
Prolog-based query interface to syntactic dependencies extracted from
biomedical literature

Techical Report ifi-2006.04

Kaarel Kaljurand and Fabio Rinaldi and Gerold Schneider
Institute of Computational Linguistics

University of Zurich
Email: {kalju,rinaldi,gschneid}@ifi.unizh.ch

Abstract

We describe a Natural Language Process-
ing pipeline (NLPPL) which includes a
syntactic dependency parser (Pro3Gres) as
its main component. In addition, we de-
scribe a simple Prolog-based query lan-
guage, which provides a user-friendly in-
terface to the pipeline output.

Our work is focused on parsing texts from
the biomedical domain. The query inter-
face is designed to allow further experi-
ments with the resulting syntactic data by
both the linguists and the biomedical do-
main specialists. The final goal of our
work is to explore the language used in the
biomedical domain in attempt to extract
semantic dependencies (e.g. biological
pathway descriptions) from the biomedi-
cal literature.

1 Introduction

Researchers in the biomedical domain typically
explore new results in the field using the PubMed1

keyword search over the published articles and/or
interfaces to manually compiled ontologies, such
as the Gene Ontology2, or pathway databases,
such as KEGG3, which classify existing domain
knowledge. There are also commercial tools, such
as MedScan (Daraselia et al., 2004) which at-
tempt to automatically construct pathway descrip-
tions from published articles, thus speeding up the
process of creating semantically searchable data.
Given the complexity of the later task, the output
of such tools is often unreliable, or alternatively

1http://www.ncbi.nlm.nih.gov/entrez
2http://www.geneontology.org
3http://www.genome.jp/kegg

very scarce, i.e. only a few semantic relations are
output for which the confidence is very high.

In the following we describe a Natural Lan-
guage Processing pipeline (NLPPL), which is built
around a deep-linguistic statistical dependency
parser Pro3Gres (Schneider et al., 2004; Schnei-
der, 2004), and its application to biomedical lit-
erature, which we conduct within the OntoGene
project4.

We focus on a Prolog-based query language and
its HTML front-end that helps to explore the syn-
tactic dependencies extracted by the pipeline. We
hope that the query language could serve as a
middle ground, enabling communication between
biomedical domain specialists on the one hand,
and linguists on the other hand, and that it might
help to track down the relevant linguistic struc-
tures that are used to describe biological pathways
(e.g. gene-protein interaction).

Our query language can be used to conduct a
simple keyword search. Still, one can go fur-
ther, by querying for linguistic structures, such as
subjects, objects, prepositional phrases, etc. Of
course, the final goal is to extract and present the
complete pathways as described in the existing lit-
erature, since this is the representation that domain
specialists eventually like to work with.

Our approach focuses on a small amount of
data, i.e. we don’t rely on redundancy in the in-
put documents to find the relevant relations. In-
stead we are interested in fine-tuning our syntac-
tic methods to cover a wide variety syntactic con-
structs used to talk about biomedical concepts and
relations.

4http://www.ontogene.org



Figure 1: Tree of syntactic dependencies in the sentence “ELF3 modulates resetting of the circadian
clock in Arabidopsis” along with other linguistic annotations

2 Pro3Gres and NLPPL

Pro3Gres is a fast, deep-linguistic statistical de-
pendency parser which has recently been applied
to biomedical parsing (Rinaldi et al., 2006).

Pro3Gres assumes that its input has already un-
dergone sentence splitting, tokenization, lemma-
tization, and noun and verb group chunking, i.e.
Pro3Gres focuses only on finding the dependen-
cies between the heads of the chunks. This leaves
a lot of room for experimentation with different
off-the-self part-of-speech taggers, chunkers, ter-
minology extractors, and allows us to choose the
preprocessing tools which are optimized for a cer-
tain domain (news articles, biomedical literature).

We have implemented a pipeline which per-
forms the following tasks required by Pro3Gres.

• Sentence splitting by MXTERMINATOR
(Reynar and Ratnaparkhi, 1997)

• Tokenization by the Penn treebank tokenizer5

• Part-of-speech tagging by MXPOST (Ratna-
parkhi, 1996)

• Lemmatization by morpha (Minnen et al.,
2001)

• Terminology detection by matching the to-
kens against existing term lists from biomed-
ical ontologies

• Noun and verb group chunking by
LTCHUNK (Mikheev, 1997) followed
by the detection of chunk heads by a simple
pattern matching over the part-of-speech tags
of the tokens

5http://www.cis.upenn.edu/˜treebank/
tokenization.html

For each pipeline component, a wrapper has
been written which expects an XML input and pro-
duces an XML output, so that tools which are not
XML-aware can be used seamlessly together.

The pipeline itself is implemented as an Apache
Ant6 build file. It calls the modules sequentially
and manages their inputs and outputs.

When NLPPL finishes, we have gained the fol-
lowing annotation of the input sentences (figure 1
shows the annotation graphically):

• Sentences are tokenized and their borders are
detected. Each sentence and each token has
been assigned an ID.

• Each token is lemmatized.

• Tokens are grouped into chunks. Each chunk
has a type (NP or VP) and a head token.

• Tokens are grouped into terms. Each term has
a normal-form and a semantic type.

• Each sentence is described as a syntactic de-
pendency structure. Each dependency occurs
between two tokens and has a type.

3 Queries over syntactic dependencies

While improving on each of the pipeline compo-
nents, the obvious next step would be to detect se-
mantic relations in the sentences by attempting to
solve anaphoric links, nominalizations, truth val-
ues of clauses, etc. However, we believe that the
current representation is already good enough to
be shared with domain specialists, so that they
could help us define what further improvement is
needed and what kind of linguistic processing it
might depend on, to render the extracted annota-
tions more useful for the end-users.

6http://ant.apache.org



Figure 2: HTML front-end to the query language

NLPPL uses XML to represent its intermediate
inputs and outputs and there is an increasing num-
ber of formalisms (such as XQuery, XSLT, etc.)
that allow querying and modification of XML-
formatted content. Still, for the time being, we
have chosen Prolog to represent and query the ex-
tracted data. Prolog has a simple and powerful
built-in query mechanism. Also, it is a well-known
language among linguists.

First we convert the data (i.e. all the linguistic
annotations of the input texts) into the following
Prolog facts.

token(Id, Token, Lemma, Tag).
term(Id, Lex, Type, [Id1,...]).
chunk(Id, CHeadId, CType, [Id1,...]).
hd(HeadId, DepId, Rel, SId).

whereId, HeadIdandDepId are token IDs by
which the data is indexed;token/4maps a token ID
to the actual token (Token), its lemmatized form
(Lemma) and its part-of-speech tag (Tag); term/4
maps a token ID to the term (i.e. a list of token
IDs) to which it belongs; each term has a normal-
ized form (Lex) and a semantic type (e.g. Gene,
Compound, Process, etc);chunk/4maps a token
ID to the chunk (i.e. a list of token IDs) to which
it belongs; each chunk has a head (CHeadId) and
type (CType) which is either a noun group or a
verb group; finally,hd/4describes the directed de-
pendency relation with typeRel between tokens
with IDs HeadId andDepId in sentence with an
ID SId.

Writing Prolog queries over this data is a trivial
task, e.g. to extract all the subject-object pairs for
a given verb (e.g.bind), we can write:

:- hd(HeadId, DepId1, subj, SId),
hd(HeadId, DepId2, obj, SId),
token(HeadId, _, bind, _),
token(DepId1, _, SubjectLemma, _),
token(DepId2, _, ObjectLemma, _).

and then restrict the output toSubjectLemma
andObjectLemma.

We have further constrained and simplified the
query language to have the form:
:- tree([

branch(Rel1, H1, D1, HR1, DR1),
branch(Rel2, H2, D2, HR2, DR2),
...

], OutputConfiguration).

whereHRandDRare restrictions on the lemma,
term type or part-or-speech tag of the tokens. The
first argument to the predicatetree is a list of re-
lations (branches in the dependency tree) which
must all be satisfied. Further arguments to the
predicatetree (denoted here byOutputConfigura-
tion) specify which of the instantiated variables to
present in the final output. Also, we can spec-
ify how the variable must be represented in the
output: either by its corresponding lemma, token,
term, chunk or the whole dependency subtree that
it heads. The later is important, since e.g. for
the sentence in figure 1, one is probably not inter-
ested in the relationmodulate(elf3,reset), but in-
stead the node corresponding toresettingshould
be expanded to include its prepositional modifiers
(of the circadian clockandin Arabidopsis).

Given the final representation, a query which
asks for the subject of thebind-relation where the
syntactic object is a protein, might look like the
following:
:- tree([

branch(subj, H1, D1, lemma:bind, _),
branch(obj, H1, D2, _, type:protein)

], OutputConfiguration).

The final query representation can be easily
mapped to a web interface based on HTML forms
(see figure 2). Each relation is represented by
a triple (Relation,Head,Dependent)and the shar-
ing of arguments by means of connecting relations



(i.e. branches of the tree) to each other.
The result of the query is presented in XML or

in a tabular format (either in XHTML or CSV),
where each row corresponds to one instantiation
of the query variables. In addition, a link to the
complete dependency tree of the sentence is pro-
vided. The tabular format enables further auto-
matic analysis (e.g. filtering and sorting of the
output which the interface currently does not al-
low) via e.g. spreadsheet tools.

Note that our query language can also be used
to conduct a simple keyword search. The re-
sults would display the subclauses that contain the
given keywords, thus hiding the rest of the sen-
tence which is likely not to be directly relevant. In
this sense, we make a small step from a traditional
keyword search, while producing a richer output
and preserving its reliability.

Our current implementation is based on SWI-
Prolog7. The complete dataset, along with a small
library that implements the query layer, is com-
piled into a Prolog saved state. A front-end which
is based on HTML and Javascript communicates
with the saved state over HTTP common gateway
interface (CGI). Such a lightweight system is easy
to deploy and is accessible from any computer
which has access to the internet.

4 Future work

The current query language presupposes a good
knowledge not only of the linguistic concepts
such as subject, prepositional phrase, subordinated
clause, but also of the expected structure of the
Pro3Gres output. In order to explore a relation be-
tween two biological concepts, which are not in
a direct head-dependent relation, one has to guess
the possible tree-configurations that lead from one
concept to the other. To express queries such as
How is a protein X related to the protein Y?, the
user would like to focus on the given concepts
and not on the tree structure and find all the possi-
ble connecting syntactic relations. We believe that
while restricting ourselves to our current data and
preserving the simplicity of the query interface, it
is possible to support more powerful queries.

One the other side, we must communicate with
domain specialists to find out which of the linguis-
tic concepts they are willing to accept as part of
the query language, i.e. what is the most optimal
way to make compatible the different ways how

7http://www.swi-prolog.org

linguists and biologists talk about the biomedi-
cal concepts and functional relationships between
them.

5 Acknowledgments

We would like to thank Christos Andronis, An-
dreas Persidis and Ourania Konstanti from Bio-
vista8 for contributing their document collection
and domain expertise to this research.

References
Nikolai Daraselia, Sergei Egorov, Andrey Yazhuk,

Svetlana Novichkova, Anton Yuryev, and Ilya Mazo.
2004. Extracting Protein Function Information from
MEDLINE Using a Full-Sentence Parser. In To-
bias Scheffer, editor,Second European Workshop on
Data Mining and Text Mining for Bioinformatics,
pages 11–18, Pisa, Italy, September. ECML/PKDD.

Andrei Mikheev. 1997. Automatic rule induction for
unknown word guessing.Computational Linguis-
tics, 23(3):405–423.

Guido Minnen, John Carroll, and Darren Pearce. 2001.
Applied morphological processing of English.Nat-
ural Language Engineering, 7(3):207–223.

Adwait Ratnaparkhi. 1996. A Maximum Entropy Part-
Of-Speech Tagger. InProceedings of the Empirical
Methods in Natural Language Processing Confer-
ence. University of Pennsylvania, 17–18 May.

Jeffrey C. Reynar and Adwait Ratnaparkhi. 1997. A
Maximum Entropy Approach to Identifying Sen-
tence Boundaries. InProceedings of the Fifth Con-
ference on Applied Natural Language Processing,
Washington, D.C., March 31–April 3. University of
Pennsylvania.

Fabio Rinaldi, Gerold Schneider, Kaarel Kaljurand,
Michael Hess, and Martin Romacker. 2006. An En-
vironment for Relation Mining over Richly Anno-
tated Corpora: the case of GENIA. InSMBM 2006:
2nd International Symposium on Semantic Mining
in Biomedicine, Jena, Germany, April. Accepted for
publication.

Gerold Schneider, Fabio Rinaldi, and James Dowdall.
2004. Fast, deep-linguistic statistical dependency
parsing. In Geert-Jan M. Kruijff and Denys Duchier,
editors,COLING 2004 Recent Advances in Depen-
dency Grammar, pages 33–40, Geneva, Switzerland,
28th August. COLING.

Gerold Schneider. 2004. Combining shallow and deep
processing for a robust, fast, deep-linguistic depen-
dency parser. In Erhard Hinrichs and Kiril Simov,
editors,ESSLLI 2004 Workshop on Combining Shal-
low and Deep Processing for NLP, pages 41–50,
Nancy, France, August.

8http://www.biovista.com


