
drives the whole application, as shown in Figure 3.

The rendering threads concurrently render the application’s database. The data-
base should be accessed in a read-only fashion during rendering to avoid threading

6see http://www.equalizergraphics.com/documents/design/taskMethods.html

3

http://www.equalizergraphics.com/documents/design/taskMethods.html

problems. This is normally the case, for example all modern scene graphs use
read-only render traversals.

Application

init send tasks

trigger new
frame

wait for frame
finish

handle events

update
database

exit

Server Render Clients

init

send
render tasks

execute
render tasks

sync frame
finish

send tasks exit

idle
processing

Figure 3: Simplified execution model

All rendering threads in
the configuration run asyn-
chronously to the applica-
tion’s main thread. Depend-
ing on the configuration’s la-
tency, they can fall n frames
behind the last frame finished
by the application thread. A
latency of one frame is usually
not perceived by the user, but
can increase rendering perfor-
mance substantially.

Rendering threads on a sin-
gle node are by default syn-
chronized. When a frame
is finished, all local render-
ing threads are done drawing.
Therefore the application can
safely modify the data be-
tween the end of a frame and
the beginning of a new frame.
Furthermore, only one instance of the application data has to be maintained within
a process since all rendering threads are guaranteed to draw the same frame.

This per-node frame synchronization does not inhibit latency across rendering
nodes. Furthermore, advanced rendering software which multi-buffers the dynamic
parts of the database can disable the per-node frame synchronization, as explained
in Section 5.5.1. Some scene graphs do implement multi-buffered data.

4.3 Config

The eq::Config represents the current configuration of the application. The con-
figuration is the session in which all render clients are registered. A configuration
consists of the description of the rendering resources and the usage description for
these resources.

The rendering resources are represented in a hierarchical tree structure which
corresponds to the physical and logical resources found in a 3D rendering environ-
ment.

The resource usage is configured using a compound tree, which is a hierarchi-
cal representation of the rendering decomposition and recomposition across the
resources. It is explained in Section 4.4.

Figure 4 shows an example configuration for a four-side CAVE, running on two
machines (nodes) using three graphics cards (pipes) with one window each to render
to the four output channels connected to the projectors for each of the walls. The
compound description is only used by the server to compute the rendering tasks.
The application is not aware of compounds, and does not need to concern itself
with the parallel rendering logics of a configuration.

For testing and development purposes it is possible to use multiple instances
for one resource, e.g. to run multiple render client nodes on one computer. For
deployment, one node and pipe should be used for each computer and graphics
card, respectively.

4

Resource UsageConfigResources

compound
eye [LEFT RIGHT]

channel "left"
wall { ... }
swapbarrier{}

channel "front"
wall { ... }
swapbarrier{}

channel "floor"
wall { ... }
swapbarrier{}

channel "right"
wall { ... }
swapbarrier{}Channel

name "left"
viewport {...}

Window
viewport {...}

Pipe

Node Node

Window
viewport {...}

Pipe

Channel
name "floor"

Window
viewport {...}

Pipe

Channel
name "front"

Channel
name "right"
viewport {...}

Figure 4: An example configuration

4.3.1 Node

The eq::Node class is the representation of a single computer in a cluster. One
operating system process of the render client will be used for each node. Each
configuration might also use an application node, in which case the application
process is also used for rendering. All node-specific task methods are executed from
the main application thread.

4.3.2 Pipe

The eq::Pipe class is the abstraction of a graphics card (GPU). In the current imple-
mentation it is also one operating system thread. Non-threaded pipes are supported
for integrating with thread-unsafe libraries, but have various performance caveats.
All pipe, window and channel task methods are executed from the pipe’s thread, or
in the case of non-threaded pipes from the main application thread7.

Further versions of Equalizer might introduce threaded windows, where all window-
related task methods are executed in a separate operating system thread.

7see http://www.equalizergraphics.com/documents/design/nonthreaded.html

5

http://www.equalizergraphics.com/documents/design/nonthreaded.html

4.3.3 Window

The eq::Window class holds a drawable and an OpenGL context. The drawable can
be an on-screen window or an off-screen8 PBuffer or framebuffer object (FBO). The
window holds window-system-specific handles to the drawable and context, e.g., an
X11 window XID and GLXContext for the glX window system.

4.3.4 Channel

The eq::Channel class is the abstraction of an OpenGL viewport within its parent
window. It is the entity executing the actual rendering. The channel’s viewport
might be overwritten when it is rendering for another channel during scalable ren-
dering.

4.4 Compounds

Usage of the rendering resources is configured using a compound tree. Although
the API does not currently expose compounds, the basic design behind compounds
is explained here for a better understanding of the Equalizer architecture. Fur-
ther information on the configuration of compounds can be found on the Equalizer
website9.

4.4.1 Compound Channels

Each compound has a channel, which is used by the compound to execute the
rendering tasks. One channel might be used by multiple compounds. Unused
channels are not instantiated during initialization. The rendering tasks for the
channels are computed by the server and send to the appropriate render clients.

4.4.2 Frustum

projection

wall

dist
anc
e

position

bot
tom
-rig
htbottom-left

top-left

HPR
FOV

Figure 5: Wall and projection parameters

Compounds have a frus-
tum description to define the
physical layout of the display
environment.

The frustum description is
inherited by the children,
therefore the frustum is typi-
cally defined on the top-most
compound.

The frustrum can be speci-
fied as a wall or projection de-
scription.

A wall is completely de-
fined by the bottom-left,
bottom-right and top-left co-
ordinates relative to the ori-
gin.

The projection is defined
by the position and head-pitch-roll orientation of the projector, as well as the hori-
zontal and vertical field-of-view and distance of the projection wall.

Figure 5 illustrates the wall and projection frustum parameters.

8Off-screen drawables are not implemented yet, but can be created by the application and used
with Equalizer

9see http://www.equalizergraphics.com/documents/design/compounds.html

6

http://www.equalizergraphics.com/documents/design/compounds.html

4.4.3 Compound Classification

The channels of the leaf compounds in the compound tree are designated as source
channels. The top-most channel in the tree is the destination channel. Only source
channels execute rendering task. All channels in a compound tree work for the
destination channel. The destination channel defines the 2D pixel viewport rendered
by all leaf compounds. The destination channel and pixel viewport can not be
overridden by child compounds.

4.4.4 Decomposition - Attributes

Compounds have attributes which configure the decomposition of the destination’s
channel viewport, frustum and database. A viewport decomposes the destination
channel and frustum in screen space. A range tells the application to render a part
of its database, and an eye rendering pass can selectively render different stereo
passes. Setting one or multiple attributes causes the parent’s view to be decomposed
accordingly. Attributes are cumulative, that is, intermediate compound attributes
affect and therefore decompose the rendering of all their children.

4.4.5 Recomposition - Frames

Compounds use output and input frames to configure the recomposition of the
resulting pixel data from the source channels. An output frame connects to an input
frame of the same name. The selected frame buffer data is transported from the
output channel to the input channel. The assembly routine of the input channel
will block on the availability of the output frame. This composition process is
extensively described in Section 6.2.

5 The eqPly polygonal renderer

In this section the source code of eqPly is explained in detail, and relevant design
decisions, caveats and other remarks are raised.

The eqPly example is shipped with the Equalizer distribution and serves as a
reference implementation of an Equalizer-based application of medium complexity.
It focuses on the example usage of core Equalizer features, not on rendering features
or visual quality.

configInit
frameDraw

Channel

connectServer
disconnectServer

Client

chooseConfig
releaseConfig

Server

init
exit
startFrame
finishFrame
sendEvent
handleEvents
handleEvent

Config
configInit
configExit
frameStart
frameFinish

Node
configInit
configExit
frameStart
frameFinish

Pipe
configInit
configExit
frameStart
frameFinish
makeCurrent
swapBuffers

Window
configInit
configExit
frameStart
frameFinish
frameClear
frameDraw
frameReadback
frameAssemble

Channel

*

1
*

1

*
1

*1
*

1

*
1

run
Application

init
exit
startFrame
handleEvent

Config

configInit
configExit

Node configInit
configExit
frameStart

Pipe

configInit
configExit

Window

commit
sync
getVersion

setInstanceData
getInstanceData
applyInstanceData

setDeltaData
pack
unpack

Object

getInstanceData
applyInstanceData

InitData

FrameData

namespace eq

namespace eqPly

namespace eqNet

Figure 6: UML diagram of significant Equalizer and eqPly classes and task methods.

All classes in the example are in the eqPly namespace to avoid type name ambi-
guities, in particular for the Window class which is frequently used as a type in the

7

global namespace by windowing systems. Figure 6 shows how the most important
Equalizer classes are used through inheritance by the eqPly example.

The eqPly classes fall into two categories: Subclasses of the rendering entities
introduced in Section 4.3, and two other classes for distributing data. The function
and typical usage for each of the rendering entities is discussed in this section.

The distributed data classes are helper classes based on eqNet::Object. They
illustrate the typical usage of distributed objects for static as well as dynamic,
frame-specific data.

5.1 The main Function

The main function starts off with parsing the command line into the LocalInitData
data structure. A part of it, the base class InitData, will be distributed to all render
client nodes. The command line parsing is done by the LocalInitData class, which
is discussed in Section 5.3.1:
int main (int argc , char** argv)
{

// 1 . parse arguments
eqPly : : Loca l In i tData in i tData ;
in i tData . parseArguments (argc , argv) ;

The second step is to initialize the Equalizer library. The initialization function of
Equalizer also parses the command line, which is used to set certain default values
based on Equalizer-specific options10, e.g., the default server address. Furthermore,
a NodeFactory is provided. The EQERROR macro, and its counterparts EQWARN,
EQINFO and EQVERB allow selective debugging outputs with various logging levels:

// 2 . Equa l i z e r i n i t i a l i z a t i o n
NodeFactory nodeFactory ;
i f (! eq : : i n i t (argc , argv , &nodeFactory))
{

EQERROR << ” Equa l i z e r i n i t f a i l e d ” << endl ;
return EXIT FAILURE;

}

The node factory is used by Equalizer to create the object instances of the con-
figured rendering entities. Each of the classes inherits from the same type provided
by Equalizer in the eq namespace. The provided eq::NodeFactory base class in-
stantiates ’plain’ Equalizer objects, thus making it possible to selectively subclass
individual entity types, as it is done by eqHello. For each rendering resources used
in the configuration, one C++ object will be created during initialization:
class NodeFactory : public eq : : NodeFactory
{
public :

virtual eq : : Conf ig * c r ea t eCon f i g () { return new eqPly : : Conf ig ; }
virtual eq : : Node* createNode () { return new eqPly : : Node ; }
virtual eq : : Pipe* c r ea t eP ipe () { return new eqPly : : Pipe ; }
virtual eq : : Window* createWindow () { return new eqPly : : Window ; }
virtual eq : : Channel* createChannel () { return new eqPly : : Channel ; }

} ;

The third step is to create an instance of the application and to initialize it
locally. The application is an eq::Client, which in turn is an eqNet::Node. The
underlying network layer in Equalizer is a peer-to-peer network of eqNet::Nodes.
The application programmer does not usually have to be aware of the classes in the
eqNet namespace, but both the eq::Client and the server are eqNet::Nodes.

The local initialization of a node creates a local listening socket, which allows the
eq::Client to communicate over the network with other nodes, such as the server
and the rendering clients.
10Equalizer-specific options always start with - -eq-

8

// 3 . i n i t i a l i z a t i o n o f l o c a l c l i e n t node
RefPtr< eqPly : : App l i ca t ion > c l i e n t = new eqPly : : App l i ca t ion (in i tData) ;
i f (! c l i e n t −>i n i t L o c a l (argc , argv))
{

EQERROR << ”Can ’ t i n i t c l i e n t ” << endl ;
eq : : e x i t () ;
return EXIT FAILURE;

}

Finally everything is set up, and the eqPly application is executed:

// 4 . run c l i e n t
const int r e t = c l i e n t −>run () ;

After the application has finished, it is de-initialized and the main function re-
turns:

// 5 . c leanup and e x i t
c l i e n t −>ex i tLo ca l () ;
c l i e n t = 0 ;

eq : : e x i t () ;
return r e t ;

}

5.2 Application

In the case of eqPly, the application is also the render client. The eqPly executable
has three run-time behaviours:

1. Application: The executable started by the user, the controlling entity in
the rendering session.

2. Auto-launched render client: The typical render client, started by the
server. The server starts the executable with special parameters, which cause
Client::initLocal to never return. During exit, the server terminates the process.
By default, the server starts the render client using ssh.

3. Resident render client: Manually pre-started render client, listening on a
specified port for server commands. This mode is selected using the command-
line option –eq-client and potentially –eq-listen <address> and -r11.

5.2.1 Main Loop

The application’s main loop starts by connecting the application to an Equalizer
server. The command line parameter –eq-server explicitly specifies a server address.
If no server was specified, Client::connectServer tries first to connect to a server on
the local machine using the default port. If that fails, it will create a server running
within the application process with a default one-channel configuration12.

int Appl i ca t ion : : run ()
{

// 1 . connect to s e rve r
RefPtr<eq : : Server> s e r v e r = new eq : : Server ;
i f (! connectServer (s e r v e r))
{

EQERROR << ”Can ’ t open s e r v e r ” << endl ;
return EXIT FAILURE;

}

11see http://www.equalizergraphics.com/documents/design/residentNodes.html
12see http://www.equalizergraphics.com/documents/design/standalone.html

9

http://www.equalizergraphics.com/documents/design/residentNodes.html
http://www.equalizergraphics.com/documents/design/standalone.html

The second step is to ask the server for a configuration. The ConfigParams are
a placeholder for later Equalizer implementations to provide additional hints and
information to the server for choosing the configuration. The configuration chosen
by the server is created locally using NodeFactory::createConfig. Therefore it is of
type eqPly::Config, but the return value is eq::Config, making the cast necessary:

// 2 . choose con f i g
eq : : ConfigParams configParams ;
Conf ig * c on f i g = static cast<Config*>(s e rver−>chooseConf ig (configParams)) ;

i f (! c on f i g)
{

EQERROR << ”No matching c on f i g on s e r v e r ” << endl ;
d i s connec tSe rve r (s e r v e r) ;
return EXIT FAILURE;

}

Finally it is time to initialize the configuration. For statistics, the time for this
operation is measured and printed. During initialization the server launches and
connects all render client nodes, and calls the appropriate initialization task meth-
ods, as explained in later sections. Config::init does return after all nodes, pipes,
windows and channels are initialized. It returns true only if all initialization task
methods were successful.

The EQLOG macro allows topic-specific logging. The numeric topic values are
specified in the respective log.h header files, and logging for various topics is enabled
using the environment variable EQ LOG TOPICS:

// 3 . i n i t con f i g
eqBase : : Clock c l o ck ;

con f i g−>s e t In i tData (i n i tDa ta) ;
i f (! con f i g−> i n i t ())
{

EQERROR << ”Config i n i t i a l i z a t i o n f a i l e d : ”
<< con f i g−>getErrorMessage () << endl ;

s e rve r−>r e l e a s eCon f i g (c on f i g) ;
d i s connec tSe rve r (s e r v e r) ;
return EXIT FAILURE;

}

EQLOG(eq : :LOG CUSTOM) << ”Config i n i t took ” << c l o ck . getTimef () << ” ms”
<< endl ;

When the configuration was successfully initialized, the main rendering loop is
executed. The main loop runs until the user exits the configuration, or when a
maximum number of frames has been rendered, when specified by a command-line
argument. The latter is useful for benchmarks. The Clock is reused for measuring
the overall performance. A new frame is started using Config::startFrame and a
frame is finished using Config::finishFrame.

When the frame is started, the server computes all rendering tasks and sends
them to the appropriate render client nodes. The render client nodes dispatch the
tasks to the correct node or pipe thread, where they are executed in order of arrival.

Config::finishFrame synchronizes on the completion of the frame current - latency.
The latency is specified in the configuration file, and allows several outstanding
frames. This allows overlapping execution in the node and pipe threads and mini-
mizes idle times.

By default, Config::finishFrame also synchronizes the completion of all local ren-
dering tasks for the current frame. This facilitates porting of exising rendering
codes, since the database does not have to be multi-buffered. Applications such
as eqPly, which do not need this per-node frame synchronization can disable it, as
explained in Section 5.5.1.

10

1

3

2

1

1
1

2 2 2

1

2

3
3

3
3

Config Render Threads

(a)

1

3

2

4

1

1
1

2

2
21

2

3

3

3
3

4 4
4

Config Render Threads

4

(b)

Figure 7: Synchronous and asynchronous execution

Figure 7 shows the exe-
cution of (hypothetical) ren-
dering tasks without latency
(Figure 7(a)) and with a
latency of one frame (Fig-
ure 7(b)). With eqPly, a
speedup of 15% has been ob-
served on a five-node render-
ing cluster when using a la-
tency of one frame instead of
no latency13. A latency of
one or two frames is normally
not perceived by the user.

When the main render-
ing loop has finished, Con-
fig::finishAllFrames is called to
catch up with the latency. It
returns after all outstanding
frames have been rendered,
and is needed to provide an
accurate measurement of the
framerate:

// 4 . run main loop
u in t 32 t maxFrames = in i tDa ta . getMaxFrames () ;

c l o ck . r e s e t () ;
while (con f i g−>isRunning () && maxFrames−−)
{

con f i g−>startFrame () ;
// conf ig−>renderData (. . .) ;
con f i g−>f in i shFrame () ;

}
const u in t 32 t frame = con f ig−>f i n i shAl lFrames () ;
const f loat time = c lock . getTimef () ;
EQLOG(eq : :LOG CUSTOM) << ”Rendering took ” << time << ” ms (” << frame

<< ” frames @ ” << (frame / time * 1000 . f)
<< ” FPS) ” << endl ;

The remainder of the application code cleans up in the reverse order of initializa-
tion. The config is exited, released and the connection to the server is closed:

// 5 . e x i t con f i g
c l o ck . r e s e t () ;
con f i g−>e x i t () ;
EQLOG(eq : :LOG CUSTOM) << ”Exit took ” << c l o ck . getTimef () << ” ms” <<endl ;

// 6 . c leanup and e x i t
s e rve r−>r e l e a s eCon f i g (c on f i g) ;
i f (! d i s connec tSe rve r (s e r v e r))

EQERROR << ” C l i en t : : d i s connec tSe rve r f a i l e d ” << endl ;
s e r v e r = 0 ;
return EXIT SUCCESS ;

}

5.2.2 Render Clients

In the second and third use case of the eqPly, when the executable is used as a
render client, Client::initLocal never returns. Therefore the application’s main loop

13http://www.equalizergraphics.com/scalability.html

11

http://www.equalizergraphics.com/scalability.html

is never executed. In order to keep the client resident, the eqPly example overrides
the client loop to keep it running beyond one configuration run:

bool Appl i ca t ion : : c l i en tLoop ()
{

i f (! i n i tDa ta . i sRe s i d en t ()) // execute only one con f i g run
return eq : : C l i en t : : c l i en tLoop () ;

// e l s e execute c l i e n t l oops ’ f o r e v e r ’
while (true) // TODO: implement SIGHUP handler to e x i t ?
{

i f (! eq : : C l i en t : : c l i en tLoop ())
return fa l se ;

EQINFO << ”One con f i g u r a t i on run s u c c e s s f u l l y executed ” << endl ;
}
return true ;

}

5.3 Distributed Objects

Equalizer provides distributed objects which help implementing data distribution
in a cluster environment. The master version of a distributed object is registered
with a eqNet::Session, which assigns a session-unique identifier to the object. Other
nodes can map their instance of the object to this identifier, thus synchronizing the
object’s data with the remotely registered master version.

Distributed objects are created by subclassing from eqNet::Object. Distributed
objects can be static (immutable) or dynamic. Dynamic objects are versioned.

The eqPly example has a static distributed object to provide initial data to all
rendering nodes, as well as a versioned object to provide frame-specific data such
as the camera position to the rendering methods.

5.3.1 InitData - a Static Distributed Object

The InitData class holds a couple of parameters needed during initialization. These
parameters never change during one configuration run, and are therefore static.

On the application side, the class LocalInitData subclasses InitData to provide
the command line parsing and to set the default values. The render nodes only
instantiate the distributed part in InitData.

A static distributed object either has to provide a pointer and size to its data
using setInstanceData, or it has to implement getInstanceData and applyInstanceData.
The first approach can be used if all distributed member variables are stored in one
contiguous block of memory. The second approach is used otherwise.

The InitData class contains a string of variable length. Therefore it uses the
second approach of manually serializing and de-serializing its data. Serialization in
getInstanceData and de-serialization in applyInstanceData is performed by streaming
all member variable to or from the provided data streams. Efficient buffering and
data transport between nodes is implemented in the data streams:

void In i tData : : get InstanceData (eqNet : : DataOStream& os)
{

os << frameDataID << windowSystem << useVBOs << useGLSL << f i l e name ;
}

void In i tData : : applyInstanceData (eqNet : : DataIStream& i s)
{

i s >> frameDataID >> windowSystem >> useVBOs >> useGLSL >> f i l e name ;

EQASSERT(frameDataID != EQ ID INVALID) ;
EQINFO << ”New Ini tData in s t ance ” << endl ;

}

12

The data input and output streams perform no type checking on the data. It is
the application’s responsibility to exactly match the order and types of variables
during serialization and de-serialization.

5.3.2 FrameData - a Versioned Distributed Object

Versioned objects have to override isStatic to return false, which indicates that they
are versioned. The current implementation has the following characteristics:

� Only the master instance of the object is writable, that is, eqNet::Object::com-
mit can be called only on the master instance to generate a new version.

� Slave instance versions can only be advanced, that is, eqNet::Object::sync(
version) with a version smaller than the current version will fail.

� Newly mapped slave instance are mapped to the oldest available version.

Upon commit the delta data from the previous version is sent to all mapped
slave instances. The data is queued on the remote node, and is applied when the
application calls sync to synchronize the object to a new version. The sync method
might block if a version has not been committed or is still in transmission.

In addition to the instance data (de)serialization methods used to map an object,
versioned objects may implement pack and unpack to serialize or de-serialize the
changes since the last version.

If the delta data happens to be layed out contiguously in memory, setDeltaData
might be used. The default implementation of pack and unpack (de)serialize the
delta data or the instance data if no delta data has been specified.

The eqPly frame data is layed out in one anonymous structure in memory. It also
does not track changes since it is relatively small in size and changes frequently.
Therefore, the instance and delta data are the same and set in the constructor. The
default implementation will take care of the distribution of the data:

FrameData ()
{

r e s e t () ;
s e t Ins tanceData (&data , s izeof (Data)) ;
EQINFO << ”New FrameData ” << std : : endl ;

}

5.4 Config

The configuration is driving the application’s rendering, that is, it is responsible for
updating the data based on received events, requesting new frames to be rendered
and to provide the render clients with the necessary data.

5.4.1 Initialization and Exit

The config initialization happens in parallel, that is, all config initialization tasks are
transmitted by the server at once and their completion is synchronized afterwards.

The tasks are executed by the node and pipe threads in parallel. The parent’s
initialization methods are always executed before any child initialization method.
This parallelization is necessary to allow a speedy startup of the configuration on
large-scale graphics clusters. On the other hand, it means that initialization func-
tions are called even if the parent’s initialization has failed.

13

Config::init

Equalizer
Server

Pipe Threads

Application

Client Node
Processes

NodeFactory::
createNode

NodeFactory::
createChannel

NodeFactory::
createWindow

NodeFactory::
createPipe

Node::configInit

Pipe::selectWS
Pipe::configInit

Window::configInit

Channel::configInit

Figure 8: Config Initialization Sequence

The eqPly::Config class holds
the master versions of the ini-
tialization and frame data.
Both objects are registered
with the eq::Config, which is
the eqNet::Session used for
rendering. Equalizer takes
care of the session setup and
exit in Client::chooseConfig
and Client::releaseConfig, re-
spectively.

The frame data is regis-
tered before the initialization
data, since its identifier is
transmitted using the Init-
Data. The identifier of the
initialization data is trans-
mitted to the render client
nodes using the initID param-
eter of eq::Config::init.

Equalizer will pass this identifier to all configInit calls of the respective objects:

bool Config : : i n i t ()
{

// i n i t d i s t r i b u t e d o b j e c t s
frameData . data . c o l o r = in i tDa ta . useColor () ;

r e g i s t e rOb j e c t (& frameData) ;
i n i tDa ta . setFrameDataID (frameData . getID ()) ;

r e g i s t e rOb j e c t (& in i tDa ta) ;

// i n i t con f i g
running = eq : : Conf ig : : i n i t (i n i tDa ta . getID ()) ;

i f (! running)
return fa l se ;

If the configuration was initialized correctly, the configuration tries to set up a
tracking device for head tracking. Equalizer does not provide extensive support for
tracking devices, as this is an orthogonal problem to parallel rendering. Tracking
device support has already been solved by a number of implementations14, which
can easily be integrated with Equalizer. The example code in eqPly provides a
reference implementation for the integration of such a tracking library. Section 6.3
provides more background on head tracking.

// i n i t t r acke r
i f (! i n i tDa ta . getTrackerPort () . empty ())
{

i f (! t r a c k e r . i n i t (i n i tDa ta . getTrackerPort ()))
EQWARN << ” Fa i l ed to i n i t i a l i s e t r a cke r ” << endl ;

else
{

// Set up po s i t i on o f t r ac k ing system in world space
// Note : t h i s depends on the phy s i c a l i n s t a l l a t i o n .
vmml : : Matr ix4f m(vmml : : Matr ix4f : : IDENTITY) ;
m. s c a l e (1 . f , 1 . f , −1. f) ;
//m. x = . 5 ;
t r a c k e r . setWorldToEmitter (m) ;

m = vmml : : Matr ix4f : : IDENTITY;
m. rotateZ (−M PI 2) ;

14VRCO Trackd, VRPN, etc.

14

t r a c k e r . setSensorToObject (m) ;
EQLOG(eq : :LOG CUSTOM) << ”Tracker i n i t i a l i s e d ” << endl ;

}
}

return true ;
}

The exit function of the configuration stops the render clients by calling eq::Con-
fig::exit, and then de-registers the initialization and frame data objects with the
session:
bool Config : : e x i t ()
{

running = fa l se ;
const bool r e t = eq : : Conf ig : : e x i t () ;

i n i tDa ta . setFrameDataID (EQ ID INVALID) ;
d e r e g i s t e rOb j e c t (& in i tDa ta) ;
d e r e g i s t e rOb j e c t (& frameData) ;

return r e t ;
}

5.4.2 Frame Control

The rendering frames are issued by the application. The eqPly::Config only overrides
startFrame in order to update its data before forwarding the start frame request to
the eq::Config.

If a tracker is used, the current head position and orientation is retrieved and
passed to Equalizer, which uses the head matrix together with the wall or projection
description to compute the view frustra15.

The camera position is updated and the frame data is commited, which generates
a new version of this object. This version is passed to the rendering callbacks and
will be used by the rendering threads to synchronize the frame data to the state
belonging to the current frame:
u in t 32 t Config : : startFrame ()
{

// update head po s i t i on
i f (t r a c k e r . isRunning ())
{

t r a c k e r . update () ;
const vmml : : Matr ix4f& headMatrix = t r a c k e r . getMatrix () ;
setHeadMatrix (headMatrix) ;

}

// update database
frameData . data . r o t a t i on . preRotateX (−0.001 f * spinX) ;
frameData . data . r o t a t i on . preRotateY (−0.001 f * spinY) ;

const u in t 32 t ve r s i on = frameData . commit () ;

return eq : : Conf ig : : startFrame (ve r s i on) ;
}

5.4.3 Event Handling

Events are sent by the render clients to the application using eq::Config::sendEvent.
At the end of the frame, Config::finishFrame calls Config::handleEvents to do the
event handling. The default implementation processes all pending events by calling
Config::handleEvent for each of them.
15see http://www.equalizergraphics.com/documents/design/immersive.html

15

http://www.equalizergraphics.com/documents/design/immersive.html

For event-driven execution, the application can override Config::handleEvents to
blockingly receive events using Config::nextEvent until a new frame has to be ren-
dered.

The eqPly example continuously renders new frames. It implements Config::hand-
leEvent to provide the various reactions to user input, most importantly camera
updates based on mouse events. The camera position has to be handled correctly
with respect to latency, and is therefore saved in the frame data:

bool Config : : handleEvent (const eq : : ConfigEvent* event)
{

switch (event−>type)
{

[. . .]
case eq : : ConfigEvent : : POINTER MOTION:

i f (event−>pointerMotion . buttons == eq : :PTR BUTTON NONE)
return true ;

i f (event−>pointerMotion . buttons == eq : :PTR BUTTON1)
{

spinX = 0 ;
spinY = 0 ;

frameData . data . r o t a t i on . preRotateX (
−0.005 f * event−>pointerMotion . dx) ;

frameData . data . r o t a t i on . preRotateY (
−0.005 f * event−>pointerMotion . dy) ;

}
else i f (event−>pointerMotion . buttons == eq : :PTR BUTTON2 | |

event−>pointerMotion . buttons == (eq : :PTR BUTTON1 |
eq : :PTR BUTTON3))

{
frameData . data . t r a n s l a t i o n . z +=

.005 f * event−>pointerMotion . dy ;
}
else i f (event−>pointerMotion . buttons == eq : :PTR BUTTON3)
{

frameData . data . t r a n s l a t i o n . x +=
.0005 f * event−>pointerMotion . dx ;

frameData . data . t r a n s l a t i o n . y −=
.0005 f * event−>pointerMotion . dy ;

}
return true ;

default :
break ;

}
return eq : : Conf ig : : handleEvent (event) ;

}

5.5 Node

For each active render client, one eq::Node instance is created on the appropriate
machine. Nodes are only instantiated on their render client processes, i.e., each
process should only have one instance of the eq::Node class. The application process
might also have a node class, which is handled in exactly the same way as the render
client nodes.

During node initialization the init data is mapped to a local instance using the
identifier passed from Config::init. The model is loaded based on the filename in the
initialization data. No pipe, window or channel tasks methods are executed before
Node::configInit has returned.

bool Node : : c o n f i g I n i t (const u in t 32 t i n i t ID)
{

16

eq : : Conf ig * c on f i g = getConf ig () ;
const bool mapped = con f ig−>mapObject (& in i tData , i n i t ID) ;
EQASSERT(mapped) ;

const s t r i n g& f i l ename = in i tDa ta . getFi lename () ;
EQINFO << ”Loading model ” << f i l ename << endl ;

model = new Model () ;
i f (! model−>readFromFile (f i l ename . c s t r ()))
{

EQWARN << ”Can ’ t load model : ” << f i l ename << endl ;
delete model ;
model = 0 ;

}

return eq : : Node : : c o n f i g I n i t (i n i t ID) ;
}

The node config exit function deletes the loaded model and unmaps the initial-
ization data:

bool Node : : c on f i gEx i t ()
{

delete model ;
model = NULL;

eq : : Conf ig * c on f i g = getConf ig () ;
con f i g−>unmapObject (& in i tDa ta) ;

return eq : : Node : : c on f i gEx i t () ;
}

5.5.1 Frame Control

The application has extended control over the task synchronization during a frame.
Upon Config::startFrame, Equalizer invokes the frameStart task methods of the
various entities. The entities unlock all its children by calling startFrame, e.g.,
Node::frameStart has to call Node::startFrame in order to unlock the pipe threads.
Note that certain startFrame calls, e.g., Window::startFrame, are currently empty
since the synchronization is implicit due to the sequential execution within the
thread.

Likewise, Config::finishFrame causes the invokation of the frameFinish task meth-
ods. These task methods unlock their parents by calling releaseFrame.

The explicit synchronization of child or parent resources allows the application to
optimize the processing, by performing certain, independent operations when the
child or parent resources are already unlocked.

The default thread synchronization synchronizes all Channel::frameDraw opera-
tions on a single node with the node’s main thread. This facilitates porting, since
the scene database does not have to be multi-buffered as all threads of the node
process render the same frame.

The per-node frame synchronization does not break the asynchronous execution
across rendering nodes. Advanced applications can remove per-node frame synchro-
nization.

The per-node frame synchronization is achieved through the startFrame�wait-
FrameStarted and releaseFrameLocal�waitFrameLocal synchronization points. Note
that this synchronization is only per-node, different nodes in the cluster still run
asynchronously.

The first synchronization point ensures that the application (node) thread is
done modifiying the data, typically during event processing. The pipe threads call

17

Node::waitFrameStarted which blocks until the node calls startFrame in Node::frame-
Start.

The second pair ensures that after Config::finishFrame all pipe threads are done
rendering the current frame, and therefore do not access shared data. At this point
the application thread can safely modify scene data. The node’s frameDrawFinish
waits for all local pipes to release the synchronization by calling Pipe::releaseFra-
meLocal, which happens by default in Pipe::frameDrawFinish. The frameDrawFinish
methods are called after all Channel::frameDraw of the corresponding thread have
been executed.

Pipe(s)Application Node

Config::startFrame

Pipe(s)

Node::frameStart

Server

Config::finishFrame

Render ClientApplication

Node::startFrame
Node::frameStart

Node::startFrame Pipe::frameStart
Config::beginFrame

Pipe::frameStart

Pipe::startFrame

Node::frameFinish
Node::releaseFrame

Pipe::frameFinish
Pipe::releaseFrame

Node::waitFrameStarted

Node::frameDrawFinish
Pipe(s)::waitFrameLocal

draw tasks

Pipe::frameDrawFinish
Pipe::releaseFrameLocal

assemble tasks

Pipe::startFrame
Node::waitFrameStarted

Pipe::frameFinish
Pipe::releaseFrame

draw tasks

Pipe::frameDrawFinish
Pipe::releaseFrameLocal

assemble tasks

Node::frameFinish
Node::releaseFrame

Node::frameDrawFinish
Pipe(s)::waitFrameLocal

Figure 9: Synchronization of frame tasks

Figure 9 outlines the synchronization for the application, node and pipe classes.
Please note that Config::finishFrame does block until the current frame has been
released locally and until the frame current - latency has been released by all nodes.
The window and channel synchronization are similar and omitted for simplicity.

It is absolutely vital for the execution that Node::startFrame and Node::releaseFra-
me are called, respectively. The default implementation of the node task methods
does take care of that.

Since eqPly multi-buffers all dynamic data, it can completely remove frame syn-
chronization by:

� releasing the local synchronization early in Node::frameStart

� not waiting for the node to start the frame by not calling Node::waitFrameStarted
in Pipe::frameStart

� not waiting for the pipe synchronization in Node::frameDrawFinish

Releasing the local synchronization early is done by calling releaseFrameLocal,
and Node::frameDrawFinish is overwritten with an empty implementation:
void Node : : frameDrawFinish (const u in t 32 t frameID ,

const u in t 32 t frameNumber)
{ /* nop , see frameStart */ }

void Node : : f rameStart (const u in t 32 t frameID , const u in t 32 t frameNumber)
{

startFrame (frameNumber) ; // unlock pipe threads

// Don ’ t wai t f o r p ipes to r e l e a s e frame l o c a l l y , sync not needed s ince a l l
// dynamic data i s mult i−bu f f e r e d
re leaseFrameLoca l (frameNumber) ;

}

18

5.6 Pipe

All task methods for a pipe and its children are executed in a separate thread.
This approach optimizes usage of the GPU, since all tasks are executed serially and
therefore do not compete for resources or cause OpenGL context switches. Later
versions of Equalizer might introduce threaded windows to allow the parallel and
independent execution of rendering tasks on a single pipe.

5.6.1 Initialization and Exit

Pipe threads are not explicitely synchronized with each other, that is, pipes might
be rendering different frames at any given time. Therefore frame-specific data has
to be allocated for each pipe thread, which in the eqPly example is the frame data.
The frame data is a member variable of the eqPly::Pipe, and is mapped to the
identifier provided by the initialization data. The initialization in eq::Pipe does
the GPU-specific initialization, which is window-system-dependent. On AGL the
display ID is determined, and on glX the display connection is opened.

bool Pipe : : c o n f i g I n i t (const u in t 32 t i n i t ID)
{

const Node* node = static cast<Node*>(getNode ()) ;
const In i tData& in i tData = node−>get In i tData () ;
const u in t 32 t frameDataID = in i tData . getFrameDataID () ;
eq : : Conf ig * c on f i g = getConf ig () ;

const bool mapped = con f ig−>mapObject (& frameData , frameDataID) ;
EQASSERT(mapped) ;

return eq : : Pipe : : c o n f i g I n i t (i n i t ID) ;
}

The config exit function is similar to the config initialization. The frame data is
unmapped and GPU-specific data is de-initialized by eq::Config::exit:

bool Pipe : : c on f i gEx i t ()
{

eq : : Conf ig * c on f i g = getConf ig () ;
con f i g−>unmapObject (& frameData) ;

return eq : : Pipe : : c on f i gEx i t () ;
}

5.6.2 Window System

Equalizer supports multiple window system interfaces, at the moment glX/X11,
WGL and AGL/Carbon. Some operating systems, and therefore some Equalizer
versions, support multiple window systems concurrently16.

Each pipe might use a different window system for rendering, which is determined
before Pipe::configInit by Pipe::selectWindowSystem. The default implementation of
selectWindowSystem loops over all window systems and returns the first supported
window system, determined by using supportsWindowSystem.

The eqPly examples allows selecting the window system using a command line
option. Therefore the implementation of selectWindowSystem is overwritten and
returns the specified window system, if supported:

eq : : WindowSystem Pipe : : selectWindowSystem () const
{

const Node* node = static cast<Node*>(getNode ()) ;
const In i tData& in i tData = node−>get In i tData () ;
const eq : : WindowSystem ws = in i tData . getWindowSystem () ;

16see http://www.equalizergraphics.com/compatibility.html

19

http://www.equalizergraphics.com/compatibility.html

i f (ws == eq : :WINDOW SYSTEM NONE)
return eq : : Pipe : : selectWindowSystem () ;

i f (! supportsWindowSystem (ws))
{

EQWARN << ”Window system ” << ws
<< ” not supported , us ing d e f au l t window system” << endl ;

return eq : : Pipe : : selectWindowSystem () ;
}

return ws ;
}

5.6.3 Carbon/AGL Thread Safety

Parts of the Carbon API used for window and event handling in the AGL window
system are not thread safe. The application has to call eq::Global::enterCarbon be-
fore any thread-unsafe Carbon call, and eq::Global::leaveCarbon afterwards. These
functions should be used only during window initialization and exit, not during ren-
dering. For various reasons enterCarbon might block up to 50 milliseconds. Carbon
calls in the window event handling routine Window::processEvent are thread-safe,
since the global carbon lock is set in this method. Please contact the Equalizer
developer mailing list if you need to use Carbon calls on a per-frame basis.

5.6.4 Frame Control

All task methods for a given frame of the pipe, window and channel entities be-
longing to the thread are executed in one block, starting with Pipe::frameStart and
finished by Pipe::finishFrame. The frame start callback is therefore the natural place
to update all frame-specific data to the version belonging to the frame.

In eqPly, the version of the only frame-specific object FrameData is passed as the
per-frame id from Config::startFrame to the frame task methods. The pipe uses this
version to update its instance of the frame data to the current version, and then
unlocks its child entities by calling startFrame:

void Pipe : : f rameStart (const u in t 32 t frameID , const u in t 32 t frameNumber)
{

// don ’ t wai t f o r node to s t a r t frame , l o c a l sync not needed
// node−>waitFrameStarted (frameNumber) ;
frameData . sync (frameID) ;

startFrame (frameNumber) ;
}

5.7 Window

The Equalizer window holds an OpenGL drawable and a rendering context. When
using the default window initialization functions, all windows of a pipe share the
OpenGL context. This allows reuse of OpenGL objects such as display lists and
textures between all windows of one pipe.

The window class is the natural place for the application to maintain all data
specific to the OpenGL context.

5.7.1 Initialization and Exit

The initialization sequence uses multiple, overrideable task methods. The main task
method configInit executes a ‘child’ task method to create the drawable and context.
The child task method depends on the window system of the pipe. The default im-
plementations of configInitGLX, configInitWGL or configInitAGL create an on-screen

20

window using OS-specific methods. If the OpenGL drawable and context were cre-
ated successfully, configInit calls configInitGL, which performs the generic OpenGL
state initialization. The default implementation sets up some typical OpenGL state,
e.g., it enables the depth test.

Start

configInit

window-
system

configInitGLX configInitWGL configInitAGL

GLX WGL AGL

failed?

configInitGL

success

failed?

failure

no

yes

yes

no

Figure 10: Window Initialization

Figure 10 shows a flow chart of the window ini-
tialization. The colored functions are task meth-
ods and can be replaced by application-specific
implementations.

The window-system specific initialization takes
into account various attributes set in the con-
figuration file. Attributes include the size of
various frame buffer attachments (color, alpha,
depth, stencil) as well as other framebuffer prop-
erties, such as quad-buffered stereo, doublebuffer-
ing, fullscreen mode and window decorations.
Some of the attributes, such as stereo, double-
buffer and stencil can be set to eq::AUTO, in
which case Equalizer will test for their availability
and enable them if possible.

The eqPly window initialization function first
calls eq::Window::configInit to use the generic win-
dow setup. If that was successful, it initializes a
state object and an overlay logo:

bool Window : : c o n f i g I n i t (const u in t 32 t i n i t ID)
{

i f (! eq : : Window : : c o n f i g I n i t (i n i t ID))
return fa l se ;

eq : : Pipe* pipe = getPipe () ;
Window* f irstWindow = static cast< Window* >(pipe−>getWindow(0)) ;

EQASSERT(! s t a t e) ;

i f (f irstWindow == this)
{

s t a t e = new VertexBuf f e rState (getGLFunctions ()) ;
loadLogo () ;

const Node* node = static cast< const Node* >(getNode ()) ;
const In i tData& in i tData = node−>get In i tData () ;

i f (in i tData . useVBOs ())
{

const eq : : GLFunctions* g lFunct ions = getGLFunctions () ;
// Check i f a l l VBO funcs a va i l a b l e , e l s e l e ave DISPLAY LIST MODE on
i f (g lFunct ions−>hasGenBuffers () && glFunct ions−>hasBindBuffer () &&

glFunct ions−>hasBufferData () && glFunct ions−>hasDe l e t eBu f f e r s ())
{

s t a t e−>setRenderMode (mesh : :BUFFER OBJECT MODE) ;
EQINFO << ”VBO render ing enabled ” << endl ;

}
else

EQWARN << ”VBO func t i on po i n t e r s miss ing , us ing d i sp l ay l i s t s ”
<< endl ;

}
}
else
{

s t a t e = firstWindow−> s t a t e ;
l ogoTexture = firstWindow−> l ogoTexture ;
l o g oS i z e = firstWindow−> l o g oS i z e ;

21

}

i f (! s t a t e) // happens i f f i r s t window f a i l e d to i n i t i a l i z e
return fa l se ;

return true ;
}

The state object is used to handle the creation of OpenGL objects in a mul-
tipipe, multi-threaded execution environment. It uses an object manager, which
is described in detail in Section 5.7.2. It is used in conjunction with a reference-
counting smart-pointer here, since it is potentially ‘owned’ by multiple windows at
the same time.

The logo texture is loaded from the file system and bound to a texture ID used
later by the channel for rendering. A code listing is ommitted, since the code
consists of standard OpenGL calls and is not Equalizer-specific.

The window exit function de-allocates all OpenGL objects when the state object
is about to be disposed. The object manager does not delete the object in its de-
structor, since it does not know if an OpenGL context is still current. Additionally,
eq::Window::configExit is called to destroy the drawable and context:

bool Window : : c on f i gEx i t ()
{

i f (s t a t e . i sVa l i d () && s ta t e−>getRefCount () == 1)
s t a t e−>d e l e t eA l l () ;

s t a t e = 0 ;
return eq : : Window : : c on f i gEx i t () ;

}

5.7.2 Object Manager

The object manager is not strictly a part of the window. It is mentioned here since
the eqPly window uses an object manager.

The state object in eqPly gathers all rendering state, which includes an object
manager for OpenGL object allocation.

The object manager (OM) is a utility class and can be used to manage OpenGL
objects across shared contexts. Typically one OM is used for each set of shared
contexts and spawns all contexts of a single GPU17.

The OM is a template class. The template type is the key used to identify objects.
The same key is used by all contexts to get the OpenGL name of an object. In eqPly,
a key of type const void * is used. The rendering code uses the address of the data
item to be rendered as the key to obtain the associated OpenGL object.

All objects managed by the OM are reference counted. If an application releases
the objects properly, they are automatically de-allocated. It is also possible to
manually manage de-allocation of objects, which might be more convenient in some
cases.

Currently, support for display lists, VBO’s, textures and shaders is implemented.
For each object, the following functions are available:

supportsObjects() returns true if the usage for this particular type of objects is
supported. For objects available in OpenGL 1.1 or earlier, this function is not
implemented.

getObject(key) returns the object associated with the given key, or FAILED.
Increases the reference count of existing objects.

17http://www.equalizergraphics.com/documents/design/objectManager.html

22

http://www.equalizergraphics.com/documents/design/objectManager.html

newObject(key) allocates a new object for the given key. Returns FAILED if the
object already exists or if the allocation failed. Sets the reference count of a
newly created object to one.

obtainObject(key) convenience function which gets or obtains the object associ-
ated with the given key. Returns FAILED only if the object allocation failed.

releaseObject(key | name) decreases the reference count and deletes the object
if the reference count reaches zero.

deleteObject(key | name) manually deletes the object. To be used if reference
counting is not used.

5.8 Channel

The channel is the heart of the application in that it contains the actual rendering
code. The channel is used to perform the various rendering operations for the
compounds.

5.8.1 Initialization and Exit

During channel initialization, the near and far planes are set to reasonable values
to contain the whole model. During rendering, the near and far planes are adjusted
dynamically to the current model position:

bool Channel : : c o n f i g I n i t (const u in t 32 t i n i t ID)
{

setNearFar (0 . 1 f , 10 .0 f) ;
return true ;

}

5.8.2 Rendering

The central rendering routine is Channel::frameDraw. This routine contains the
application’s OpenGL rendering code, which is being rendered using the contextual
information provided by Equalizer. As most of the other task methods, frameDraw
is called in parallel by Equalizer on all pipe threads in the configuration. Therefore
the rendering must not write to shared data, which is the case for all major scene
graph implementations.

In eqPly, the OpenGL context is first set up using various apply convenience
methods from the base Equalizer channel class. Each of the apply methods uses the
corresponding get method(s) and then calls the appropriate OpenGL function(s).
It is also possible to just query the values from Equalizer using the get methods,
and use them to set up the OpenGL state appropriatly, for example by passing the
parameters to the renderer used by the application.

For example, the implementation for eq::Channel::applyBuffer does set up the cor-
rect rendering buffer and color mask, which depends on the current eye pass and
possible anaglyphic stereo parameters:

void eq : : Channel : : app lyBuf fe r ()
{

glReadBuf fer (getReadBuffer ()) ;
glDrawBuffer (getDrawBuffer ()) ;

const ColorMask& colorMask = getDrawBufferMask () ;
glColorMask (colorMask . red , colorMask . green , colorMask . blue , true) ;

}

23

The contextual information has to be used in order to render the view as expected
by Equalizer. Failure to use certain information will result in incorrect rendering
for some or all configurations. The channel render context consist of:

Buffer The OpenGL read and draw buffer as well as color mask. These parameters
are influenced by the current eye pass, eye separation and anaglyphic stereo
settings.

Viewport The two-dimensional pixel viewport restricting the rendering area within
the channel. For correct operations, both glViewport and glScissor have to be
used. The pixel viewport is influenced by the destination channel’s viewport
definition and compound viewports set for sort-first/2D decompositions.

Frustum The same frustum parameters as defined by glFrustum. Typically the
frustum used to set up the OpenGL projection matrix. The frustum is influ-
enced by the destination channel’s view definition, compound viewports, head
matrix and the current eye pass.

Head Transformation A transformation matrix positioning the frustum. This is
typically an identity matrix and is used for off-axis frustra in immersive ren-
dering. It is normally used to set up the ‘view’ part of the modelview matrix,
before static light sources are defined.

Range A one-dimensional range with the interval [0..1]. This parameter is optional
and should be used by the application to render only the appropriate subset
of its data. It is influenced by the compound range attribute.

The frameDraw method in eqPly calls the frameDraw method from the parent class,
the Equalizer channel. The default frameDraw method uses the apply convenience
functions to setup the OpenGL state for all render context information, with the
exception of the range which will be used later during rendering:
void eq : : Channel : : frameDraw (const u in t 32 t frameID)
{

app lyBuf f e r () ;
applyViewport () ;

glMatrixMode (GL PROJECTION) ;
g lLoadIdent i ty () ;
applyFrustum () ;

glMatrixMode (GL MODELVIEW) ;
g lLoadIdent i ty () ;
applyHeadTransform () ;

}

void Channel : : frameDraw (const u in t 32 t frameID)
{

// Setup OpenGL s t a t e
eq : : Channel : : frameDraw (frameID) ;

Figure 11: Destination view of an
DB compound

After the basic view setup, a directional light
is configured, and the model is positioned using
the camera parameters from the frame data. The
camera parameters are transported using the the
frame data to ensure that all channels render a
given frame using the same position.

Furthermore, a white color is set in case the
model does not contain color information, or the
color information is not used. In sort-last render-
ing, eqPly uses a different color for each channel

24

to illustrate the database decomposition, as shown in Figure 11. The Equalizer
channel provides a method to obtain a random, but unique color for all channels
in the configuration. This color is determined by the server to ensure uniqueness
across all channels of the configuration:

g lL i gh t f v (GL LIGHT0 , GL POSITION, l i g h tP o s i t i o n) ;
g lL i gh t f v (GL LIGHT0 , GL AMBIENT, l ightAmbient) ;
g lL i gh t f v (GL LIGHT0 , GL DIFFUSE, l i g h tD i f f u s e) ;
g lL i gh t f v (GL LIGHT0 , GL SPECULAR, l i g h tSp e cu l a r) ;

g lMa t e r i a l f v (GL FRONT, GL AMBIENT, materialAmbient) ;
g lMa t e r i a l f v (GL FRONT, GL DIFFUSE, ma t e r i a lD i f f u s e) ;
g lMa t e r i a l f v (GL FRONT, GL SPECULAR, mate r i a lSpecu la r) ;
g lMa t e r i a l i (GL FRONT, GL SHININESS , mat e r i a l Sh i n i n e s s) ;

const Pipe* pipe = static cast<Pipe*>(getPipe ()) ;
const FrameData& frameData = pipe−>getFrameData () ;

g lT r an s l a t e f (frameData . data . t r a n s l a t i o n . x ,
frameData . data . t r a n s l a t i o n . y ,
frameData . data . t r a n s l a t i o n . z) ;

g lMultMatr ixf (frameData . data . r o t a t i on . ml) ;

Node* node = (Node*) getNode () ;
const Model* model = node−>getModel () ;
const eq : : Range& range = getRange () ;

i f (! range . i s F u l l ()) // Color DB−patches
{

const vmml : : Vector3ub co l o r = getUniqueColor () ;
g lColor3ub (c o l o r . r , c o l o r . g , c o l o r . b) ;

}
else i f (! frameData . data . c o l o r | | (model && ! model−>hasColors ()))
{

g lCo l o r 3 f (1 . 0 f , 1 . 0 f , 1 . 0 f) ;
}

Finally the model, which has been loaded by the node, is rendered. If the model
was not loaded during node initialization, a quad is drawn in its place:

i f (model)
{

drawModel (model) ;
}
else
{

g lCo l o r 3 f (1 . f , 1 . f , 0 . f) ;
g lNormal3f (0 . f , −1. f , 0 . f) ;
g lBeg in (GL TRIANGLE STRIP) ;
g lVe r t ex3 f (. 25 f , 0 . f , . 25 f) ;
g lVe r t ex3 f (. 25 f , 0 . f , −.25 f) ;
g lVe r t ex3 f (−.25 f , 0 . f , . 25 f) ;
g lVe r t ex3 f (−.25 f , 0 . f , −.25 f) ;
glEnd () ;

}
}

In order to draw the model, a helper class for view frustum culling is set up using
the view frustum from Equalizer and the camera position from the frame data. The
frustum helper computes the six frustum planes from the projection and modelView
matrices. During rendering, the bounding spheres of the model are tested against
these planes to determine the visibility with the frustum.

Furthermore, the render state from the window and the database range from the
channel is obtained. The render state manages display list or VBO allocation:
void Channel : : drawModel (const Model* model)
{

25

Window* window = static cast<Window*>(getWindow ()) ;
mesh : : Ver texBuf f e rState& s t a t e = window−>ge tSta t e () ;

const Pipe* pipe = static cast<Pipe*>(getPipe ()) ;
const FrameData& frameData = pipe−>getFrameData () ;

const eq : : Range& range = getRange () ;
vmml : : FrustumCul ler f c u l l e r ;

s t a t e . s e tCo l o r s (frameData . data . c o l o r &&
range . i s F u l l () &&
model−>hasColors ()) ;

in i tFrustum (cu l l e r , model−>getBoundingSphere ()) ;

model−>beginRendering (s t a t e) ;

The model data is spatially organized in an 3-dimensional kD-tree18 for efficient
view frustum culling. When the model is loaded by Node::configInit, it is prepro-
cessed into the kD-tree and each node of the tree gets a database range assigned.
The root node has the range [0, 1], its left child [0, 0.5] and its right child [0.5, 1],
and so on for all nodes in the tree. The preprocessed model is saved in a binary
format for accelerating subsequent use.

setup render state

add root node to
candidates

candidates
empty?

get candidate

no

fully visible?

no

partially visible?

no

cleanup render state
yes

yes
render candidate

yes
add children to

candidates

Start

Stop

fully in range?
yes

has children?
yes

no

in range?
yes

no

no

render candidate

Figure 12: Main Rendering Loop

The rendering loop main-
tains a list of candidates to
render, which initially con-
tains the root node. Each
candidate of this list is tested
for full visiblity against the
frustum and range, and ren-
dered if visible. It is dropped
if it is fully invisible or fully
out of range. If it is partially
visible or partially in range,
the children of the node are
added to the candidate list.
Figure 12 shows a flow chart
of the rendering algorithm,
which performs efficient view
frustum and range culling.

The actual rendering uses
display lists or vertex buffer
objects. These OpenGL ob-
jects are allocated using the
object manager. The render-
ing is done by the leaf nodes,
which are small enough to
store the vertex indices in a short value for optimal performance with VBO’s. The
leaf nodes reuse the objects stored in the object manager, or create and set up new
objects if it was not yet set up. Since one object manager is used per thread (pipe),
this allows a thread-safe sharing of the compiled display lists or VBO’s across all
windows of a pipe.

The main rendering loop in eqPly looks like this:

model−>beginRendering (s t a t e) ;

// s t a r t with root node
vector< const VertexBufferBase * > cand idate s ;

18See also http://en.wikipedia.org/wiki/Kd-tree

26

http://en.wikipedia.org/wiki/Kd-tree

cand idate s . push back (model) ;

while (! cand idate s . empty ())
{

const VertexBufferBase * treeNode = cand idate s . back () ;
cand idate s . pop back () ;

// comple te l y out o f range check
i f (treeNode−>getRange () [0] >= range . end | |

treeNode−>getRange () [1] < range . s t a r t)
continue ;

// bounding sphere view frustum c u l l i n g
switch (c u l l e r . t e s tSphere (treeNode−>getBoundingSphere ()))
{

case vmml : : VISIBILITY FULL :
// i f f u l l y v i s i b l e and f u l l y in range , render i t
i f (treeNode−>getRange () [0] >= range . s t a r t &&

treeNode−>getRange () [1] < range . end)
{

treeNode−>render (s t a t e) ;
break ;

}
// p a r t i a l range , f a l l through to p a r t i a l v i s i b i l i t y

case vmml : : VISIBILITY PARTIAL :
{

const VertexBufferBase * l e f t = treeNode−>ge tLe f t () ;
const VertexBufferBase * r i g h t = treeNode−>getRight () ;

i f (! l e f t && ! r i g h t)
{

i f (treeNode−>getRange () [0] >= range . s t a r t)
treeNode−>render (s t a t e) ;

// e l s e drop , to be drawn by ’ prev ious ’ channel
}
else
{

i f (l e f t)
cand idate s . push back (l e f t) ;

i f (r i g h t)
cand idate s . push back (r i g h t) ;

}
break ;

}
case vmml : : VISIBILITY NONE :

// do nothing
break ;

}
}

model−>endRendering (s t a t e) ;
}

6 Advanced Features

This section discusses some additional important features not covered by the pre-
vious eqPly section. Where possible code examples from the Equalizer distribution
are used.

6.1 Event Handling

Event handling requires a lot of flexibility. On one hand, the implementation differs
slightly for each operating and window system due to conceptual differences in the

27

OS-specific implementation. On the other hand, each application and widget set
has its own model on how events are to be handled. Therefore, event handling in
Equalizer is customizable at any stage of the processing, to the extreme of making
it possible to disable all event-related code in Equalizer. In this aspect, Equalizer
substantially differs from GLUT, which imposes an event model and hides most of
the event handling in glutMainLoop. More information on event handling can be
found on the Equalizer website19.

The default implementation provides a convenient, easily accessible event frame-
work, while allowing all necessary customizations. It gathers all events in the
main thread of the application, so that the developer only has to implement Con-
fig::processEvent to update its data based on the pre-processed, generic keyboard
and mouse events. It is very easy to use and similar to an GLUT-based implemen-
tation.

6.1.1 Threading

Where possible events are received and processed by a separate per-node event
thread to allow asynchronous20 event handling. Currently an event thread is only
used by the X11/glX window system. WGL receives and processes the events from
the pipe threads that created the windows. AGL receives the events from application
or node main thread. Whenever the term event thread is used, it refers to the
thread receiving the event, such as a per-node thread for glX, the pipe thread for
WGL and the main thread for AGL.

6.1.2 Initialization and Exit

config init
pipe init

get event
thread

Application
Pipe Thread(s)

Event Thread
add pipe to

event thread
open pipe

window init

add window to
event thread

listen for
window events

Figure 13: Event Handling Ini-
tialization

During window and pipe initialization the event
handling is set up. For both entities, initEvent-
Handler is called to register the pipe or window
with an event handler. This method may be over-
written to use a custom event handler, or to not
install an event handler at all and so disable event
handling. Likewise, exitEventHandler is called to
de-initialize event handling.

An event handler consists of two parts: the
generic base class providing the interface and
generic functions, and the window-system-specific
part providing the actual implementation.

Event handling is initialized whenever a new
window-system-specific pipe or window handle is set. First, exitEventHandler is
called to de-initialize event handling for the old handle (if set), and then initEvent-
Handler is called for the new handle.

AGL and glX use an event handler singleton, whereas WGL uses one event handler
per window. Pipe event handling is only used for glX, where one Display connection
is created and used to subscribe to window events.

6.1.3 Message Pump

For the WGL and AGL window systems, it is required to manually receive and dis-
patch (‘pump’) events. On WGL, this has to happen on each thread with windows,
whereas on AGL it has to happen only on the main thread. By default, Equalizer
pumps these events automatically for the application.

19see http://www.equalizergraphics.com/documents/design/eventHandling.html
20with respect to the rendering

28

http://www.equalizergraphics.com/documents/design/eventHandling.html

The methods Client::useMessagePump and Pipe::useMessagePump can be over-
ridden to return false to disable this behaviour for their respective threads. On
non-threaded pipes, Pipe::useMessagePump is not called.

If the application disables message pumping in Equalizer, it has to make sure the
events are pumped externally, as it often done within external widget sets such as
Qt.

6.1.4 Event Data Flow

OS Event

EventHandler

WindowEvent

ConfigEvent

OS Event

Window::
processEvent

Config::
sendEvent

Event Thread App Thread

Config::
handleEvents

Config::
handleEvent

EventQueue

ConfigEvent

Config::
finishFrame

Figure 14: Event Processing

Events are received by an event handler. The
event handler finds the eq::Window associated to
the event. It then creates a generic WindowEvent,
which holds important event data in a window
system-independent format. The original event
is attached to the generic window event.

The event handler then passes the window
event to Window::processEvent, which is respon-
sible for either handling the event locally, or for
translating it into a generic ConfigEvent. The con-
fig events are send to the application thread using
Config::sendEvent.

If the event was processed by processEvent,
the function has to return true. If false is re-
turned, the event will be passed to a previously
installed, window-system-specific event handling
function. The default implementation of Win-
dow::processEvent passes most events on to the
application.

Events sent using Config::sendEvent are queued in the application thread. After a
frame has been finished, Config::finishFrame calls Config::handleEvents. The default
implementation of this method provides non-blocking event processing, that is, it
calls Config::handleEvent for each queued event. By overriding handleEvents, event-
driven execution can be implemented.

Later Equalizer versions will introduce Pipe::processEvent and PipeEvent to com-
municate pipe-specific events, e.g., monitor resolution changes.

6.1.5 Custom Events in eqPixelBench

The eqPixelBench example is a benchmark program to measure the pixel transfer
rates from and to the framebuffer of all channels within a configuration. It uses
custom config events to send the gathered data to the application. It is much
simpler than the eqPly example since it does not provide any useful rendering or
user interaction.

The rendering routine of eqPixelBench in Channel::frameDraw loops through a
number of pixel formats and types. For each of them, it measures the time to
readback and assemble a full-channel image. The format, type, size and time is
recorded in a config event, which is sent to the application.

The ConfigEvent derives from the eq::ConfigEvent structure and has the following
definition:

struct ConfigEvent : public eq : : ConfigEvent
{
public :

enum Type
{

READBACK = eq : : ConfigEvent : : USER,

29

ASSEMBLE
} ;

ConfigEvent ()
{

s i z e = s izeof (ConfigEvent) ;
}

// channel name i s in user event data
char formatType [6 4] ;
vmml : : Vector2 i area ;
f loat msec ;

} ;

The Config::sendEvent method transmits an eq::ConfigEvent or derived class to
the application. The ConfigEvent has to be a C-type structure, and its size member
has to be set to the full size of the event to be transmitted. Each event has a type
which is used to identify it by the config processing function.

User-defined types start at eq::ConfigEvent::USER, and the member variable Con-
figEvent::user can be used to store EQ USER EVENT SIZE21 bytes. In this space,
the channel’s name is stored. Additional variables are used to transport the pixel
format and type, the size and the time it took for rendering.

On the application end, Config::handleEvent uses the ostream operator for the
derived config event to output these events in a nicely formatted way:

std : : ostream& operator << (std : : ostream& os , const ConfigEvent* event) ;
. . .
bool Config : : handleEvent (const eq : : ConfigEvent* event)
{

switch (event−>type)
{

case ConfigEvent : :READBACK:
case ConfigEvent : :ASSEMBLE:

cout << static cast< const ConfigEvent* >(event) << endl ;
return true ;

default :
return eq : : Conf ig : : handleEvent (event) ;

}
}

6.2 Image Compositing for Scalable Rendering

Two task methods are responsible for collecting and compositing the result image
during scalable rendering. Scalable rendering is a use case of parallel rendering,
when multiple channels are contributing to a single view.

The source channels producing one or more outputFrames use Channel::frame-
Readback to read the pixel data from the frame buffer. The channels receiving one
or multiple inputFrames use Channel::frameAssemble to assemble the pixel data into
the framebuffer. Equalizer takes care of the network transport of frame buffer data
between nodes, if needed.

Normally the programmer does not need to interfere with the image composit-
ing. Changes are sometimes required at a high level, for example to order the
input frames or to optimize the readback. The following sections provide a detailed
description of the image compositing API in Equalizer.

21currently 32 bytes

30

6.2.1 Parallel Direct Send Compositing

In order to provide a motivation for the design of the image compositing API, the
direct send parallel compositing algorithm is introduced in this section.

re
ad

-b
ac

k

send/receive
color + depth

as
se

m
bl

e/
re

ad
-b

ac
k

as
se

m
bl

e

source 1
(destination) source 2 source 3

send/receive
color

Figure 15: Parallel Direct Send Compositing

The main idea for di-
rect send is to parallelize
the costly recomposition for
database (sort-last) decom-
position. With each ad-
ditional source channel, the
amount of pixel data to
be composited grows linearly.
When using the simple ap-
proach of compositing all
frames on the destination
channel, this channel quickly
becomes the bottleneck in the
system. Direct send dis-
tributes this workload evenly
across all source channels,
and thereby keeps the com-
positing work per channel
constant.

In direct send compositing,
each rendering channel is also
responsible for the sort-last
composition22 of one screen-space tile. He receives the framebuffer pixels for his
tile from all the other channels. The size of one tile decreases linearly with the
number of source channels, which keeps the total amount of pixel data per channel
constant.

After performing the sort-last compositing, the color information is transferred
to the destination channel, similarly to an 2D (sort-first) compound. The amount
of pixel data for this part of the compositing pipeline also approaches a constant
value, i.e., the full frame buffer.

Figure 15 illustrates this algorithm for three channels. The Equalizer website
contains a presentation explaining this algorithm23.

The following operations have to be possible in order to perform this algorithm:

� Selection of frame buffer attachments: color and/or depth

� Restricting the read back area to a part of the rendered area

� Positioning the pixel data correctly on the receiving channels

Furthermore it should be possible for the application to implement a read back
of only the relevant region of interest, that is, the 2D area of the framebuffer actu-
ally updated during rendering. This optimization will be fully supported by later
versions of Equalizer.

6.2.2 Frame, Frame Data and Images

An eq::Frame references an eq::FrameData. The frame data is the object connecting
output with input frames. Output and input frames with the same name within
the same compound tree will reference the same frame data.
22depth-based for polygonal data or sorted-blend for volume data
23http://www.equalizergraphics.com/documents/EGPGV07.pdf

31

http://www.equalizergraphics.com/documents/EGPGV07.pdf

The frame data is a holder for images and additional information, such as output
frame attributes and pixel data availability.

An eq::Image holds a two-dimensional snapshot of the framebuffer and can contain
color and/or depth information.

The frame synchronization through the frame data allows the input frame to
wait for the pixel data to become ready, which is signalled by the output frame
after readback.

Furthermore, the frame data transports the inherited range of the output frame’s
compound. The range can be used to compute the assembly order of multiple input
frames, e.g., for sorted-blend compositing in volume rendering applications.

Readback and assemble operations on frames and images are designed to be
asynchronous. They have a start and finish method for both readback and assem-
ble to allow the initiation and synchronization of the operation. Currently, only
synchronous readback and assembly using glReadPixels and glDrawPixels is imple-
mented in the respective start method of the image. Later versions of Equalizer
will implement asynchronous pixel transfers.

Frame

Frame
Offset

FrameData

FrameData
PVP

Image

Image

Image
PVP

Figure 16: Hierarchy of assembly classes

The offset of input and out-
put frames characterizes the
position of the frame data
with respect to the frame-
buffer, that is, the window’s
lower-left corner. For output
frames this is the position of
the channel with respect to
the window.

For output frames, the
frame data’s pixel viewport is
the area of the frame buffer to
read back. It will transport
the offset from the source to
the destination channel, that
is, the frame data pixel view-
port for input frames position
the pixel data on the destina-
tion. This has the effect that
a partial framebuffer readback will end up in the same place in the destination
channels.

The image pixel viewport signifies the region of interest that will be read back.
The default readback operation reads back one image using the full pixel viewport
of the frame data.

Figure 16 illustrates the relationship between frames, frame data and images.

6.2.3 Custom Assembly in eVolve

The eVolve example is a scalable volume renderer. It uses 3D texture-based volume
rendering, where the 3D texture is intersected by view-aligned slices. The slices are
rendered back-to-front and blended together to produce the final image, as shown
in Figure 1724.

When using 2D (sort-first) or stereo decompositions, no special programming is
needed to achieve good scalability, as eVolve is mostly fill-limited and therefore
scales nicely in this mode.

24Volume Data Set courtesy of: SFB-382 of the German Research Council (DFG)

32

View
Direction

Figure 17: Blending Slices in 3D-
Texture-based Volume
Rendering

The full power of scalable volume rendering is
however in DB (sort-last) compounds, where the
full volume is divided into separate bricks. Each
of the bricks is rendered like a separate volume.
For recomposition, the RGBA frame buffer data
resulting from these render passes then has to be
assembled correctly.

Conceptually, the individual volume bricks of
each of the source channels produces pixel data
which can be handled like one big ’slice’ through
the full texture. Therefore they have to be blen-
ded back-to-front in the same way as the slice
planes during rendering.

DB compounds have the advantage of scaling
any part of the volume rendering pipeline: tex-
ture and main memory (smaller bricks for each
channel), fill rate (less samples per channel) and
IO bandwidth for time-dependent data (less data per time step and channel). Since
the amount of texture memory needed for each node decreases linearly, they make
it possible to render data sets which are not feasible to visualize with any other
approach.

Bac
k t

o F
ron

t

Com
po

siti
ng

Zmodel

Zview
α

near
plane

(a)

1 2 3 4

(b)

Figure 18: Back-to-Front Compositing for Orthogonal and Perspective View Frustra

For recomposition, the 2D frame buffer contents are blended together to form a
seamless picture. For correct blending, the frames are ordered in the same back-to-
front order as the slices used for rendering, and use the same blending parameters.
Simplified, the frame buffer images are ‘thick’ slices which are ‘rendered’ by writing
their content to the destination frame buffer using the correct order.

For orthographic rendering, determining the compositing order of the input frames
is trivial. The screen-space orientation of the volume bricks determines the order
in which they have to be composited. The bricks in eVolve are created by slic-
ing the volume along one dimension. Therefore the range of the resulting frame
buffer images, together with the sorting order, is used to arrange the frames during
compositing. Figure 18(a) shows this composition for one view.

Finding the correct assembly order for perspective frustra is more complex. The
perspective distortion invalidates a simple orientation criteria like the one used for

33

orthographic frustra. For the view and frustum setup shown in Figure 18(b)25 the
correct compositing order is 4-3-1-2 or 1-4-3-2.

Figure 19: Result of Figure 18(b)

In order to compute the assembly order, eVolve
uses the angle between the origin→slice vector
and the near plane, as shown in Figure 18(b).
When the angle becomes greater than 90°, the
compositing order of the remaining frames has to
be changed. The result image of this composition
naturally looks the same as the volume rendering
would when rendered on a single channel. Fig-
ure 19 shows the result of the composition from
Figure 18(b).

The assembly algorithm described in this sec-
tion also works with parallel compositing algo-
rithms such as direct-send.

6.3 Head Tracking

The eqPly example contains rudimentary support for head tracking, in order to
show how head tracking can be integrated with Equalizer. Support for a wide
range of tracking devices is not within the scope of Equalizer. Other open source
and commercial implementations cover this functionality sufficiently and can easily
be integrated with Equalizer.

x

wall definition from
configuration file

near plane

far plane

(a)

x

z

(b)

x

z

(c)

Figure 20: Monoscopic, Stereoscopic and Tracked frustra

Figure 20(a) illustrates a monoscopic view frustum. The viewer is positioned at
the origin of the global coordinate system, and the frustum is completely symmetric.
This is the typical view frustum for non-stereoscopic applications.

In stereo rendering, the scene is rendered twice, with the two frustra ’moved’ by
the distance between the eyes, as shown in Figure 20(b).

In immersive visualization, the observer is tracked in and the view frustra are
adapted to the viewer’s position and orientation, as shown in Figure 20(c). The
transformation origin→ viewer is set by the application using Config::setHeadMatrix,
which is used by the server to compute the frustra. The resulting off-axis frustra
are positioned using the channel’s head transformation.

25Volume Data Set courtesy of: AVS, USA

34

	Cover
	IFI-2007.11
	Introduction
	Getting Started
	Installing Equalizer and running eqPly
	Equalizer Processes
	Server
	Application
	Render Clients

	Hello, World!
	The Programming Interface
	Task Methods
	Execution Modeal and Thread Safety
	Config
	Node
	Pipe
	Window
	Channel

	Compounds
	Compound Channels
	Frustum
	Compound Classification
	Decomposition - Attributes
	Recomposition - Frames

	The eqPly polygonal renderer
	The main Function
	Application
	Main Loop
	Render Clients

	Distributed Objects
	InitData - a Static Distributed Object
	FrameData - a Versioned Distributed Object

	Config
	Initialization and Exit
	Frame Control
	Event Handling

	Node
	Frame Control

	Pipe
	Initialization and Exit
	Window System
	Carbon/AGL Thread Safety
	Frame Control

	Window
	Initialization and Exit
	Object Manager

	Channel
	Initialization and Exit
	Rendering

	Advanced Features
	Event Handling
	Threading
	Initialization and Exit
	Message Pump
	Event Data Flow
	Custom Events in eqPixelBench

	Image Compositing for Scalable Rendering
	Parallel Direct Send Compositing
	Frame, Frame Data and Images
	Custom Assembly in eVolve

	Head Tracking

