
TE
C

H
N

IC
A

L
R

EP
O

R
T

—
 N

o.
 2

00
6.

01

ifi
January 2006

University of Zürich
Department of Informatics (IFI)
Winterthurerstrasse 190, CH—8057 Zürich, Switzerland

Thomas Bocek
David Hausheer
Reinhard Riedl
Burkhard Stiller

Introducing CPU Time
as a Scarce Resource

in P2P Systems

Thomas Bocek, David Hausheer, Reinhard Riedl, Burkhard Stiller:
Introducing CPU Time as a Scarce Resource in P2P Systems
Technical Report No. 2006.01, January 2006
Communication Systems Research Group
Department of Informatics (IFI)
University of Zürich
Winterthurerstrasse 190, CH—8057 Zürich, Switzerland
URL: http://www.ifi.unizh.ch/csg/

Introducing CPU Time as a Scarce Resource in P2P Systems

Thomas Bocek1, David Hausheer1, Reinhard Riedl2, Burkhard Stiller1,3

1Communication Systems Group, Department of Informatics IFI, University of Zurich, Switzerland
2Information Systems Group, Department of Informatics IFI, University of Zurich, Switzerland

3Computer Engineering and Networks Laboratory TIK, ETH Zürich, Switzerland

E-Mail: [bocek|hausheer|riedl|stiller]@ifi.unizh.ch
Abstract

Peer-to-peer (P2P) systems are flexible, robust, and self-
organizing resource sharing infrastructures which are typi-
cally designed in a fully decentralized manner. However, a
key problem of such systems are freeriders, i.e. peers overus-
ing a resource. One approach to solve this problem is by
introducing a central element taking care of resource
accounting. Another approach is the use of a trust manage-
ment system where resource usage information is collected
and evaluated by peers. Finally, the last approach covers
resource trading schemes which limit resource usage.

This paper presents a fully decentralized scheme against
freeriding in P2P systems, which does not require a priori
information about a peer. The approach developed is based
on a scarce resource trading scheme (SRTCPU) which uti-
lizes CPU time as a form of payment. Thus, providing incen-
tives to provide CPU time in return of consuming a scarce
resource. A distributed Domain Name System (DNS) has been
implemented as an example application that uses the new
trading scheme SRTCPU.

1 Introduction

An economic market is based on the exchange of goods
and services. One of its properties is that these goods and
services are scarce. Overuse is limited in theory by the supply
and demand principle. If goods are requested in larger
quantities the price will rise and only those who are willing to
pay the higher price will obtain these goods. If the resources
are not scarce the price is independent of the demand, and a
low as well as a high demand will result in the same price.
Thus, overuse is not limited by the supply and demand
principle. This problem affects peer-to-peer (P2P) systems
when requesting and supplying resources.

A P2P system is fault-tolerant, robust, and usually does not
require any special administrative arrangements [3]. Cur-
rently, several P2P infrastructures exist which can be used for
large-scale P2P applications, e.g., CAN [23], Chord [29],
Pastry [26], or Tapestry [31]. P2P applications based on these
P2P systems cannot only suffer from malicious nodes that
may stop a P2P application to operate by deploying a sibyl
attack [10] or by pseudo spoofing [9], but also suffer from
overusing resources [7].

A node in a P2P system has typically a limited amount of
resources that it may share with other nodes, e.g., bandwidth,
storage space, or central processing unit (CPU) power.
However, if these resources are overused by other nodes an
imbalanced load is created so that nodes which actively

contribute to the network are punished [14]. To achieve a fair
allocation, every node should be given the possibility to use a
resource in the same way as it provides resources. Three
different accounting concepts can be used to achieve such a
fair allocation:
• A central element can account for resource usage of

every node in a P2P system. However, a central element is
not a good option as the specific flexibility and robustness
properties introduced by a decentralized P2P system
would be weakened.

• A decentralized collection of information about a node’s
behavior is an accounting concept that requires coopera-
tion. Nodes collect information about resource usage and
behavior of other nodes and provide other nodes with this
information. Thus, decentralized collection of information
is cooperative because the information is provided partly
by third party nodes.

• Decentralized resource trading allows nodes to be inde-
pendent from other nodes. Resource trading denotes the
concept that a node receives a resource in return for pro-
viding a resource [6]. Resource trading is fully decentral-
ized, as a node can trade with its own resources and can
decide on its own whether or not to provide resources.
Thus, the node is independent of other nodes.

In this paper, a fully decentralized resource trading scheme
is developed, which is called SRTCPU (Scare Resource Trad-
ing with CPU Time). The scheme prevents overuse of
resources in a decentralized system by introducing a payment
for services, which is based on calculations using CPU time,
thus, providing incentives to provide CPU time in return of
consuming a scarce resource. It maintains a self-regulated,
self-organized, and sustainable resource exchange allowing
for a fair resource allocation.

Although other scarce resources, such as bandwidth or
storage space, could have been used, however, SRTCPU
focuses on CPU time. The major reason for this decision is
that, e.g., the use of storage space as a scarce resource would
only provide benefits to the users if data is stored for a period
of time. However, the final control mechanism for storage
over a period of time is much more complex, although the
concept would be similar. Therefore, as a reference, a possi-
ble mechanism for storage trading is described in [20]. The
node storing data randomly picks nodes claiming to have rep-
licas. After picking a node, it asks for a hash of an arbitrary
block of the data. The node can only return the correct hash
value if the data has been stored.

The SRTCPU approach proposed is evaluated using nam-
ing and directory services as examples. The traditional DNS
- 1 -

- 2 -
[18] serves as an example of a large-scale centralized system.
Thus, an extension, a Distributed Domain Name System
(DDNS) prototype has been built that overcomes the
resource overuse problem and operates in a decentralized
manner.

In general, a DNS in decentralized manner — thus a
DDNS — will suffer without any countermeasures a Denial-
of-Service (DoS) problem, which can be solved by applying
the developed SRTCPU approach. To detail this solution, it is
important to remember that in general naming and directory
services can be seen as a list of so-called name value pairs.
For example, the name in the DNS is a domain name and the
value is an IP address. Usually, such a name and its value
have a size of not more than some bytes, e.g., www.unizh.ch
and 130.60.68.124. Although a first approach in developing
a name service using P2P networks was presented in [7], the
key problem described there is the problem of insertion
denial of service, which can be considered as a resource
overuse problem. This problem deals with the possibility of a
massive insertion of name value pairs. A node reserving
every possible name combination in an endless loop could
induce a halt in the network operation as new names can no
longer be inserted. In contrast, within the DNS it is not possi-
ble to reserve such a large number of name combinations
unless a huge amount of money is spent, since every single
name has a price to be paid for. Therefore, the SRTCPU
scheme applied acts as a payment for name insertion in a
DDNS. However, unlike crypto puzzles, which determine a
specific type of calculation in order to keep the CPU busy,
SRTCPU can use the CPU for any type of calculation. This
enables to contribute CPU time to, e.g., a grid or any project
that is in need of computational power.

The remainder of this paper is organized as follows. While
Section 2 compares related work, Section 3 designs
SRTCPU. Section 4 discusses the implementation of the Dis-
tributed DNS prototype and validates key requirements.
Finally, Section 5 summarizes and discusses future work.

2 Related Work

To prevent overuse of a resource in a decentralized system
three concepts can be applied: introduction of a central ele-
ment accounting for the use of resources, symmetric and
asymmetric resource trading, and decentralized collection of
information about resource usage.

A review of related work has revealed a number of differ-
ent approaches tackling the problem of resource overuse.
Key characteristics taken into account cover the level of
decentralization and the dependency on other nodes. These
characteristics clearly distinguish the three concepts. Conse-
quently, related work is discussed and compared according to
the following dimensions:

• Existence of a central element. This indicates whether a
central element is present or not.

• Identification of fair resource usage based on local
data. Trust is good, control is better. A decision taken
based on local data judging if a node is overusing a
resource is always better then to trust other, potentially
malicious nodes.

• Efficient resource usage. Counting back a hash is an
exhaustive calculation. CPU time cannot be contributed
to calculating anything else, e.g., SETI@home [27].

• Resource symmetry. Resource symmetry denotes the
trading with the same kind of resources, for example
bandwidth in exchange for bandwidth.

2.1 Comparative Dimensions.

Distributed systems applying decentralized or centralized
schemes do show different behaviors. Thus, a comparative
study as depicted in Figure 1 has been performed. The notion
of cooperation has been introduced to denote a high degree
of dependency. In cooperative systems, e.g., transitive trust
management, a node is dependent on more nodes than in
independent systems. For example in Tit-For-Tat (TFT), a
node can make a decision about sharing a resource based on
the interaction between itself and another node.

FIGURE 1. Classification of related work

Distributed Systems

Deploying a central ele-
ment:
DNS, SETI@home, PPay

Cooperative Distributed Sys-
tems:
SeAl, distributed systems with
transitive reputation manage-
ment, PeerMint

Independent Distrib-
uted Systems
• Symmetrical

Resource Trading:
BitTorrent

• Asymmetrical
Resource Trading:
HashCash,
SRTCPU

Resource trading can be divided into symmetric and asym-
metric resource trading. Symmetric resource trading happens
when the same kind of resource is traded between two nodes,
e.g., if one node requests x data sets from a second node the
first node has to provide the second node with x data sets too.
Bittorrent [5] is an example of symmetrical resource trading
with bandwidth taking place. However, symmetric resource
trading only works if the first node is interested in the
resource of the second node.

If symmetric resource trading is not possible another
resource available for trading has to be found. Asymmetric
resource trading happens when one type of resource is traded
for a different type of resource, e.g., storage space in return
for CPU power. This implies dealing with exchange rates for
trading different resources with different values. In a decen-
tralized system, no supervisor or resource allocator is
present. Therefore, decentralized resource trading has to hap-
pen in a completely self-regulated and self-organized way.

2.2 Deployment of Central Elements

The first group of approaches deals with centralization.

2.2.1 Centralized Accounting

Authentication, authorization, accounting, auditing, and
charging (A4C [28], as well as Ax [24]) can be used to limit

- 3 -
resource overuse. With A4C, usually used by service provid-
ers (SP), a central element is introduced to keep track of
resource usage. Also new nodes can be tracked and con-
trolled in a central manner. Charging is an important compo-
nent, which must be present to limit service usage. Charging
a high price will result in a lower demand and a lower price
will result in a higher demand. This way, a SP can steer
demand and limit resource usage. Without a charging com-
ponent, resource usage can only be accounted for and
blocked by the SP if the usage is exceeding a limit. This lim-
itation can be undermined if a user is able to have multiple
identities.

However, in a P2P system with a decentralized design,
introducing a central element weakens the specific flexibility
and robustness properties introduced by a decentralized sys-
tem.

2.2.2 Payment and Micropayment with Digital Cash

Payment with real money as, e.g., in the DNS shows that
an overuse can be prevented. However, this is only possible
with a central element [30]. PPay [30] defines a micropay-
ment protocol for P2P systems that achieves a great reduc-
tion of communication with the central broker issuing the
money. Hence, in PPay there is still a central element, and it
does, therefore, not comply with the requirement of a fully
decentralized system. Even when reducing the traffic with
the central broker a shutdown of a broker can stop the system
to operate. Micropayment with digital cash as described for
various schemes in [9] cannot be applied either, because in a
decentralized system, using transferable cash is not feasible
without a central element [30].

2.3 Cooperative Distributed Systems

The second group of approaches deals with cooperation
among components of a distributed system.

2.3.1 Trust Management

Trust management as outlined in [1], [8], and [15] can be
described as collecting and evaluating information about a
node’s behavior, such as download and upload statistics or
amount of shared objects. The evaluation of collected data
represents the trustworthiness of a node. [11] and [15] uses
the notion of transitive trust management. A node that col-
lects data from a neighbor tells other neighbors about its
findings. These neighbors tell their neighbors about those
findings. A transitive characteristic in the scheme shows that
eventually all nodes will share the same information. How-
ever, this may take a long time, as propagating this informa-
tion depends on the number of nodes within a system.

Trust management can only be used to limit resources
when limited joining is allowed. Without this limit, a mali-
cious user can undermine any limit of a resource by inserting
many new nodes and whitewash the rating with a new iden-
tity. When using CPU time as a scarce resource the limit can-
not be bypassed by inserting a new node, because the limit is
bound to the CPU. Requesting many resources with many
nodes needs the same CPU time as requesting the same
resources with just one node.

2.3.2 Decentralized Accounting

PeerMint [13] is a decentralized approach to account for
resource usage. An additional charging scheme can be set up
to limit the usage. Main technical characteristics, as shown in
Figure 2, are third-party nodes, so-called mediators, which
keep track of resources traded during an exchange, and peer
account holders who hold the complete account data of a
node.

FIGURE 2. Basic principle of PeerMint.

Mediator

Node 1 Node 2
Exchange

Balance update Balance update

Balance updateBalance update

Account holder
for Node 2

Account holder
for Node 1

If two peers exchange a resource the mediators keep track
of this exchange and the resulting resource bill is transferred
to the peer’s account holders. Redundancy of account hold-
ers provides a guarantee to a certain degree that the account
data is preserved, even if an account holder leaves the system
or behaves maliciously. The mediators are determined based
on a secure hash calculation, and can thus not be freely cho-
sen by the nodes.

SeAl [21] proposes another decentralized accounting
mechanism. A management/accounting layer collects
receipts of transactions and these receipts can be traded (as
favors). The trading is enforced, so a peer cannot be selfish.
However, SeAl can only trade symmetric resources and
favors are passed to other nodes in a cooperative way.

2.4 Independent Distributed Systems

The third group of approaches deals with independency of
multiple components within a distributed system.

2.4.1 Tit-for-Tat

Tit-for-tat (TFT) is a strategy used for example in BitTor-
rent to discourage freeriders and provide incentives to upload
data at a high rate [5]. A participant in a BitTorrent network
wanting to download data has to offer data for upload as
well. TFT is not suitable in systems exchanging different
kind of resources.

2.4.2 Hashcash

Hashcash [2] is a way to use CPU time as a scarce
resource. The purpose of hashcash is to prevent spam mail-
ings being sent. Figure 3 shows the basic principle of hash-
cash to count back a hash to its original value. The recipient
of an e-mail sends an MD5 hash of a random value to the
sender. The sender has to count back the original value from
the hash, which takes some time and uses far more CPU time
than creating the hash. Afterwards, the value is sent back to
the recipient. If the transferred value matches the random
value, the e-mail is accepted. Thus, a spammer wanting to

- 4 -
send a huge amount of e-mails runs out of CPU power. The
CPU time is used to limit the amount of e-mail messages
being sent to the public.

By re-labeling the sender to node a and the recipient to
node b in Figure 3, the hashcash method can also be used to
prevent the overuse of a resource in a P2P system. Before a
resource such as bandwidth or storage space can be used on
node b, node a has to count back a hash. After confirmation
of the correct result, node a may use the bandwidth or stor-
age space. However, the CPU time is only used for an
exhaustive calculation to find the original value from a hash.
SRTCPU uses a similar approach, but with the difference
that the CPU time can be used for any type of calculation. In
SRTCPU it is not important what has been calculated, but
that something has been calculated correctly.

FIGURE 3. Basic principle of hashcash [2].

In order to prevent a parallelization a time crypto puzzle as
described in [25] could be applied. This computational task
cannot be parallelized because the task is “intrinsically
sequential” [25]. However, using parallel resources can be
tolerated as this also applies to the economic market. As an
example, the DNS also allows the usage of parallel
resources, i.e. to have more names registered in the DNS,
more money has to be paid. A similar scheme is applied to
SRTCPU: To register more names in DDNS more CPU
power has to be used.

2.5 Comparison

The supply and demand principle applies when trading
with scarce resources. All of the mentioned related work is
based on that principle and all related work is using a scarce
resource. Trust management and central accounting use a
central element to make a resource scarce. The others use the
scarce resource CPU time or bandwidth.

With respect to SRTCPU, TFT, and hashcash no central
elements are necessary and they are not dependent on data
from other nodes for verifying fair resource usage. With
SRTCPU, the CPU time can be used for arbitrary calcula-
tions, e.g., for solving large-scale computation problems as
in SETI@home [27] by creating incentives to offer CPU
time. In contrast, hashcash can only keep the CPU busy with
a very specific computational task without any freedom of
choosing an arbitrary calculation. This can be seen as a waste
of CPU time.

In contrast, hashcash keeps the CPU busy with a very spe-
cific computational task without any freedom of choosing an
arbitrary calculation. This can be considered as a waste of
CPU time. Finally, in contrast to TFT, no resource symmetry
is required for SRTCPU. Thus, SRTCPU defines an optimal

approach to prevent the overuse of a resource in a fully
decentralized system.

The full comparison of those approaches investigated is
shown in Table 1, where a “+” indicates the presence of the
characteristic, while a “-” indicates its absence.

TABLE 1. Comparison of different strategies for
resource trading.

N
o

ce
nt

ra
l e

le
m

en
t

Id
en

tif
ic

at
io

n
of

fa

ir
re

so
ur

ce
 u

sa
ge

ba

se
d

on
 lo

ca
l d

at
a

Ef
fic

ie
nt

 re
so

ur
ce

us

ag
e

N
o

re
so

ur
ce

sy

m
m

et
ry

 re
qu

ire
d

Tit-for-tat + + + -

Trust Management

a. Trust Management has to limit the number of possible identi-
ties of a client. [10] show that without resource trading, a limi-
tation is only possible with a central element.

-a - + +

Hashcash + + - +

Centralized Accounting - - + +

PeerMint + - + +

SRTCPU + + + +

3 Example-driven Design

Based on the investigation of related work, the key
requirements for SRTCPU have been derived. Therefore, the
detailed design of SRTCPU includes the set of mechanisms
in charge of sending computational tasks, which needs CPU
time to solve, in exchange for another resource to become as
scarce as the CPU time. The basic design of such a use of
CPU time includes a randomly chosen third party acting as a
task provider. The payment for the resource does not happen
in monetary form, as, e.g., in the DNS, but in terms of CPU
time. Binding a resource to a second resource, which is
scarce, makes the first resource as scarce as the second. This
means for SRTCPU that, e.g., the storage of a name is as
expensive as calculating a computational task.

In case of Internet Service Providers, the trading of band-
width, e.g., for a certain period of time, implicitly takes place
with storage trading. However, in the area of trading band-
width with an arbitrary data transfer — also with non-persis-
tent data — more research has to be performed. A first step
into this direction is PeerMart [12], a distributed auction plat-
form. Another step utilizes reputation management systems,
which could take the bandwidth into account as well.

3.1 Technical Prerequisites and Requirements

To describe the operation of SRTCP’s core idea, key pre-
requisites and requirements are outlined.

A node ID (identifier) identifies a node, and SRTCPU
relies on the fact that a node ID cannot be freely chosen. A
prevention of arbitrary node ID selection can, e.g., be
achieved by constructing the node ID based on the IP address
[29]. A second possibility includes the use of a central ele-
ment, as proposed by [10], to assign node IDs. SRTCPU uses
the first method, i.e. a node ID cannot be freely chosen and

- 5 -
all nodes available in the system are able to verify that this
precondition holds.

The following 7 requirements have been defined to enable
the design of a fully decentralized asymmetric resource trad-
ing scheme which will meet the key goals of a distributed
system: (a) efficiency and scalability with respect to the
number of resources being dealt by and (b) the number of
users utilizing the scheme developed:
• Fair. Provide a fair allocation of resources, i.e. prevent

resource overuse.
• Fully decentralized. No central elements should be

present.
• Load balanced. A node should not become a bottleneck.
• Fault tolerant. A failure of nodes should not affect the

service.
• Self-organized. The scheme is able to adapt to changes

in the network.
• Efficient. The scheme should consume as little resources

as possible.
• Trustworthy. In order to reduce the risk of attacks, mini-

mal trust relations should be deployed.

3.2 Main Challenge

The main challenge of SRTCPU’s architectural design is
to ensure that a peer has calculated the task by itself. Without
this assurance the node could re-label the task and send it as
a task provider to another node. To prevent such negative
behavior a checksum of what has been calculated is being
determined. The checksum is calculated using those instruc-
tions that have been performed and the node ID of the node
that has commissioned the task. A malicious node that re-
labels a task and sends it back as a new task will receive a
different checksum from that re-labeled task compared to the
original task. The node which received the re-labeled task
will use the node ID from the malicious node to calculate the
checksum. As stated as a technical prerequisites, a node ID
cannot be freely chosen and other nodes can verify that.

Another concern may be that a node, which is sending a
task, has to verify that the calculation received is correct.
E.g., Hashcash offers a direct and fast verification, because
the result of calculating back the hash must be the same as
the original value. In SRTCPU, however, it is necessary to
introduce redundancy to verify the correctness of a calcula-
tion. This means the same calculation is sent to more than
one node and those results received from these nodes are
compared. As a consequence, some overhead is created.

3.3 Communication Design

To enable a view on the sequence of actions and the inter-
operation between peers involved in an SRTCPU-based
scheme, the following examples are provided and discussed
to achieve an efficient communication paradigm.

Three participants can be identified in Figure 4: A task
provider that needs a calculation to be outsourced, a request-
ing node (node 2) and the node that provides a resource.
(node 1). In general, the number of requesting nodes is
denoted r, the percentage of malicious nodes is m.

The communication starts with node 2 requesting a
resource (1). In order to get that resource node 2 must be
willing to provide CPU time for that resource. Node 1 sends
this request to a task provider (2). Node 2 receives the task
(3) indicating that this task was requested from node 1 and
node 2 calculates the task. During the task, a checksum is
generated, including the node ID of node 1 and the instruc-
tions that have been executed in the task. The result and the
checksum are sent back to the task provider (4). Node 1
receives the checksum from node 2 and the task provider (5),
(6). This allows node 1 to determine if the task provider has
received the result. If the checksum is not received from the
task provider, an error has occurred either in node 2 or in the
task provider. Node 1 will mark both in a local list as poten-
tially malicious. If a certain threshold in this list has been
reached because a node continues to behave incorrectly that
node will not be considered in the future.

FIGURE 4. The communication design with three
participants (r = 1, m = 0).

The task provider that announced himself to node 1 must
also compute a task to get listed. Otherwise a task provider
could create many new nodes with the result that other task
providers would be excluded from providing tasks. The task
provider will be selected randomly by node 1. A task pro-
vider can register on any node.

The communication design with three participants and
r = 1 is not possible, if a malicious node sends arbitrary data
and checksums back. Therefore, more nodes (r > 1) have to
be introduced. In Figure 5 with r = 2, node 4 has been intro-
duced that is calculating the same task as node 3. It is obvi-
ous that a task must be deterministic. Node 1 receives r
checksums that must be equal. If they are not, one node has
made a mistake and both are marked as potentially mali-
cious. By reaching a certain threshold, a malicious node can
be detected. This scheme works only when m < 0.5 in an
ideal P2P system.

Node 1 is also able to send a computational task, if no task
provider is available or r = 1 with m > 0. The task looks sim-
ilar to hashcash, calculating back a hash, i.e. node 1 sends
node 2 a hash value of an initial value. Node 2 has to calcu-
late back a possible initial value for that hash value.

Figure 5 shows the network communication design with
r = 2. It is also possible to have r > 2. With more checksums
sent back, node 1 can determine faster if a node has behaved
maliciously. However, with more nodes, more overhead is
created.

With the introduction of r > 1 a certain amount of mali-
cious nodes cannot overuse resources in the system since

- 6 -
these malicious nodes will be detected and ignored. The
amount of malicious clients that can be present in the system
without overusing resources can vary from none to any,
depending on the scheme used. When using a crypto puzzle
the amount of malicious nodes is irrelevant, while no mali-
cious client may be present in the schema with r = 1 (cf. Fig-
ure 2). SRTCPU could be customized by varying the
schemes to address different requirements in decentralized
networks (e.g. every 5th task is a crypt puzzle).

FIGURE 5. Extended communication design with four
participants; 2 nodes (node 2, node 3) have received

the same task (r = 2)

3.4 Self-Regulating Task Difficulty

A resource can be paid for by calculating a task. The
amount of payment is defined by difficulty of the task which
is an important factor in making a resource scarce. If the dif-
ficulty is set too low overuse will be the result, if it is set too
high, underuse will happen. Along with every checksum sent
back, the number of processed instructions is also sent to
indicate if more computation is needed.

Node 1 knows how much node 2 and node 3 have calcu-
lated by indicating the number of processed instructions that
has been returned to node 1. Node 1 now needs to determine
the average CPU time per inserted name value pair in the
system to keep the system self-regulated. In this way, the sys-
tem keeps track of an increase in CPU power over time [19].

Node 1 can determine the average CPU time with a bench-
mark on itself, assuming to have an average CPU processor.
A tolerance factor will be applied to allow for a wider range
of different CPU power. The tolerance factor determines how
homogeneous — in terms of CPU processing speed — the
system can be. This is an important factor, since not every
node has the same CPU power. Small and embedded devices
have usually lower CPU power. However, SRTCPU focuses
mainly on homogeneous systems, where a similar amount of
resources are available on every node.

To calculate the average CPU time per inserted data, node
1 must also know the average amount of data stored in the
P2P system. Again, the node assumes that the stored data is
the average. With the average CPU time and the average
stored data, node 1 can decide, if node 2 and node 3 have cal-
culated sufficiently enough to be allowed to store the data on
node 1. Hence, the system is self-regulated.

4 Implementation and Evaluation

DDNS and SRTCPU have been implemented to validate
the feasibility of a decentralized naming/directory service by
using SRTCPU.

All calculations have been executed in a virtual machine,
which has also been implemented in Java and performs
mathematical tasks only. For the sake of simplicity, a proto-
typical MathVM [4] has been implemented in Java. The
MathVM can update the checksum on every processed
instruction, it uses its own language, and it has an assembler
that translates the source code into instructions (opcodes). A
task description in a MathVM has a fixed size of several kilo
byte, but a single task description has been implemented to
simulate a crypto puzzle. Therefore, the implementation will
only work without any malicious nodes, which does not pre-
vent a proof of concept. DDNS is based on a Distributed
Hash Table (DHT) with an XOR (exclusive or) metric, simi-
lar to [16], providing a good performance for any lookups in
O(log n) time, where n is the number of nodes considered.
The prototype has been tested with 1000 nodes to validate
that the search function scales gracefully [4].

4.1 DDNS Efficiency Analysis

The two most important commands in DDNS are get and
store. A get is a data lookup that takes O(log n) time in a
structured overlay network [16]. A store performs first a
lookup in O(log n), in order to find the node, where to store
the data. For all necessary details of the communication pro-
tocol, please refer to [4].

Let n be the number of participating nodes. It is assumed
that the number of queries scales with O(1), which means
that the number of queries a user performs are constant over
time. The analysis of the store and get commands shows in
the following that the message complexity remains O(log n)
as in the Kademlia network [16].

The get command has been modified for SRTCPU to
obtain always more than one single result, but this does not
affect its performance of O(log n). Based on the fact that the
number of queries p(n) is O(1), the overall number of mes-
sages, which equals p(n) * O(log n), will also be O(log n).
The store command has also been modified. Every store per-
forms a get to decide, if the name to be inserted exists. For
every store command the respective message complexity is
p(n) + (p(n) * O(log n)). Again p(n) is O(1) and the resulting
efficiency is O(log n).

Even if p(n) were O(log n), the system with the overall
complexity of O(log n)2 remains. However, with p(n) = O(n)
the complexity would be O(n * log n), which is too high. But
on the other hand, with the same situation that p(n) = O(n),
the complexity of the DNS would be O(n) * O(1) = O(n),
which is also too high for a scalable system. Thus the effi-
ciency achieved is highly comparable with existing systems.

As a result of this analysis, it can be concluded that all
modifications do not exceed O(log n) and the lookup remains
scalable. Nevertheless, some optimizations still can boost the
performance. One optimization includes a clustering
approach similar to SHARK [17]: The system is divided into
parts. A part is built by grouping similar nodes. Similar in

- 7 -
this context means that nodes searching the same names are
similar. Let p(n) be the amount of nodes which searches
within its parts and let q(n) be the amount of nodes which
searches in other parts. Having constant part sizes and grow-
ing numbers of parts, a get command in such a part is O(1).
The get command for searching inside and outside of a part
is p * O(1) + q * O(log n). The complexity remains O(log n),
but if a lot of searches are within a single part, the get com-
mand becomes faster. The second optimization addresses
caching, where the same situation arises. When caching a
large number of entries the get command becomes faster, but
there will also be many uncached names, consequently the
system remains O(log n).

4.2 DDNS Experiment

The prototype implemented has been tested and several
simulation experiments with up to 100 nodes per machine
have been made. In total 10 separate Pentium III Machines
with 1.6 GHz and 256 MByte RAM have been used to simu-
late a smaller network. These experiments have confirmed
those results of the theoretical efficiency analysis as dis-
cussed above in Section 4.1.

The result for the number of messages in total to be
exchanged for the commands get and store are depicted in
Figure 6. This figure indicates that the system communica-
tion grows with O(log n). The system in this simulation run
stored 15 names and made 100 get requests. The get requests
were made once and the store commands were repeatedly
called thereafter. After every name had been stored and 100
requests had been made, the run was aborted. The numbers
of nodes tested are 10, 20, 60, 100, 150, 200, 500, and 1000.
In each step, 2 runs have been made and the mean has been
calculated. A node can fail with a probability of 10%. No
malicious nodes have been used (m = 0), no task providers
are present and r = 1.

FIGURE 6. Simulation experiments of the prototype.

Due to the implementation of the prototype with just one
thread per communication channel, only a small number of
nodes (ca. 150 nodes) has been tested per machine.

4.3 Validation and Discussion

Key requirements discussed above have been met.

• Fair. Fairness is achieved since everyone has to pay
about the same amount of CPU time for a resource. The
amount of CPU time to be paid is self-organizing.
Resource overuse is limited through the introduction of
SRTCPU offering the possibility of trading different
types of resources. In DDNS, a name value pair is traded
for CPU time.

• Fully decentralized. SRTCPU is fully decentralized. No
central element is necessary to account for resource
usage.

• Load balanced and fault tolerant. Due to redundant
storage a failure does not affect the scheme and the load
is balanced. Additionally, a caching mechanism in DDNS
optimizes the balance especially with popular names.

• Self-organized. With the use of CPU time to prevent
overuse of a resource, every node can decide how much
to charge for its resource. A central element is not neces-
sary and a self-regulating task difficulty establishes a bal-
anced charge of CPU time with respect to increasing
processing power (Moors’ law [19]) over time. There-
fore, even when the resources change over time the sys-
tem itself remains self-organized.

• Efficient. Although CPU time has to be spent, SRTCPU
adds a benefit over a crypto puzzle by making the CPU
time available for other calculations as well.

• Trustworthy. Trust can be measured based on local data.
Thus, minimal trust relations have been achieved.

A smaller number of further issues remain for discussion.
A potential problem arises when the network is very hetero-
geneous, i.e. with a lot of different CPU capabilities. [10]
states that large-scale distributed systems are inevitably het-
erogeneous. Especially embedded and small devices have
usually fewer resources to allocate. However, if a participa-
tion in a system requires certain resources the problem of
heterogeneity is less relevant. If a node wants to join the net-
work, it has to make sure that it has sufficient resources. If
there are not sufficiently large the node cannot join and has
to be upgraded, for example with more storage or a faster
processor. The final result is that every SRTCPU participant
will have a similar amount of resources available.

Furthermore, efficiency is limited by the possible presence
of malicious nodes and the absence of nodes for the verifica-
tion of a computational task. Overhead is created as
SRTCPU has to send a task to multiple nodes to verify the
result. Therefore, the calculation is not as efficient as in a
supervised system. A fallback strategy similar to hashcash is
used when just one node requests a resource. In this case, the
CPU time cannot be contributed to calculate anything else.
Details need to be investigated further.

Additionally, the bandwidth of a node, with which it is
connected to the network, may become a bottleneck, if the
task description is very large. Therefore, in the DDNS proto-
type and its experiments, the task description was limited to a
fixed size. Without this limitation, the required bandwidth
would be considered as part of the payment.

Finally, although in the traditional DNS the uniqueness of
names can be guaranteed, this is not possible in a fully
decentralized system, since all peers behave autonomous.

- 8 -
However, these ambiguities in DDNS may exist only for a
limited period of time: If two names are inserted at the same
time, but from different peers, the name propagated faster
will prevail [4]. Thus, no following concern remains.

5 Summary and Future Work

Since Peer-to-peer (P2P) systems are flexible, robust, and
self-organizing resource sharing infrastructures which are
typically designed in a fully decentralized manner, the key
problem of freeriders, i.e. peers overusing a resource, have to
be solved. In general, three strategies can be applied to pre-
vent the overuse of a resource in a decentralized system: (a)
introducing a central element, (b) symmetric and asymmetric
resource trading, and (c) decentralized collection of informa-
tion about resource usage. The approach SRTCPU (Scare
Resource Trading with CPU Time) introduced in this paper
uses asymmetric resource trading, since this can be designed
and implemented in a fully decentralized manner. Anyone
who wants to use a critical resource has to pay for it with
CPU time.

This approach taken can be generalized. Introducing CPU
time as a scare resource in a P2P system can make other
resources as scare as the CPU time by binding these two
resources together. As an example application of SRTCPU,
Distributed Domain Name System (DDNS) has been imple-
mented. DDNS is an architectural concept of a decentralized
naming service based on a P2P network. It implements
SRTCPU to protect the critical resource storage space for
name value pairs. The names can be retrieved in O(log n)
due to the underlying Distributed Hash Table. With the intro-
duction of task providers, one can use the CPU time, result-
ing from name insertions, for any task. It could also be used
in a grid, to solve large-scale computation problems similar
to SETI@home. Contrary to the altruistic donation of CPU
time to large-scale computation communities, DDNS creates
an incentive to provide CPU time to a grid. The feasibility of
DDNS has been validated, its efficiency has been analyzed,
and a prototypical implementation has been performed as
well as evaluated.

Future distributed architectures may be based on other
resources than CPU time. For example, a decentralized web
page system including a naming service could make storage
space and bandwidth available as the scarce resource. In
order to store a name of a web page, storage space would
have to be provided for other nodes.

To achieve a detailed understanding of the impact of mali-
cious nodes and to obtain further data from the simulation,
the simulation experiments are expected to be extended
toward a testbed of a larger number of machines. This would
include the varying of the parameter r and the introduction of
malicious nodes into the system.

Acknowledgments

This work has been performed partially in the framework
of the EU IST Network of Excellence EMANICS “Manage-
ment Solutions for Next Generation Networks” (FP6-2004-
IST-4-026854-NoE).

References

[1] K. Aberer, Z. Despotovic. Managing trust in a peer-2-peer
information system. H. Paques, L. Liu, and D. Grossman
(edts): Tenth International Conference on Information and
Knowledge Management (CIKM’01), New York, USA,
November 2001, pp 310—317.

[2] A. Back. Hash cash — a denial of service counter-measure,
URL: http://www.hashcash.org/papers/hashcash.pdf, August
2002.

[3] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert
Morris, Ion Stoica. Looking up data in P2P systems. Commu-
nications of the ACM, Vol. 46, No. 2, February 2003, pp 43—
48.

[4] T. Bocek. Feasibility, Pros and Cons for Distributed DNS,
Master Thesis, University of Zürich, Department of Informat-
ics IFI, May 2004.

[5] B. Cohen. Incentives Build Robustness in BitTorrent. 1st
Workshop on Economics of Peer-to-Peer Systems, Berkeley,
California, U.S.A., June 2003.

[6] Brian F. Cooper, Hector Garcia-Molina, Peer-to-Peer
Resource Trading in a Reliable Distributed System, Lecture
Notes in Computer Science, Volume 2429, January 2002, pp
319—327.

[7] R. Cox and A. Muthitacharoen, R. Morris, Serving DNS using
a peer-to-peer lookup service, 1st International Workshop on
Peer-to-Peer Systems (IPTPS’02), Cambridge, Massachusetts,
U.S.A., March, 2002.

[8] E. Damiani, De Capitani di Vimercati, S. Paraboschi, P. Sama-
rati, F. Violante. A reputation-based approach for choosing
reliable resources in peer-to-peer networks. 9th ACM Confer-
ence on Computer and Communications Security, Washington
DC, U.S.A., November 2002, pp 207-216.

[9] R.Dingledine, M.Freedman and D.Molnar, “Accountability”,
Peer-to-Peer: Harnessing the Power of Disruptive Technolo-
gies, O'REILLY Press, 2001, Chapter 16, pp.271—340.

[10] J. R. Douceur. The sybil attack. 1st International Workshop on
Peer-to-Peer Systems (IPTPS’02), Cambridge, Massachusetts,
U.S.A., March 2002.

[11] M. Feldman and K. Lai and I. Stoica, J. Chuang, Robust Incen-
tive Techniques for Peer-to-Peer Networks, ACM Electronic
Commerce, New York, U.S.A., May 2004.

[12] D. Hausheer, B. Stiller, Decentralized Auction-based Pricing
with PeerMart, 9th IFIP/IEEE International Symposium on
Integrated Network Management, Nice, France, May 2005.

[13] D. Hausheer, B. Stiller, PeerMint: Decentralized and Secure
Accounting for Peer-to-Peer Applications, IFIP Networking
2005, Waterloo, Ontario, Canada, May 2005.

[14] S. Kamvar, M. Schlosser, and H. Garcia-Molina. Incentives for
Combatting Freeriding on P2P Networks. International Con-
ference on Parallel and Distributed Computing (Euro-Par),
Klagenfurth, Austria, August 2003.

[15] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina. The eigen-
trust algorithm for reputation management in p2p networks.
Twelfth International World Wide Web Conference (WWW),
Budapest, Hungary, May 2003.

[16] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. 1st International
Workshop on Peer to Peer Systems (IPTPS’02), Cambridge,
Massachusetts, U.S.A., March 2002.

[17] J. Mischke, B. Stiller: Rich and Scalable Peer-to-Peer Search
with SHARK, Autonomic Computing Workshop Fifth Annual
International Workshop on Active Middleware Services
(AMS'03), Seattle, Washington, U.S.A., June 2003.

[18] P. Mockapetris, Domain Names - Concepts and Facilities,
Request for Comments: 1034, Network Working Group,
November 1987.

[19] Moore’s Law, URL: http://www.intel.com/technol-
ogy/mooreslaw/index.htm, August 2005.

- 9 -
[20] T.-W. J. Ngan and D. S. Wallach and P. Druschel. Enforcing
fair sharing of peer-to-peer resources. 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS), Berkeley, California,
February, 2003.

[21] Nikos Ntarmos, Peter Triantafillou. SeAl: Managing Accesses
and Data in Peer-to-Peer Sharing Networks. Fourth Interna-
tional Conference on Peer-to-Peer Computing (P2P’04),
Zürich, Switzerland, August 2004, pp 116—123.

[22] OASIS UDDI, UDDI Technical Committee Draft, URL:
http://uddi.org/, August 2005.

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A
scalable content addressable network. ACM SIGCOMM, San
Diego, California, U.S.A., August 2001.

[24] C. Rensing, Hasan, M. Karsten, B. Stiller: AAA: A Survey and
a Policy-based Architecture and Framework; IEEE Network
Magazine, Vol. 16, No. 6, November/December 2002, pp 22—
27.

[25] R. L. Rivest and A. Shamir, D. A. Wagner, Time-lock Puzzles
and Timed-release Crypto, Technical Report, MIT Laboratory
for Computer Science, 1996.

[26] A. Rowstron, P. Druschel. Pastry: Scalable, Decentralized
Object Location and Routing for Large-Scale Peer-to-Peer
Systems. 18th IFIP/ACM Conference on Distributed Systems
Platforms, Heidelberg, Germany, November 2001.

[27] SETI@home, URL: http://setiathome.ssl.berkeley.edu/,
August 2005.

[28] B. Stiller, J. Fernandez, Hasan, P. Kurtansky, W. Lu, D.-J. Plas,
B. Weyl, H. Ziemek, B. Bhushan: Design of an Advanced A4C
Framework, Whitepaper, EU IST Project Daidalos,
http://www.ist-daidalos.org/, August 2005.

[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet
applications. ACM SIGCOMM, San Diego, California,
U.S.A., March 2001, pp 149-160.

[30] B. Yang, H. Garcia-Molina. PPay: Micropayments for Peer-to-
Peer Systems. Technical report, Stanford University, 2003.

[31] B. Y. Zhao, J. D. Kubiatowicz, A. D. Joseph. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and
Routing, Technical Report UCB/CSD-01-1141, Computer Sci-
ence Division, U. C. Berkeley, April 2001.

	Introducing CPU Time as a Scarce Resource in P2P Systems
	Thomas Bocek1, David Hausheer1, Reinhard Riedl2, Burkhard Stiller1,3
	1Communication Systems Group, Department of Informatics IFI, University of Zurich, Switzerland 2Information Systems Group, Depar...
	E-Mail: [bocek|hausheer|riedl|stiller]@ifi.unizh.ch
	Abstract
	1 Introduction
	2 Related Work
	2.1 Comparative Dimensions.
	FIGURE 1. Classification of related work

	2.2 Deployment of Central Elements
	2.2.1 Centralized Accounting
	2.2.2 Payment and Micropayment with Digital Cash

	2.3 Cooperative Distributed Systems
	2.3.1 Trust Management
	2.3.2 Decentralized Accounting
	FIGURE 2. Basic principle of PeerMint.

	2.4 Independent Distributed Systems
	2.4.1 Tit-for-Tat
	2.4.2 Hashcash
	FIGURE 3. Basic principle of hashcash [2].

	2.5 Comparison
	TABLE 1. Comparison of different strategies for resource trading.

	3 Example-driven Design
	3.1 Technical Prerequisites and Requirements
	3.2 Main Challenge
	3.3 Communication Design
	FIGURE 4. The communication design with three participants (r = 1, m = 0).
	FIGURE 5. Extended communication design with four participants; 2 nodes (node 2, node 3) have received the same task (r = 2)

	3.4 Self-Regulating Task Difficulty

	4 Implementation and Evaluation
	4.1 DDNS Efficiency Analysis
	4.2 DDNS Experiment
	FIGURE 6. Simulation experiments of the prototype.

	4.3 Validation and Discussion

	5 Summary and Future Work
	Acknowledgments
	References
	[1] K. Aberer, Z. Despotovic. Managing trust in a peer-2-peer information system. H. Paques, L. Liu, and D. Grossman (edts): Tenth International Conference on Information and Knowledge Management (CIKM’01), New York, USA, November 2001, pp 310-317.
	[2] A. Back. Hash cash - a denial of service counter-measure, URL: http://www.hashcash.org/papers/hashcash.pdf, August 2002.
	[3] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, Ion Stoica. Looking up data in P2P systems. Communications of the ACM, Vol. 46, No. 2, February 2003, pp 43- 48.
	[4] T. Bocek. Feasibility, Pros and Cons for Distributed DNS, Master Thesis, University of Zürich, Department of Informatics IFI, May 2004.
	[5] B. Cohen. Incentives Build Robustness in BitTorrent. 1st Workshop on Economics of Peer-to-Peer Systems, Berkeley, California, U.S.A., June 2003.
	[6] Brian F. Cooper, Hector Garcia-Molina, Peer-to-Peer Resource Trading in a Reliable Distributed System, Lecture Notes in Computer Science, Volume 2429, January 2002, pp 319-327.
	[7] R. Cox and A. Muthitacharoen, R. Morris, Serving DNS using a peer-to-peer lookup service, 1st International Workshop on Peer-to-Peer Systems (IPTPS’02), Cambridge, Massachusetts, U.S.A., March, 2002.
	[8] E. Damiani, De Capitani di Vimercati, S. Paraboschi, P. Samarati, F. Violante. A reputation-based approach for choosing reli...
	[9] R.Dingledine, M.Freedman and D.Molnar, “Accountability”, Peer-to-Peer: Harnessing the Power of Disruptive Technologies, O'REILLY Press, 2001, Chapter 16, pp.271-340.
	[10] J. R. Douceur. The sybil attack. 1st International Workshop on Peer-to-Peer Systems (IPTPS’02), Cambridge, Massachusetts, U.S.A., March 2002.
	[11] M. Feldman and K. Lai and I. Stoica, J. Chuang, Robust Incentive Techniques for Peer-to-Peer Networks, ACM Electronic Commerce, New York, U.S.A., May 2004.
	[12] D. Hausheer, B. Stiller, Decentralized Auction-based Pricing with PeerMart, 9th IFIP/IEEE International Symposium on Integrated Network Management, Nice, France, May 2005.
	[13] D. Hausheer, B. Stiller, PeerMint: Decentralized and Secure Accounting for Peer-to-Peer Applications, IFIP Networking 2005, Waterloo, Ontario, Canada, May 2005.
	[14] S. Kamvar, M. Schlosser, and H. Garcia-Molina. Incentives for Combatting Freeriding on P2P Networks. International Conference on Parallel and Distributed Computing (Euro-Par), Klagenfurth, Austria, August 2003.
	[15] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina. The eigentrust algorithm for reputation management in p2p networks. Twelfth International World Wide Web Conference (WWW), Budapest, Hungary, May 2003.
	[16] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on the xor metric. 1st International Workshop on Peer to Peer Systems (IPTPS’02), Cambridge, Massachusetts, U.S.A., March 2002.
	[17] J. Mischke, B. Stiller: Rich and Scalable Peer-to-Peer Search with SHARK, Autonomic Computing Workshop Fifth Annual International Workshop on Active Middleware Services (AMS'03), Seattle, Washington, U.S.A., June 2003.
	[18] P. Mockapetris, Domain Names - Concepts and Facilities, Request for Comments: 1034, Network Working Group, November 1987.
	[19] Moore’s Law, URL: http://www.intel.com/technology/mooreslaw/index.htm, August 2005.
	[20] T.-W. J. Ngan and D. S. Wallach and P. Druschel. Enforcing fair sharing of peer-to-peer resources. 2nd International Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, California, February, 2003.
	[21] Nikos Ntarmos, Peter Triantafillou. SeAl: Managing Accesses and Data in Peer-to-Peer Sharing Networks. Fourth International Conference on Peer-to-Peer Computing (P2P’04), Zürich, Switzerland, August 2004, pp 116-123.
	[22] OASIS UDDI, UDDI Technical Committee Draft, URL: http://uddi.org/, August 2005.
	[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A scalable content addressable network. ACM SIGCOMM, San Diego, California, U.S.A., August 2001.
	[24] C. Rensing, Hasan, M. Karsten, B. Stiller: AAA: A Survey and a Policy-based Architecture and Framework; IEEE Network Magazine, Vol. 16, No. 6, November/December 2002, pp 22- 27.
	[25] R. L. Rivest and A. Shamir, D. A. Wagner, Time-lock Puzzles and Timed-release Crypto, Technical Report, MIT Laboratory for Computer Science, 1996.
	[26] A. Rowstron, P. Druschel. Pastry: Scalable, Decentralized Object Location and Routing for Large-Scale Peer-to-Peer Systems. 18th IFIP/ACM Conference on Distributed Systems Platforms, Heidelberg, Germany, November 2001.
	[27] SETI@home, URL: http://setiathome.ssl.berkeley.edu/, August 2005.
	[28] B. Stiller, J. Fernandez, Hasan, P. Kurtansky, W. Lu, D.-J. Plas, B. Weyl, H. Ziemek, B. Bhushan: Design of an Advanced A4C Framework, Whitepaper, EU IST Project Daidalos, http://www.ist-daidalos.org/, August 2005.
	[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM, San Diego, California, U.S.A., March 2001, pp 149-160.
	[30] B. Yang, H. Garcia-Molina. PPay: Micropayments for Peer-to- Peer Systems. Technical report, Stanford University, 2003.
	[31] B. Y. Zhao, J. D. Kubiatowicz, A. D. Joseph. Tapestry: An Infrastructure for Fault-tolerant Wide-area Location and Routing, Technical Report UCB/CSD-01-1141, Computer Science Division, U. C. Berkeley, April 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

