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Abstract

Peer-to-peer (P2P) systems are flexible, robust, and self-
organizing resource sharing infrastructures which are typi-
cally designed in a fully decentralized manner. However, a 
key problem of such systems are freeriders, i.e. peers overus-
ing a resource. One approach to solve this problem is by 
introducing a central element taking care of resource 
accounting. Another approach is the use of a trust manage-
ment system where resource usage information is collected 
and evaluated by peers. Finally, the last approach covers 
resource trading schemes which limit resource usage.

This paper presents a fully decentralized scheme against 
freeriding in P2P systems, which does not require a priori 
information about a peer. The approach developed is based 
on a scarce resource trading scheme (SRTCPU) which uti-
lizes CPU time as a form of payment. Thus, providing incen-
tives to provide CPU time in return of consuming a scarce 
resource. A distributed Domain Name System (DNS) has been 
implemented as an example application that uses the new 
trading scheme SRTCPU.

1 Introduction

An economic market is based on the exchange of goods 
and services. One of its properties is that these goods and 
services are scarce. Overuse is limited in theory by the supply 
and demand principle. If goods are requested in larger 
quantities the price will rise and only those who are willing to 
pay the higher price will obtain these goods. If the resources
are not scarce the price is independent of the demand, and a 
low as well as a high demand will result in the same price. 
Thus, overuse is not limited by the supply and demand 
principle. This problem affects peer-to-peer (P2P) systems 
when requesting and supplying resources.

A P2P system is fault-tolerant, robust, and usually does not 
require any special administrative arrangements [3]. Cur-
rently, several P2P infrastructures exist which can be used for 
large-scale P2P applications, e.g., CAN [23], Chord [29], 
Pastry [26], or Tapestry [31]. P2P applications based on these 
P2P systems cannot only suffer from malicious nodes that 
may stop a P2P application to operate by deploying a sibyl 
attack [10] or by pseudo spoofing [9], but also suffer from 
overusing resources [7].

A node in a P2P system has typically a limited amount of 
resources that it may share with other nodes, e.g., bandwidth, 
storage space, or central processing unit (CPU) power. 
However, if these resources are overused by other nodes an 
imbalanced load is created so that nodes which actively 

contribute to the network are punished [14]. To achieve a fair 
allocation, every node should be given the possibility to use a 
resource in the same way as it provides resources. Three 
different accounting concepts can be used to achieve such a 
fair allocation:
• A central element can account for resource usage of 

every node in a P2P system. However, a central element is 
not a good option as the specific flexibility and robustness 
properties introduced by a decentralized P2P system 
would be weakened.

• A decentralized collection of information about a node’s 
behavior is an accounting concept that requires coopera-
tion. Nodes collect information about resource usage and 
behavior of other nodes and provide other nodes with this 
information. Thus, decentralized collection of information 
is cooperative because the information is provided partly 
by third party nodes. 

• Decentralized resource trading allows nodes to be inde-
pendent from other nodes. Resource trading denotes the 
concept that a node receives a resource in return for pro-
viding a resource [6]. Resource trading is fully decentral-
ized, as a node can trade with its own resources and can 
decide on its own whether or not to provide resources. 
Thus, the node is independent of other nodes.

In this paper, a fully decentralized resource trading scheme 
is developed, which is called SRTCPU (Scare Resource Trad-
ing with CPU Time). The scheme prevents overuse of 
resources in a decentralized system by introducing a payment 
for services, which is based on calculations using CPU time, 
thus, providing incentives to provide CPU time in return of 
consuming a scarce resource. It maintains a self-regulated, 
self-organized, and sustainable resource exchange allowing 
for a fair resource allocation.

Although other scarce resources, such as bandwidth or 
storage space, could have been used, however, SRTCPU 
focuses on CPU time. The major reason for this decision is 
that, e.g., the use of storage space as a scarce resource would 
only provide benefits to the users if data is stored for a period 
of time. However, the final control mechanism for storage 
over a period of time is much more complex, although the 
concept would be similar. Therefore, as a reference, a possi-
ble mechanism for storage trading is described in [20]. The 
node storing data randomly picks nodes claiming to have rep-
licas. After picking a node, it asks for a hash of an arbitrary 
block of the data. The node can only return the correct hash 
value if the data has been stored. 

The SRTCPU approach proposed is evaluated using nam-
ing and directory services as examples. The traditional DNS 
- 1 -



- 2 -
[18] serves as an example of a large-scale centralized system. 
Thus, an extension, a Distributed Domain Name System
(DDNS) prototype has been built that overcomes the 
resource overuse problem and operates in a decentralized 
manner. 

In general, a DNS in decentralized manner — thus a 
DDNS — will suffer without any countermeasures a Denial-
of-Service (DoS) problem, which can be solved by applying 
the developed SRTCPU approach. To detail this solution, it is 
important to remember that in general naming and directory 
services can be seen as a list of so-called name value pairs. 
For example, the name in the DNS is a domain name and the 
value is an IP address. Usually, such a name and its value 
have a size of not more than some bytes, e.g., www.unizh.ch
and 130.60.68.124. Although a first approach in developing 
a name service using P2P networks was presented in [7], the 
key problem described there is the problem of insertion 
denial of service, which can be considered as a resource 
overuse problem. This problem deals with the possibility of a 
massive insertion of name value pairs. A node reserving 
every possible name combination in an endless loop could 
induce a halt in the network operation as new names can no 
longer be inserted. In contrast, within the DNS it is not possi-
ble to reserve such a large number of name combinations 
unless a huge amount of money is spent, since every single 
name has a price to be paid for. Therefore, the SRTCPU 
scheme applied acts as a payment for name insertion in a 
DDNS. However, unlike crypto puzzles, which determine a 
specific type of calculation in order to keep the CPU busy, 
SRTCPU can use the CPU for any type of calculation. This 
enables to contribute CPU time to, e.g., a grid or any project 
that is in need of computational power.

The remainder of this paper is organized as follows. While 
Section 2 compares related work, Section 3 designs
SRTCPU. Section 4 discusses the implementation of the Dis-
tributed DNS prototype and validates key requirements. 
Finally, Section 5 summarizes and discusses future work.

2 Related Work

To prevent overuse of a resource in a decentralized system
three concepts can be applied: introduction of a central ele-
ment accounting for the use of resources, symmetric and 
asymmetric resource trading, and decentralized collection of 
information about resource usage. 

A review of related work has revealed a number of differ-
ent approaches tackling the problem of resource overuse. 
Key characteristics taken into account cover the level of 
decentralization and the dependency on other nodes. These 
characteristics clearly distinguish the three concepts. Conse-
quently, related work is discussed and compared according to 
the following dimensions: 

• Existence of a central element. This indicates whether a
central element is present or not.

• Identification of fair resource usage based on local 
data. Trust is good, control is better. A decision taken 
based on local data judging if a node is overusing a 
resource is always better then to trust other, potentially
malicious nodes.

• Efficient resource usage. Counting back a hash is an 
exhaustive calculation. CPU time cannot be contributed 
to calculating anything else, e.g., SETI@home [27].

• Resource symmetry. Resource symmetry denotes the 
trading with the same kind of resources, for example 
bandwidth in exchange for bandwidth.

2.1 Comparative Dimensions.

Distributed systems applying decentralized or centralized 
schemes do show different behaviors. Thus, a comparative 
study as depicted in Figure 1 has been performed. The notion 
of cooperation has been introduced to denote a high degree 
of dependency. In cooperative systems, e.g., transitive trust 
management, a node is dependent on more nodes than in 
independent systems. For example in Tit-For-Tat (TFT), a 
node can make a decision about sharing a resource based on 
the interaction between itself and another node.

FIGURE 1. Classification of related work

Distributed Systems

Deploying a central ele-
ment:  
DNS, SETI@home, PPay

Cooperative Distributed Sys-
tems:  
SeAl, distributed systems with 
transitive reputation manage-
ment, PeerMint

Independent Distrib-
uted Systems
• Symmetrical 

Resource Trading: 
BitTorrent

• Asymmetrical 
Resource Trading: 
HashCash, 
SRTCPU

Resource trading can be divided into symmetric and asym-
metric resource trading. Symmetric resource trading happens 
when the same kind of resource is traded between two nodes, 
e.g., if one node requests x data sets from a second node the 
first node has to provide the second node with x data sets too. 
Bittorrent [5] is an example of symmetrical resource trading 
with bandwidth taking place. However, symmetric resource 
trading only works if the first node is interested in the 
resource of the second node.

If symmetric resource trading is not possible another 
resource available for trading has to be found. Asymmetric 
resource trading happens when one type of resource is traded 
for a different type of resource, e.g., storage space in return 
for CPU power. This implies dealing with exchange rates for 
trading different resources with different values. In a decen-
tralized system, no supervisor or resource allocator is 
present. Therefore, decentralized resource trading has to hap-
pen in a completely self-regulated and self-organized way.

2.2 Deployment of Central Elements

The first group of approaches deals with centralization. 

2.2.1 Centralized Accounting

Authentication, authorization, accounting, auditing, and 
charging (A4C [28], as well as Ax [24]) can be used to limit 
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resource overuse. With A4C, usually used by service provid-
ers (SP), a central element is introduced to keep track of 
resource usage. Also new nodes can be tracked and con-
trolled in a central manner. Charging is an important compo-
nent, which must be present to limit service usage. Charging 
a high price will result in a lower demand and a lower price 
will result in a higher demand. This way, a SP can steer 
demand and limit resource usage. Without a charging com-
ponent, resource usage can only be accounted for and 
blocked by the SP if the usage is exceeding a limit. This lim-
itation can be undermined if a user is able to have multiple 
identities.

However, in a P2P system with a decentralized design, 
introducing a central element weakens the specific flexibility 
and robustness properties introduced by a decentralized sys-
tem.

2.2.2 Payment and Micropayment with Digital Cash

Payment with real money as, e.g., in the DNS shows that 
an overuse can be prevented. However, this is only possible 
with a central element [30]. PPay [30] defines a micropay-
ment protocol for P2P systems that achieves a great reduc-
tion of communication with the central broker issuing the 
money. Hence, in PPay there is still a central element, and it 
does, therefore, not comply with the requirement of a fully 
decentralized system. Even when reducing the traffic with 
the central broker a shutdown of a broker can stop the system 
to operate. Micropayment with digital cash as described for 
various schemes in [9] cannot be applied either, because in a 
decentralized system, using transferable cash is not feasible 
without a central element [30].

2.3 Cooperative Distributed Systems

The second group of approaches deals with cooperation 
among components of a distributed system. 

2.3.1 Trust Management

Trust management as outlined in [1], [8], and [15] can be 
described as collecting and evaluating information about a 
node’s behavior, such as download and upload statistics or 
amount of shared objects. The evaluation of collected data 
represents the trustworthiness of a node. [11] and [15] uses 
the notion of transitive trust management. A node that col-
lects data from a neighbor tells other neighbors about its 
findings. These neighbors tell their neighbors about those 
findings. A transitive characteristic in the scheme shows that 
eventually all nodes will share the same information. How-
ever, this may take a long time, as propagating this informa-
tion depends on the number of nodes within a system.

Trust management can only be used to limit resources 
when limited joining is allowed. Without this limit, a mali-
cious user can undermine any limit of a resource by inserting 
many new nodes and whitewash the rating with a new iden-
tity. When using CPU time as a scarce resource the limit can-
not be bypassed by inserting a new node, because the limit is 
bound to the CPU. Requesting many resources with many 
nodes needs the same CPU time as requesting the same 
resources with just one node.

2.3.2 Decentralized Accounting

PeerMint [13] is a decentralized approach to account for 
resource usage. An additional charging scheme can be set up 
to limit the usage. Main technical characteristics, as shown in 
Figure 2, are third-party nodes, so-called mediators, which 
keep track of resources traded during an exchange, and peer 
account holders who hold the complete account data of a 
node.

FIGURE 2. Basic principle of PeerMint.

Mediator

Node 1 Node 2
Exchange

Balance update Balance update

Balance updateBalance update

Account holder 
for Node 2

Account holder 
for Node 1

 

If two peers exchange a resource the mediators keep track 
of this exchange and the resulting resource bill is transferred 
to the peer’s account holders. Redundancy of account hold-
ers provides a guarantee to a certain degree that the account 
data is preserved, even if an account holder leaves the system 
or behaves maliciously. The mediators are determined based 
on a secure hash calculation, and can thus not be freely cho-
sen by the nodes. 

SeAl [21] proposes another decentralized accounting 
mechanism. A management/accounting layer collects 
receipts of transactions and these receipts can be traded (as 
favors). The trading is enforced, so a peer cannot be selfish. 
However, SeAl can only trade symmetric resources and 
favors are passed to other nodes in a cooperative way.

2.4 Independent Distributed Systems

The third group of approaches deals with independency of 
multiple components within a distributed system. 

2.4.1 Tit-for-Tat

Tit-for-tat (TFT) is a strategy used for example in BitTor-
rent to discourage freeriders and provide incentives to upload 
data at a high rate [5]. A participant in a BitTorrent network 
wanting to download data has to offer data for upload as 
well. TFT is not suitable in systems exchanging different 
kind of resources.

2.4.2 Hashcash

Hashcash [2] is a way to use CPU time as a scarce 
resource. The purpose of hashcash is to prevent spam mail-
ings being sent. Figure 3 shows the basic principle of hash-
cash to count back a hash to its original value. The recipient 
of an e-mail sends an MD5 hash of a random value to the 
sender. The sender has to count back the original value from 
the hash, which takes some time and uses far more CPU time 
than creating the hash. Afterwards, the value is sent back to 
the recipient. If the transferred value matches the random 
value, the e-mail is accepted. Thus, a spammer wanting to 
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send a huge amount of e-mails runs out of CPU power. The 
CPU time is used to limit the amount of e-mail messages
being sent to the public.

By re-labeling the sender to node a and the recipient to 
node b in Figure 3, the hashcash method can also be used to 
prevent the overuse of a resource in a P2P system. Before a 
resource such as bandwidth or storage space can be used on 
node b, node a has to count back a hash. After confirmation 
of the correct result, node a may use the bandwidth or stor-
age space. However, the CPU time is only used for an 
exhaustive calculation to find the original value from a hash. 
SRTCPU uses a similar approach, but with the difference 
that the CPU time can be used for any type of calculation. In 
SRTCPU it is not important what has been calculated, but 
that something has been calculated correctly.

FIGURE 3. Basic principle of hashcash [2].

 

In order to prevent a parallelization a time crypto puzzle as 
described in [25] could be applied. This computational task 
cannot be parallelized because the task is “intrinsically 
sequential” [25]. However, using parallel resources can be 
tolerated as this also applies to the economic market. As an 
example, the DNS also allows the usage of parallel 
resources, i.e. to have more names registered in the DNS, 
more money has to be paid. A similar scheme is applied to 
SRTCPU: To register more names in DDNS more CPU 
power has to be used.

2.5 Comparison

The supply and demand principle applies when trading 
with scarce resources. All of the mentioned related work is 
based on that principle and all related work is using a scarce 
resource. Trust management and central accounting use a 
central element to make a resource scarce. The others use the 
scarce resource CPU time or bandwidth.

With respect to SRTCPU, TFT, and hashcash no central 
elements are necessary and they are not dependent on data 
from other nodes for verifying fair resource usage. With 
SRTCPU, the CPU time can be used for arbitrary calcula-
tions, e.g., for solving large-scale computation problems as 
in SETI@home [27] by creating incentives to offer CPU 
time. In contrast, hashcash can only keep the CPU busy with 
a very specific computational task without any freedom of 
choosing an arbitrary calculation. This can be seen as a waste 
of CPU time.

In contrast, hashcash keeps the CPU busy with a very spe-
cific computational task without any freedom of choosing an 
arbitrary calculation. This can be considered as a waste of 
CPU time. Finally, in contrast to TFT, no resource symmetry 
is required for SRTCPU. Thus, SRTCPU defines an optimal 

approach to prevent the overuse of a resource in a fully 
decentralized system.

The full comparison of those approaches investigated is 
shown in Table 1, where a “+” indicates the presence of the 
characteristic, while a “-” indicates its absence. 

TABLE 1. Comparison of different strategies for 
resource trading.
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Tit-for-tat + + + -

Trust Management

a. Trust Management has to limit the number of possible identi-
ties of a client. [10] show that without resource trading, a limi-
tation is only possible with a central element.

-a - + +

Hashcash + + - +

Centralized Accounting - - + +

PeerMint + - + +

SRTCPU + + + +

3 Example-driven Design

Based on the investigation of related work, the key 
requirements for SRTCPU have been derived. Therefore, the 
detailed design of SRTCPU includes the set of mechanisms 
in charge of sending computational tasks, which needs CPU 
time to solve, in exchange for another resource to become as 
scarce as the CPU time. The basic design of such a use of 
CPU time includes a randomly chosen third party acting as a 
task provider. The payment for the resource does not happen 
in monetary form, as, e.g., in the DNS, but in terms of CPU 
time. Binding a resource to a second resource, which is 
scarce, makes the first resource as scarce as the second. This 
means for SRTCPU that, e.g., the storage of a name is as 
expensive as calculating a computational task. 

In case of Internet Service Providers, the trading of band-
width, e.g., for a certain period of time, implicitly takes place 
with storage trading. However, in the area of trading band-
width with an arbitrary data transfer — also with non-persis-
tent data — more research has to be performed. A first step 
into this direction is PeerMart [12], a distributed auction plat-
form. Another step utilizes reputation management systems,
which could take the bandwidth into account as well.

3.1 Technical Prerequisites and Requirements

To describe the operation of SRTCP’s core idea, key pre-
requisites and requirements are outlined. 

A node ID (identifier) identifies a node, and SRTCPU 
relies on the fact that a node ID cannot be freely chosen. A 
prevention of arbitrary node ID selection can, e.g., be 
achieved by constructing the node ID based on the IP address 
[29]. A second possibility includes the use of a central ele-
ment, as proposed by [10], to assign node IDs. SRTCPU uses 
the first method, i.e. a node ID cannot be freely chosen and 
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all nodes available in the system are able to verify that this 
precondition holds.

The following 7 requirements have been defined to enable 
the design of a fully decentralized asymmetric resource trad-
ing scheme which will meet the key goals of a distributed 
system: (a) efficiency and scalability with respect to the 
number of resources being dealt by and (b) the number of 
users utilizing the scheme developed:
• Fair. Provide a fair allocation of resources, i.e. prevent 

resource overuse.
• Fully decentralized. No central elements should be 

present.
• Load balanced. A node should not become a bottleneck.
• Fault tolerant. A failure of nodes should not affect the 

service.
• Self-organized. The scheme is able to adapt to changes 

in the network.
• Efficient. The scheme should consume as little resources 

as possible.
• Trustworthy. In order to reduce the risk of attacks, mini-

mal trust relations should be deployed.

3.2 Main Challenge

The main challenge of SRTCPU’s architectural design is 
to ensure that a peer has calculated the task by itself. Without 
this assurance the node could re-label the task and send it as 
a task provider to another node. To prevent such negative 
behavior a checksum of what has been calculated is being 
determined. The checksum is calculated using those instruc-
tions that have been performed and the node ID of the node 
that has commissioned the task. A malicious node that re-
labels a task and sends it back as a new task will receive a 
different checksum from that re-labeled task compared to the 
original task. The node which received the re-labeled task 
will use the node ID from the malicious node to calculate the 
checksum. As stated as a technical prerequisites, a node ID 
cannot be freely chosen and other nodes can verify that.

Another concern may be that a node, which is sending a 
task, has to verify that the calculation received is correct. 
E.g., Hashcash offers a direct and fast verification, because 
the result of calculating back the hash must be the same as 
the original value. In SRTCPU, however, it is necessary to 
introduce redundancy to verify the correctness of a calcula-
tion. This means the same calculation is sent to more than 
one node and those results received from these nodes are 
compared. As a consequence, some overhead is created.

3.3 Communication Design

To enable a view on the sequence of actions and the inter-
operation between peers involved in an SRTCPU-based 
scheme, the following examples are provided and discussed 
to achieve an efficient communication paradigm. 

Three participants can be identified in Figure 4: A task 
provider that needs a calculation to be outsourced, a request-
ing node (node 2) and the node that provides a resource. 
(node 1). In general, the number of requesting nodes is 
denoted r, the percentage of malicious nodes is m.

The communication starts with node 2 requesting a
resource (1). In order to get that resource node 2 must be 
willing to provide CPU time for that resource. Node 1 sends 
this request to a task provider (2). Node 2 receives the task 
(3) indicating that this task was requested from node 1 and 
node 2 calculates the task. During the task, a checksum is 
generated, including the node ID of node 1 and the instruc-
tions that have been executed in the task. The result and the 
checksum are sent back to the task provider (4). Node 1 
receives the checksum from node 2 and the task provider (5), 
(6). This allows node 1 to determine if the task provider has 
received the result. If the checksum is not received from the 
task provider, an error has occurred either in node 2 or in the 
task provider. Node 1 will mark both in a local list as poten-
tially malicious. If a certain threshold in this list has been 
reached because a node continues to behave incorrectly that 
node will not be considered in the future.

FIGURE 4. The communication design with three 
participants (r = 1, m = 0).

The task provider that announced himself to node 1 must 
also compute a task to get listed. Otherwise a task provider 
could create many new nodes with the result that other task 
providers would be excluded from providing tasks. The task 
provider will be selected randomly by node 1. A task pro-
vider can register on any node.

The communication design with three participants and 
r = 1 is not possible, if a malicious node sends arbitrary data 
and checksums back. Therefore, more nodes (r > 1) have to 
be introduced. In Figure 5 with r = 2, node 4 has been intro-
duced that is calculating the same task as node 3. It is obvi-
ous that a task must be deterministic. Node 1 receives r
checksums that must be equal. If they are not, one node has 
made a mistake and both are marked as potentially mali-
cious. By reaching a certain threshold, a malicious node can 
be detected. This scheme works only when m < 0.5 in an 
ideal P2P system.

Node 1 is also able to send a computational task, if no task 
provider is available or r = 1 with m > 0. The task looks sim-
ilar to hashcash, calculating back a hash, i.e. node 1 sends 
node 2 a hash value of an initial value. Node 2 has to calcu-
late back a possible initial value for that hash value. 

Figure 5 shows the network communication design with 
r = 2. It is also possible to have r > 2. With more checksums 
sent back, node 1 can determine faster if a node has behaved 
maliciously. However, with more nodes, more overhead is 
created.

With the introduction of r > 1 a certain amount of mali-
cious nodes cannot overuse resources in the system since 
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these malicious nodes will be detected and ignored. The 
amount of malicious clients that can be present in the system 
without overusing resources can vary from none to any,
depending on the scheme used. When using a crypto puzzle 
the amount of malicious nodes is irrelevant, while no mali-
cious client may be present in the schema with r = 1 (cf. Fig-
ure 2). SRTCPU could be customized by varying the 
schemes to address different requirements in decentralized 
networks (e.g. every 5th task is a crypt puzzle). 

FIGURE 5. Extended communication design with four
participants; 2 nodes (node 2, node 3) have received 

the same task (r = 2)

3.4 Self-Regulating Task Difficulty

A resource can be paid for by calculating a task. The 
amount of payment is defined by difficulty of the task which 
is an important factor in making a resource scarce. If the dif-
ficulty is set too low overuse will be the result, if it is set too 
high, underuse will happen. Along with every checksum sent 
back, the number of processed instructions is also sent to 
indicate if more computation is needed.

Node 1 knows how much node 2 and node 3 have calcu-
lated by indicating the number of processed instructions that 
has been returned to node 1. Node 1 now needs to determine 
the average CPU time per inserted name value pair in the 
system to keep the system self-regulated. In this way, the sys-
tem keeps track of an increase in CPU power over time [19]. 

Node 1 can determine the average CPU time with a bench-
mark on itself, assuming to have an average CPU processor. 
A tolerance factor will be applied to allow for a wider range 
of different CPU power. The tolerance factor determines how 
homogeneous — in terms of CPU processing speed — the 
system can be. This is an important factor, since not every 
node has the same CPU power. Small and embedded devices 
have usually lower CPU power. However, SRTCPU focuses 
mainly on homogeneous systems, where a similar amount of 
resources are available on every node.

To calculate the average CPU time per inserted data, node 
1 must also know the average amount of data stored in the 
P2P system. Again, the node assumes that the stored data is 
the average. With the average CPU time and the average 
stored data, node 1 can decide, if node 2 and node 3 have cal-
culated sufficiently enough to be allowed to store the data on 
node 1. Hence, the system is self-regulated.

4 Implementation and Evaluation

DDNS and SRTCPU have been implemented to validate 
the feasibility of a decentralized naming/directory service by 
using SRTCPU.

All calculations have been executed in a virtual machine,
which has also been implemented in Java and performs 
mathematical tasks only. For the sake of simplicity, a proto-
typical MathVM [4] has been implemented in Java. The 
MathVM can update the checksum on every processed 
instruction, it uses its own language, and it has an assembler 
that translates the source code into instructions (opcodes). A 
task description in a MathVM has a fixed size of several kilo
byte, but a single task description has been implemented to 
simulate a crypto puzzle. Therefore, the implementation will 
only work without any malicious nodes, which does not pre-
vent a proof of concept. DDNS is based on a Distributed 
Hash Table (DHT) with an XOR (exclusive or) metric, simi-
lar to [16], providing a good performance for any lookups in 
O(log n) time, where n is the number of nodes considered. 
The prototype has been tested with 1000 nodes to validate 
that the search function scales gracefully [4].

4.1 DDNS Efficiency Analysis

The two most important commands in DDNS are get and 
store. A get is a data lookup that takes O(log n) time in a 
structured overlay network [16]. A store performs first a 
lookup in O(log n), in order to find the node, where to store 
the data. For all necessary details of the communication pro-
tocol, please refer to [4].

Let n be the number of participating nodes. It is assumed 
that the number of queries scales with O(1), which means 
that the number of queries a user performs are constant over 
time. The analysis of the store and get commands shows in 
the following that the message complexity remains O(log n)
as in the Kademlia network [16]. 

The get command has been modified for SRTCPU to 
obtain always more than one single result, but this does not 
affect its performance of O(log n). Based on the fact that the 
number of queries p(n) is O(1), the overall number of mes-
sages, which equals p(n) * O(log n), will also be O(log n). 
The store command has also been modified. Every store per-
forms a get to decide, if the name to be inserted exists. For 
every store command the respective message complexity is 
p(n) + (p(n) * O(log n)). Again p(n) is O(1) and the resulting 
efficiency is O(log n).

Even if p(n) were O(log n), the system with the overall 
complexity of O(log n)2 remains. However, with p(n) = O(n)
the complexity would be O(n * log n), which is too high. But 
on the other hand, with the same situation that p(n) = O(n), 
the complexity of the DNS would be O(n) * O(1) = O(n), 
which is also too high for a scalable system. Thus the effi-
ciency achieved is highly comparable with existing systems. 

As a result of this analysis, it can be concluded that all 
modifications do not exceed O(log n) and the lookup remains 
scalable. Nevertheless, some optimizations still can boost the 
performance. One optimization includes a clustering 
approach similar to SHARK [17]: The system is divided into 
parts. A part is built by grouping similar nodes. Similar in 
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this context means that nodes searching the same names are 
similar. Let p(n) be the amount of nodes which searches 
within its parts and let q(n) be the amount of nodes which 
searches in other parts. Having constant part sizes and grow-
ing numbers of parts, a get command in such a part is O(1). 
The get command for searching inside and outside of a part 
is p * O(1) + q * O(log n). The complexity remains O(log n), 
but if a lot of searches are within a single part, the get com-
mand becomes faster. The second optimization addresses 
caching, where the same situation arises. When caching a 
large number of entries the get command becomes faster, but 
there will also be many uncached names, consequently the 
system remains O(log n).

4.2 DDNS Experiment

The prototype implemented has been tested and several 
simulation experiments with up to 100 nodes per machine 
have been made. In total 10 separate Pentium III Machines 
with 1.6 GHz and 256 MByte RAM have been used to simu-
late a smaller network. These experiments have confirmed 
those results of the theoretical efficiency analysis as dis-
cussed above in Section 4.1. 

The result for the number of messages in total to be 
exchanged for the commands get and store are depicted in 
Figure 6. This figure indicates that the system communica-
tion grows with O(log n). The system in this simulation run 
stored 15 names and made 100 get requests. The get requests 
were made once and the store commands were repeatedly 
called thereafter. After every name had been stored and 100 
requests had been made, the run was aborted. The numbers 
of nodes tested are 10, 20, 60, 100, 150, 200, 500, and 1000. 
In each step, 2 runs have been made and the mean has been 
calculated. A node can fail with a probability of 10%. No 
malicious nodes have been used (m = 0), no task providers 
are present and r = 1.

FIGURE 6. Simulation experiments of the prototype.

Due to the implementation of the prototype with just one 
thread per communication channel, only a small number of 
nodes (ca. 150 nodes) has been tested per machine. 

4.3 Validation and Discussion

Key requirements discussed above have been met.

• Fair. Fairness is achieved since everyone has to pay 
about the same amount of CPU time for a resource. The 
amount of CPU time to be paid is self-organizing. 
Resource overuse is limited through the introduction of 
SRTCPU offering the possibility of trading different 
types of resources. In DDNS, a name value pair is traded 
for CPU time.

• Fully decentralized. SRTCPU is fully decentralized. No 
central element is necessary to account for resource 
usage.

• Load balanced and fault tolerant. Due to redundant 
storage a failure does not affect the scheme and the load 
is balanced. Additionally, a caching mechanism in DDNS 
optimizes the balance especially with popular names.

• Self-organized. With the use of CPU time to prevent 
overuse of a resource, every node can decide how much 
to charge for its resource. A central element is not neces-
sary and a self-regulating task difficulty establishes a bal-
anced charge of CPU time with respect to increasing 
processing power (Moors’ law [19]) over time. There-
fore, even when the resources change over time the sys-
tem itself remains self-organized.

• Efficient. Although CPU time has to be spent, SRTCPU 
adds a benefit over a crypto puzzle by making the CPU 
time available for other calculations as well.

• Trustworthy. Trust can be measured based on local data. 
Thus, minimal trust relations have been achieved.

A smaller number of further issues remain for discussion. 
A potential problem arises when the network is very hetero-
geneous, i.e. with a lot of different CPU capabilities. [10]
states that large-scale distributed systems are inevitably het-
erogeneous. Especially embedded and small devices have 
usually fewer resources to allocate. However, if a participa-
tion in a system requires certain resources the problem of 
heterogeneity is less relevant. If a node wants to join the net-
work, it has to make sure that it has sufficient resources. If 
there are not sufficiently large the node cannot join and has 
to be upgraded, for example with more storage or a faster 
processor. The final result is that every SRTCPU participant 
will have a similar amount of resources available.

Furthermore, efficiency is limited by the possible presence 
of malicious nodes and the absence of nodes for the verifica-
tion of a computational task. Overhead is created as 
SRTCPU has to send a task to multiple nodes to verify the 
result. Therefore, the calculation is not as efficient as in a 
supervised system. A fallback strategy similar to hashcash is 
used when just one node requests a resource. In this case, the 
CPU time cannot be contributed to calculate anything else.
Details need to be investigated further. 

Additionally, the bandwidth of a node, with which it is 
connected to the network, may become a bottleneck, if the 
task description is very large. Therefore, in the DDNS proto-
type and its experiments, the task description was limited to a 
fixed size. Without this limitation, the required bandwidth 
would be considered as part of the payment. 

Finally, although in the traditional DNS the uniqueness of 
names can be guaranteed, this is not possible in a fully 
decentralized system, since all peers behave autonomous. 
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However, these ambiguities in DDNS may exist only for a 
limited period of time: If two names are inserted at the same 
time, but from different peers, the name propagated faster 
will prevail [4]. Thus, no following concern remains. 

5 Summary and Future Work

Since Peer-to-peer (P2P) systems are flexible, robust, and 
self-organizing resource sharing infrastructures which are 
typically designed in a fully decentralized manner, the key 
problem of freeriders, i.e. peers overusing a resource, have to 
be solved. In general, three strategies can be applied to pre-
vent the overuse of a resource in a decentralized system: (a) 
introducing a central element, (b) symmetric and asymmetric 
resource trading, and (c) decentralized collection of informa-
tion about resource usage. The approach SRTCPU (Scare 
Resource Trading with CPU Time) introduced in this paper
uses asymmetric resource trading, since this can be designed 
and implemented in a fully decentralized manner. Anyone 
who wants to use a critical resource has to pay for it with 
CPU time. 

This approach taken can be generalized. Introducing CPU 
time as a scare resource in a P2P system can make other 
resources as scare as the CPU time by binding these two 
resources together. As an example application of SRTCPU, 
Distributed Domain Name System (DDNS) has been imple-
mented. DDNS is an architectural concept of a decentralized 
naming service based on a P2P network. It implements 
SRTCPU to protect the critical resource storage space for 
name value pairs. The names can be retrieved in O(log n)
due to the underlying Distributed Hash Table. With the intro-
duction of task providers, one can use the CPU time, result-
ing from name insertions, for any task. It could also be used 
in a grid, to solve large-scale computation problems similar 
to SETI@home. Contrary to the altruistic donation of CPU 
time to large-scale computation communities, DDNS creates 
an incentive to provide CPU time to a grid. The feasibility of 
DDNS has been validated, its efficiency has been analyzed, 
and a prototypical implementation has been performed as 
well as evaluated.

Future distributed architectures may be based on other 
resources than CPU time. For example, a decentralized web 
page system including a naming service could make storage 
space and bandwidth available as the scarce resource. In 
order to store a name of a web page, storage space would 
have to be provided for other nodes. 

To achieve a detailed understanding of the impact of mali-
cious nodes and to obtain further data from the simulation, 
the simulation experiments are expected to be extended 
toward a testbed of a larger number of machines. This would 
include the varying of the parameter r and the introduction of 
malicious nodes into the system.
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