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Abstract

Simulation is a common means for validating require-
ments models. Simulating formal models is state-of-the-art.
However, requirements models usually are not formal for
two reasons. Firstly, a formal model cannot be generated
from scratch in one step. Requirements are vague in the
beginning and are refined stepwise towards a more formal
representation. Secondly, requirements are changing, thus
leading to a continuously evolving model. Hence, a require-
ments model will be complete and formal only at the end of
the modeling process, if at all. If we want to use simulation
as a means of continuous validation during the process of
requirements evolution, the simulation technique employed
must be capable of dealing with semi-formal, incomplete
models.

In this paper, we present an approach how we can deal
with partial models during simulation and how we can use
simulation to support evolution of these models. Our ap-
proach transfers the ideas of drivers, stubs, and regression
from testing to the simulation of requirements models. It
also uses the simulation results for evolving an incomplete
model in a systematic way towards a more formal and com-
plete one.

1 Introduction

Requirements constitute the fundamental basis for all
later software development stages, i.e., the design, imple-
mentation, test, and maintenance of the software product to
be built. Errors in requirements are costly: (1) Ultimately,
they lead to products that do not satisfy the needs of their
users, (2) errors are the more costly to remove the later they
are discovered. Hence, validating requirements and remov-

ing detected errors as early as possible is quite important
both for improving quality and reducing cost in software
development.

A requirements specification process typically consists
of eliciting requirements from stakeholders, documenting
them in an adequate way and then validating them by the
stakeholders. This is normally not a linear process, but an
evolutionary one due to two reasons. Firstly, a requirements
model is usually not created in a single step for size and
complexity reasons. Secondly, requirements are changing
as stakeholders bring up new requirements, change priori-
ties, etc.

In order to detect ambiguous, missing and inconsistent
requirements more easily, requirements should be written
in a formal or at least semi-formal language. However,
stakeholders typically do not understand formal notations
at all and also need help for understanding semi-formal
ones. Prototyping and simulation are two possible ways
out of this dilemma. Prototyping is expensive, in particu-
lar if requirements change, because prototype development
has to be done in addition to the requirements modeling ef-
fort, and a prototype must continuously be adapted if the
requirements evolve. Demonstrating the expected behavior
of a system by simulating a model of its requirements is
much cheaper than prototyping, in particular when the re-
quirements evolve. This is due to the fact that a simulation
executes directly on the requirements model and therefore
always reflects the latest changes. However, validating a
requirements specification completely with simulation re-
quires a complete formal specification.

Developing a complete formal specification of non-
trivial size is so hard and expensive that it is typically nei-
ther feasible nor economically beneficial in practice. More-
over, it is extremely hard to produce a specification which
is completely formalized right from the beginning. Instead,



a formal model normally will evolve by incrementally for-
malizing and assembling informal or semi-formal specifica-
tion fragments.

Consequently, simulation as a means of validation is
confined to a very narrow scope: it is applicable only to
formal models and typically only at the end of the require-
ments engineering process.

In practice, semi-formal models of requirements are pre-
ferred over formal ones, due to their better cost/benefit ra-
tio. From a cost/benefit standpoint, it would be optimal to
have requirements models with a varying degree of formal-
ity, where parts with a high risk of failure can be specified
formally, while others are specified semi-formally or infor-
mally. Some parts may even not be specified at all, because
there is a common understanding between the customers
and the developers about these parts1.

However, we still have the need for validating such mod-
els and for validating them early in the process. One would
benefit most if errors could be found just when a require-
ment has been written. As simulation is a powerful means
for finding errors, it would be extremely useful if a model
fragment could be simulated as soon as it has been writ-
ten and if the specification process could be accompanied
by a continuous validation and re-validation of model frag-
ments. Thus, an interesting research question arises: is it
possible to extend the concept of simulating requirements
models2 from complete and formal models to partial and
semi-formal ones?

In the field of testing, we know that we can test soft-
ware which is not yet complete by using test drivers and
test stubs. In testing, we also have the well-known concept
of regression testing for dealing with evolving software.

In this paper, we present a concept for simulating par-
tial, semi-formal requirements models which allows model-
based validation of requirements at any stage of an evolu-
tionary process. Our concept is based on carrying over the
ideas of drivers, stubs, and regression from testing to the
simulation of requirements models. As a prerequisite, we
need a requirements modeling language which is capable of
systematically dealing with partial and semi-formal mod-
els. In our research group, we have developed the modeling
language ADORA [5, 24] which supports various degrees
of formality in the notation and provides constructs for ex-
pressing intentional incompleteness of model elements.

The remainder of this paper is organized as follows. In
the next section, we describe the language features required
for our simulation concept, using the ADORA modeling lan-

1For example, when buying a car, the customer does not need to spec-
ify in the contract that the car must be equipped with an engine and four
wheels with rubber tires.

2In this context, simulation means the execution of a system model.
The language in which the model is described must rely on a defined exe-
cution semantics. Based on the semantics, a simulator tool can execute the
model, either by direct interpretation or by code generation [19].

guage as an example. In Section 3, we outline an iterative
modeling process in which validation by simulation of par-
tial models, model evolution and verification is embedded.
The technique of simulating partial models is described in
Section 4. In Section 5, we show how the results of simula-
tion runs can be used for evolving a partial model towards
a more complete and more formal one. In Section 6, we
present a short case study. Related work is discussed in Sec-
tion 7. Finally, we summarize our contributions and give an
outlook in Section 8.

2 Introduction into ADORA

This section gives a brief introduction into ADORA, the
way we enforce the consistency of models, a set of impor-
tant definitions and how we simulate formal ADORA mod-
els.

2.1 The ADORA language

The ADORA (Analysis and Description of Requirements
and Architecture) language aims in modeling requirements
and architectural models as described in [5, 10, 1].

On the first glance, the ADORA language is compara-
ble with other modeling languages like UML [16]. How-
ever, there are fundamental differences between conven-
tional modeling languages and ADORA. In the following,
we will summarize the most important differences between
them by using a heating control system as example:

Abstract Objects Class models, as they are used in
conventional modeling languages, are inappropriate when
modeling one or more objects of the same type, or when
nesting objects [10]. In the case of modeling these situ-
ations, a lot of information is lost when using class dia-
grams. This information is especially important during re-
quirements and architectural design phase, because of bet-
ter understandability of the models, hence modeling lan-
guages based on class models are less suited in the men-
tioned phases. Instead of classes, ADORA uses abstract ob-
jects respectively object sets. Abstract objects are represen-
tatives for concrete objects, i.e., they define the attributes,
functionality and behavior on an abstract level and there-
fore do not contain an object identity.

Fig. 1 shows an example of abstract objects. In this ex-
ample, you will see the structural view of a modeled heating
control system. Fig. 1(a), will show you the modeled system
by using abstract objects, whereas Fig. 1(b) presents the cor-
responding class models in an UML like syntax. Abstract
objects can have a type (following the name by a colon).
The figure illustrates that you cannot visualize the informa-
tion about the number of instances of each class are aggre-
gated by another class which means that the context an ob-
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ject is lost. This problem can not be mitigated by using car-
dinalities or other workarounds like using inheritance [10].

Hierarchical Decomposition ADORA supports the pos-
sibility for hierarchical decomposition. We can recursively
decompose objects in objects, but also other elements3 as
for examples states. Elements on a lower level describe
the details of the system, whereas elements on higher level
describe a more abstract view of the system. This is a
good means for structuring large models by modularizing
the system. It also provides the possibility for abstraction.
You can find an example for hierarchical decomposition in
Fig. 2, where RoomModule consists of the RoomTempCon-
trolPanel object, which again consists of other elements,
and so on.

Integrated Models Conventional modeling languages
like UML [16] consist of a set of loosely coupled sub lan-
guages for describing the different views (or also called
projections) on a system’s model. In such a case, a sys-
tem’s model consists of a patchwork of different submodels,
which are not coherently integrated (e.g., behavioral model,
structural model, etc.). Compared to a language using one
integrated and coherent model, the conventional approach
results in different problems:

1. The user has to contribute a higher intellectual effort to
integrate all the different submodels into one coherent
over-all model in his mind.

2. The submodels are more difficult for the communica-
tion with the stakeholder, when for example commu-
nicating the requirements of the system.

3. The resulting models contain more redundancy due to
the fact that the models have to be handled separately.

4. The more redundancy the submodels have, the more
consistency problems occur. The consistency has to be

3The term elements comprises in the following text all language ele-
ments of ADORA, like abstract objects, states, scenarios

ensured by integrity rules that are not directly visible to
the user of the language, which results in many cases
in complicated constraint rules.

The ADORA language deals with the problems described
above by using an integrated model, with a set of views:

i. Base View: The base view is the structure which is
built by abstract objects and abstract object sets, called
components. The base view can be hierarchical de-
composed as described above. It forms the basis for
the views described in the following. Fig. 2 shows the
elements of the base view. Abstract objects are drawn
as rectangle (e.g., MasterModule) and object sets are
drawn as stack of rectangles (e.g., RoomModule).

ii. Structural View: The structural view is the combina-
tion of the base view and associations between objects
and object sets. These associations are used as com-
munication channels between objects. These channels
can be used to send events to a destination compo-
nent. An example for associations between abstract
objects can be found in Fig. 2: informs is the associ-
ation between the Controller and the LocalControlEn-
abled object. Associations are always directed binary
relationships. Each direction can have a role name.
In the HeatingControlSystem the informs association is
an example for an association with one named role and
explicitly modeled direction. Another kind of associ-
ation are abstracted ones. These kind of association is
described in more detail below in Subsection 2.2.

iii. Behavioral View: The behavior of systems is de-
scribed in ADORA by a statechart like syntax and
semantics [6]. The exact syntax and the behavioral
semantics of the statecharts in ADORA is described
in [4, 5, 10]. Differences in the syntax of ADORA

are that parallel states are not explicitly modeled and
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Figure 2. Heating Control System modeled in ADORA (hand-drawn)

that the states can be combined with the object hier-
archy. The latter means that states or objects not be-
ing directly or indirectly connected by a transition are
meant to execute in parallel. The former means that
objects will be also interpreted as states if they have an
in-going transition from another state or they are des-
ignated as a start state.

A transition can be annotated by a description of the
firing condition and/or an event, as well as a call of
an operation defined in the functional view of an ob-
ject (see below) or a triggering of an event by a send
statement. Fig. 2 shows these elements. States are vi-
sualized as rounded rectangles, transitions as arrows,
start states are designated with special kind of in-going
transition (a black dot is the starting point of the tran-
sition). States can also be nested.

Note that in Fig. 2 for the sake of simplicity, only tran-
sition annotations for one of the transition between Lo-
calControlOff and LocalControlOn are shown. How-
ever, for the semantically correct interpretation of the
model, most of the other transitions must also have
such an annotation.

iv. User Interaction View: Scenario charts [24] are a
means for describing the use cases occurring when
an actor is communicating with the system. Scenario
charts are an extended form of Jackson Diagrams [9]

and are fully integrated in the user view of the ADORA

language. They describe the possible use cases that
can be executed by an actor. We extended the scenario
charts in a straight forward approach for simulation by
annotating them with conditions (for alternatives and
iterations) and a language describing the type of in-
put stimuli sent by the user to the system, respectively
sent back from the system to the user [17]. The user
view, i.e., the scenarios, describes the protocol used
between system and actor to communicate. Hence, the
user view plays a key role when simulating a system
developed in ADORA.

An example for scenario chart can be found in Fig. 7,
where you can see an alarm system with different sim-
ple scenarios.

v. System Context View: This view describes the sys-
tem’s context by showing the different actors repre-
sented by sexangular shapes. Fig. 2 shows an exam-
ple of the user view. Actors are usually connected to
root nodes of scenarios and in the case of simulating
the model, they can inject some stimuli into the sys-
tem and receive some reaction.

vi. Functional View: The functional view describes the
detailed structure of an abstract object by declaring
attributes and operations. The language describing



object specification Settings
provides 	 ActualTemp;
		 ‘Operations to inspect / manipulate control intervals (consisting of start 
		 time and deired temperature), both default and user-defined‘;
requires	 //nothing
type
	 TempIntervals is list of TempInterval;
	 TempInterval is structure of (start: Time, temp: Temperature);
	 Temperature : typedef y : integer (y > -5 and y <= 40)
attribute
	 public ActualTemp : Temperature;	 //temperature measured by sensor
	 DefaultIntervals  : TempIntervals;	 //default temperature settings
	 UserSetIntervals : TempIntervals 	 //user-defined temperature settings

syncoperation CurrentTemp(in time : integer, out ctemp : Temperature)
	 pre 	 1 <= time <= 24 * 60 // minutes
	 post 	 for all i : integer in (i >= 0 and i <= UserSetIntervals.length) 	(
		    ctemp == UserSetIntervals[i].temp and UserSetIntervals[i].start <= t and 
              		 (  not (exists j : integer in (j >= 0 and j <= UserSetIntervals.length) 
			        (UserSetIntervals[i].start < UserSetIntervals[j].start <= t) ) )
		  )
	 statements
		 ctemp = UserSetIntervals[time];
end CurrentTemp

syncoperation DefaultTemp(in t : Time; out dtemp : Temperature)
	  ‘Same as CurrentTemp, but returns current default value‘
end DefaultTemp�

operation RevertToDefault()
	 post UserSetIntervals@pre == DefaultIntervals
end RevertToDefault

‘Settings must also provide operations for setting and deleting intervals and for 
  browsing the currently defined intervals.‘

end specification

Figure 3. Exampled of a detailed Object Spec-
ification in ADORA

the functional view is derived from the language AS-
TRAL [3]. Fig. 3 shows an example describing the
detailed structure of the Settings object. in Fig. 2.

One coherent model does not mean that all the views
will be drawn in the same diagram at the same time. In
most cases, this would cause too much cognitive complex-
ity for the user of the language. It rather means that the
structural, behavioral, user, and context views can be visu-
ally combined freely with each other. These views must be
drawn together with the base view. The functional view is a
special case and is never be combined with one of the other
views.

The integrated model of the ADORA language results
in the formulation of less redundancy and enables the use
of stronger rules for integrity checking of models. Also,
the language is more easy to use, allows a more system-
atic model construction, fosters a better understanding of
the model, and is a means for a better communication with
the customer when communicating the requirements of the
system.

2.2 Abstraction Mechanism

There are several abstraction mechanisms in ADORA

available [10]. One possibility is the hiding of currently

not used elements from the views described above. Another
possibility is to zoom out in the model, which abstracts from
inner content of an component or state of the model. Look-
ing at the Fig. 2, we see there some abstracted components,
e.g., the BoilerControlPanel or the BoilerControl. The hid-
den content is indicated by the trailing dots of the compo-
nent name.

If the content of a component A is abstracted and this
component A contains objects or object sets associated to
another object/object set B located outside A, the associa-
tion has to be abstracted, too. Abstract relationships are
hierarchically ordered which is expressed by interrelation-
ships (dashed line) [10] connecting them. An example for
an abstracted relationships is the relation with the role name
setRoom between BoilerControl and RoomModule in Fig. 2.
There exists also an interrelationship between setRoom, set-
LocalControl and setDefault.

Variable Degree of Formality ADORA supports a vari-
able degree of formality allowing to draw semi-formal or
formal models. Semi-formal models contain parts which
are described informally by the usage of natural language,
possibly containing some kind of hyper links to other (for-
mally defined) elements in the model. An example for a
variable degree of formality can be found in Fig. 3. The
object specification described in this figure contains infor-
mal and formal elements, e.g., the operation CurrentTemp
is described completely formal whereas RevertToDefault is
described informally. The informal description is done by
means of natural language with links (in italics) to other for-
mal elements in the model. Informal descriptions can also
be placed in other elements of ADORA models, for example
in the annotation of transitions in the behavioral view.

2.3 Partial Models

ADORA supports partial models, i.e., models containing
parts that are intentionally incomplete: some parts have not
been modeled yet or will not be modeled at all. The differ-
ence to unintentional incompleteness is that the incomplete
elements are marked as such. Partial modeling is particu-
larly useful in an evolutionary requirements modeling pro-
cess, where we want to evolve a model in a controlled way
through a series of iterations. In ADORA, we have two con-
structs for describing partial models: the first one is the so-
called is-partial property which indicates that a component
is incomplete (indicated by three dots following the name).
This is especially useful if a system part will still evolve
or is incomplete at this time. The second construct is the
so-called abstract association which is represented as a bold
line (e.g., the association from BoilerControl to Settings in
Fig. 2). Abstract associations can be used if the modeler
knows that there is some communication between compo-
nents, but at the time of modeling it is not clear how the



concrete communication will look like.
Note that ADORA supports not only partial models, but

also partial views, using the same notation for both. Partial
views are diagrams that do not show all elements that exist
in a model (for example, consider a high-level, abstract view
of a system), while in a partial model, the model itself is
incomplete.

2.4 Formal and Semi-Formal Models

The definition of the terms formal, semi-formal and par-
tial models are crucial for the understanding of the follow-
ing content in the paper. This definitions are derived from
the definitions in [10]. In the following, we distinguish be-
tween the degree of formality in the language and in the
model. Fig. 4 gives an overview about the taxonomy respec-
tively the meaning of formality used in this paper. Fig. 5
demonstrates its application.

Formal Language: A modeling language is called for-
mal if the language is both syntactically and semantically
precisely defined.

Semi-Formal Modeling Language: A semi-formal lan-
guage has a well defined syntax, but one or more language
elements have an imprecisely defined semantics. A lan-
guage is called semi-formal language with a variable de-
gree of formality if at least one language element can be de-
scribed either in a formal or in a semi-formal way. ADORA

is a semi-formal language with a variable degree of formal-
ity.

Formal Model: A formal model contains only syntacti-
cally and semantically precisely defined model elements. A
formal model can automatically be interpreted.

Semi-Formal Model: We call a model semi-formal, if it
has at least one model element that has an imprecise se-
mantics, respectively if it fulfills one of the following con-
ditions: It contains at least one syntactically correct, but
semantically not well defined (semi-formal) construct or
the model is intentionally incomplete or the model contains
at least syntactically correct, but semantically wrong ele-
ments. We call intentionally incomplete models also partial
models.

Partial Model: An intentional incomplete model is also
called a partial model. A language should provide incom-
pleteness indicator constructs enabling to distinguish inten-
tional from unintentional incompleteness. Models contain-
ing at least one such indicator are called partial. ADORA

provides two indicator constructs: manually abstracted re-
lationships and is-partial indicators for components (see
Sect. 2.3).

In this paper we will concentrate on the simulation of
partial models in an evolutionary simulation process. The
simulation of syntactically correct but semantically wrong
models and models containing semi-formal language ele-

ments will be a concern in our future work. Unintentional
incompleteness cannot be recognized by tools and therefore
is not an issue when simulating requirements models.

2.5 Enforcement of Consistency

The enforcement of consistency is crucial for the simu-
lation of formal and informal models. We use the ADORA

integrity constraint language (ICL) [18] to check the consis-
tency of formal and semi-formal ADORA models. The ICL
is based on a first order predicate logic and is comparable to
the OCL [15]. The predicates formulated in this language
can access specific elements of the model. This is used to
formulate consistency constraints.

Usually, consistency constraints verify that all formal
properties of a model are met before being simulated. We
have given an example constraint AllComponentsAreFor-
mallySpecified in Fig. 6 (ln. 1-7) that checks for all com-
ponents (called ADORA objects) in a model (ln. 4) whether
the predicate ComponentIsFormallySpecified is met (ln. 6).
This in turn (ln. 8-20) verifies for a single component sev-
eral subpredicates, e.g., that it must have at least one start
state (ln. 17-19).

However, these constraints will fail for partial compo-
nents and become useless because required structures are
missing. Nevertheless, there are properties that must be
met also when simulating partial models. To benefit any-
way from consistency checking, the constraints have to
be adapted in a way that they tolerate exactly these semi-
formal properties which the simulation can handle. Here,
we would replace the first mentioned constraint with All-
ComponentsArePartialOrFormallySpecified (Fig. 6, ln. 21-
31) that tolerates explicitly partial components (ln. 28).
Reuse can be maximized, if constraints are grouped into
meaningful units. In this example, we can reuse lines 8-20.

Future extensions of our simulation dealing with more
semi-formal properties require also refinement of our con-
straints to keep consistency checking up to date.

2.6 Simulation of formal ADORA models

For the sake of clarity, we give first some defini-
tions of what we understand under simulation and related
terms [19].

Simulation – In the context of RE/SE, simulation is de-
fined as execution of a system model. The language used to
express the system model must rely on a defined execution
semantics. Based on the semantics, a simulator tool can ex-
ecute the model, either by direct interpretation or by code
generation.

Animation – We define animation as the visualization of
the behavior of the system model. Animation is often based
on the (graphical) language/notation, in which the system
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model is expressed, e.g., by highlighting the model element
currently executed. For better convenience, certain tools al-
low additionally the use of an application-specific graphical
user interfaces (GUI), e.g., [14].

Validation – The process of evaluating software during,
or at the end of, the development process to determine
whether it satisfies the specified requirements [21], i.e., the
process of questioning whether the right product is being
built.

Verification – (1) The process of evaluating software to
determine whether the products of a given development
phase satisfy the conditions imposed at the start of that
phase; (2) formal proof of correctness [21]. The process
of questioning whether the product is being built correctly.

Simulating formal models is state-of-the-art. We have
defined the semantics of formal ADORA models [11] that
do include not only the behavioral description, but also all
other language elements like actors and scenarios [17]. This
enabled us to extend our modeling tool [20] to perform in-
terpreted simulations on complete, formally specified, inte-
grated ADORA models. We didn’t focus yet on animation
of these simulations.

The simulation of a formal ADORA model works as fol-

lows. After a model has been loaded, it is verified by run-
ning all defined consistency constraints and analyzing the
static semantics. On start of the model execution, all start
states are entered. Further actions are processed stepwise.
For each actor, the user of the simulation can enter the
connected scenario trees. They are traversed down to the
leaf nodes where stimuli can be transformed into a system
event and reactions can be received from the system. While
the system is waiting for a user stimulus, the simulation is
stopped. That means, the simulation does not run in real-
time, but has its own time model with micro and macro
steps. The detailed execution model is given in [4, 11, 17].

Stimuli input and system outputs can be recorded in the
form of sequence charts. Inputs are required as driver for
automatic re-execution of the simulation. The outputs are
taken to validate the latest returned results. We call this re-
gression simulation according to regression tests. It enables
to detect unwanted changes in the behavior of the require-
ments model. Details are discussed in Section 4.

Fig. 7 shows a screenshot of an alarm system being sim-
ulated in our ADORA tool. The constraint window in the
upper right shows that all defined constraints did succeed.
The other windows provide a user interface to interact with



1 constraint AllComponentsAreFormallySpecified
2 on (ar : AdoraRepresentation) is
3
4 (for-all comp : AdoraObject in ElementEnumerator.casted
5 (ar.getAdoraModel().getAllElementsExceptRoot(), AdoraObject.class ) |
6 predicate ComponentIsFormallySpecified(comp#log)
7 )

8 constraint ComponentIsFormallySpecified
9 on (comp : AdoraObject) is
10
11 predicate ComponentHasUnambiguousStartState(comp)
12 and
13 predicate ComponentHasProperlyConnectedStartStates(comp)
14 and
15 predicate ComponentHasNoTransitionsCrossingBorders(comp)
16 and
17 // must have at least one start state
18 (there-exists aSubComponent : Node in comp.children() |
19 aSubComponent.getClass().equals(StartState.class)
20 )

21 constraint AllComponentsArePartialOrFormallySpecified
22 on (ar : AdoraRepresentation) is
24
25 (for-all comp : AdoraObject in ElementEnumerator.casted
26 (ar.getAdoraModel().getAllElementsExceptRoot(), AdoraObject.class) |
27
28 not(comp.isManuallyPartial())
29 implies
30 predicate ComponentIsFormallySpecified(comp#log)
31 )

Figure 6. Constraints checking formal and partial properties

the system and with a recorder.

3 A Process for Validating, Evolving, and
Verifying Partial Models

In this section, we sketch an incremental process for cre-
ating and evolving requirements models which uses sim-
ulation as a means both for validating and evolving re-
quirements. The process proceeds through a sequence of
increments, each increment consisting of four major steps
(Fig. 8). We assume that the process is enacted by require-
ments engineers who are professionals in elicitation, analy-
sis, modeling, and validation of requirements. The require-
ments engineers closely work together with stakeholders for
eliciting and validating requirements.

The requirements model can either evolve through a se-
ries of requirements-only increments until the requirements
specification is considered complete (and will then be used
as a basis for designing and implementing a system), or the
requirements can co-evolve with the design and implemen-
tation of the system. In the latter case, each requirements
increment is followed by a design and implementation step

before proceeding to the next requirements increment. We
now describe the four steps of an increment of the process
in more detail.

Step 1: Elicit. Requirements are elicited using conven-
tional techniques such as stakeholder interviews.

Step 2: Model. The requirements engineer constructs a
model of the elicited requirements. She or he tries to iden-
tify key sub-problems in the problem to be specified and to
model components reflecting this problem structure. De-
tails are filled in where the elicitation step provides enough
information. As the process is incremental, some parts of
the model will deliberately remain incomplete and the re-
quirements engineer marks these parts to be incomplete. In
addition to this structural model, the requirements engineer
also builds a scenario model which describes the interaction
between external actors and the system.

Of course, there is a feedback-loop between the steps 1
and 2: building the model helps identify missing, ambigu-
ous and contradictory requirements.

Step 3: Validate (by simulation). Simulate those parts
of the model that have been added in the current increment.
The simulation works by executing the scenario models.
As the model is incomplete, specific simulation techniques



Figure 7. Running simulation of a formally specified alarm system in the ADORA modeling tool.

based on stub and driver simulation (see Section 4) are ap-
plied. The results are used for validating the requirements
elicited in the current increment and for correcting the de-
tected errors in the model. Furthermore, the simulation runs
are recorded in form of sequence charts. These charts serve
two purposes. Firstly, they are used in later increments for
regression simulations. Secondly, they provide systematic
guidance for evolving the model in the next increment (see
Section 5).

Step 4: Re-validate. Run simulations for all recorded
sequence charts to ensure that previously modeled parts
were not affected by the current increment. This is done
by comparing the recorded outputs with the actual outputs.
If they all match, the re-validation passes and step 4 is fin-
ished. A mismatch indicates a change in the modeled be-
havior. Either the current increment affected the existing
behavior in an unwanted way or the behavior was intended
to change. In the first case, the error has to be searched and
corrected in the model. In the second case, the sequence
chart got outdated and must be recorded again reflecting the
new behavior. In both cases, step 4 has to be repeated after
the error correction until the re-validation passes.

The process defined above is only sketched in a very
rough way. Future investigations will be necessary to refine
this process and to identify possibilities for finding good
instance scenarios to play. However, the described process
gives a hint how the simulation and evolution techniques are
embedded. They are described in the following sections.

Elicitation
(1)

Modeling
(2)

Simulation
(3)

Revalidate
(4)

Requirements Model Increment

considered
complete

No:
Model next increment

Yes:
Requirements Model 
finished ready for 
Architectural Design

Figure 8. A possible process for evolving the
requirements and the architecture of a sys-
tem

4 Partial Simulation

In this section, we present our simulation technique for
partial models with the purpose of validation. It is based on
the well-known concept of test drivers and stubs [2] or mock
objects [12] and today’s standard simulation techniques for
formal models. Test drivers and stubs are used in the con-
text of software testing to drive unit and integration tests and
substitute calls to incomplete components with stubs that
have some default behavior. We adapt these terms to simu-
lation units, driver simulation, and stub simulation. Test and
simulation drivers have in common that they are utilized
for the validation of model parts (instead of the complete
model); both test and simulation stubs substitute yet un-
modeled behavior. The difference is that simulation driver



or stubs have not to be coded. Instead, they are played and
recorded by interaction of the modeler. This recorded in-
formation is also used to evolve the model to a more com-
plete and formal one and to verify the model after changes
whether it still fulfills the recorded behavior by applying
regression simulations. More similarities and differences
between software tests and requirements model simulation
can be found in Table 1.

In the following two subsections, driver simulation and
stub simulation are described in detail. The evolution tech-
niques are presented in Section 5.

4.1 Driver Simulation

The driver simulation deals with formally specified
model parts (instead of the whole model). The model itself
may be partial.

The simulation driver triggers the simulation unit (see
below) with events and receives events from the simulation
unit. If the modeler validates the model, she or he drives
the simulation interactively by his inputs that are recorded.
Recorded values can be taken to re-run the simulation auto-
matically for re-validation of a changed model. This is es-
pecially important as we suppose the model to evolve con-
tinuously. We call this procedure regression simulation.

The simulation unit is the candidate to be validated. It
can consist of a single component or a group of them. Com-
parable to testing, small units are validated first, then larger
units are composed out of them until the whole system
forms a single simulation unit. In Fig. 9, an example simu-
lation unit is composed of components A, B, and C (drawn
in gray). If a component belongs to a simulation unit, all
its child components are implicitly included. In our exam-
ple component D (in light gray) is implicitly included as A
belongs to the simulation unit. Parent components (compo-
nent X and Y) are not included. Scenarios (ellipses) lie log-
ically outside the system and therefore are never included
even when drawn inside an included component.

The possible communication channels to components of
a simulation unit (SU) form the interface between the SU
and the simulation driver. There are four ways to commu-
nicate: 1) Concrete associations to SU components, 2) ab-
stract associations to SU components or parents of them, 3)
part-of relations between SU components and their parents,
and 4) scenario-relations between SU components and con-
tained scenarios. In our example, the interface consists of
the concrete associations ay, az, dz, the abstract associa-
tion yz, the implicit part-of-relations A-X, B-Y, C-X, and the
implicit scenario-relation A-S.

The interface is used by the simulation driver to enter
events into and receive events from the simulation unit. The
simulator executes the behavior of the simulation unit by
processing the entered events. Both input and output events
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Figure 9. Simulation unit consisting of com-
ponents A, B, C, and D (implicitly).

are recorded in a message sequence chart [16] according to
instance scenarios. The chart contains all events sent be-
tween the components taking part in the simulation. One
chart represents the trace of one simulation run. Recorded
sequence charts can be used for regression simulation (see
below) as well as for evolving the model towards a more
complete and formal one (see Section 5).

Fig. 10 shows how a sequence chart could look like for
the example model in Fig. 9. On the left side of the dashed
line, which represents the interface of the simulation unit,
are the components played by the modeler. The components
on the right side are executed by the simulation. All event
parameters are assigned concrete values. So, the modeler
sends msgA(25) from S to the simulated A. After processing
the internal message msgB (it does not leave the simula-
tion unit), Z receives msgC(5) from D. Another input event
msgD results in msgE(42) at Z.

Y A BX Z C D

msgA(25) to A
msgB(null) to D

msgC(5) over dz

msgD("init string") to B

msgE(42) over bz

S

Figure 10. An example trace of a simulation
run for the model in Fig. 9.

To be able to validate a certain behavior of the simula-
tion unit, a particular sequence of input events must be en-



Table 1. Similarities and differences between software tests and requirements model simulation

Software Tests Requirements Model Simulation
The purpose of testing is to verify the software code
against the specification.

The purpose of simulation is (a) the validation of the requirements
model with the customer and (b) the verification whether model
changes did not affect the already validated behavior.

Software tests take place during and at the end of
the software implementation.

Simulation for validation takes place during requirements elicita-
tion and documentation. Regression simulation takes place during
and at the end of requirements and architectural refinement.

Test drivers are pieces of software that contain the
test cases composed of inputs and expected outputs
of the test unit. Actual outputs are verified against
the expected outputs.

Simulation driver is either the modeler who enters inputs for the
simulation unit and validates the outputs. Or, when the previously
recorded inputs drive the regression simulation, the actual outputs
are verified against the recorded outputs.

Test stubs (mock objects) are pieces of software that
replace uncoded software modules with some sim-
plified default behavior for the test case execution.

Simulation stubs replace partial or unmodeled components with
modeler interaction who plays the exact behavior of how the com-
ponent shall behave during a simulation case execution.

Test cases run automatically by executing software
code.

Simulation for validation runs interactively. Regression simulation
runs automatically.

Testing does not guarantee the absence of errors, but
reduces the probability of errors. Criteria like func-
tional, statements, path coverage, etc. are taken to
determine the quality of tests cases.

For simulation cases the same applies. Criteria like functional cov-
erage of a simulation unit, state, transition, and path coverage can
be measured to find good sets of simulation cases.

tered (msgA and msgD), so that one or several outputs are
produced which can be validated (msgC and msgE). This
resulting particular sequence chart is called simulation case
according to test cases. Each simulation case is intended to
validate some particular aspect of the simulation unit. For
each simulation unit, one or more simulation cases can exist
depending on the amount of functionality the unit provides.
A reasonable set of simulation cases should reach a high
coverage in the simulation unit for example regarding its
functionality, state coverage, transition coverage, etc. If the
simulation unit includes all components of the system, the
simulation cases can be formed only by instance scenarios.

The modeler creates new simulation cases by driving a
simulation for a certain simulation unit. She or he can trig-
ger the events that the interface of the simulation unit ac-
cepts and she or he has to accept all events from the simu-
lation unit. For each received event, she or he has to decide
whether this output is correct according to how the system
should behave. An unexpected output stops the simulation
and lets her or him correct the model. This simulation case
must be re-recorded in this case. After having validated all
outputs, the recording of the simulation case can be stopped.

Existing simulation cases can be replayed after the
model was changed to verify that they are still valid. This is
called regression simulation. In this case, the recorded in-
puts drive the simulation. The received outputs are verified
by comparing them to the recorded outputs. The simula-

tion case passes if recorded and received outputs are equal.
If the simulation case fails, this can have two reasons. Ei-
ther the behavior of the simulation unit was unintentionally
changed, then the problem in the model must be fixed. Or,
the behavior of the simulation unit was intended to change.
Then, the simulation case has become useless and must be
recorded again reflecting the new behavior.

4.2 Stub Simulation

As mentioned in the previous section, a simulation unit
has to be specified formally for the driver simulation. This
is still unsatisfying, as we know that typically there are par-
tial (including unspecified) components in the specification
phase, because they are not specified yet (e.g., less impor-
tant parts) or will not be specified at all (e.g., external com-
ponents, very low risk parts). Therefore, we cannot wait for
a completely specified model before simulating it.

In this section, we extend the driver simulation with sim-
ulation stubs so that also partial components can be included
in a simulation unit. A simulation stub is a partial compo-
nent included in a simulation unit. The behavior of these
stubs has to be substituted by the modeler, similar to driver
simulation. Requests to these components are delegated to
the modeler who intervenes and plays the desired behavior.

For example, we assume that the component D from
Fig. 9 is not modeled yet and therefore partial, as shown
in Fig. 11. This is a typical situation when modeling top-



down. When a simulation is performed on the simulation
unit A, B, and C, then the component D must be represented
by a simulation stub.

The interface of a simulation stub is defined in the same
way as for a simulation unit (see above). Here, the interface
of the simulation stub D is composed of the concrete associ-
ations bd, cd, dz and the part-of-relation D-A. The modeler
has to control the interface of the simulation stub as well as
of the simulation unit which is the same as in Fig. 9.

A

AB AC
bc

ba bd
cd

ca

dz

az
D . . .

Y . . .

yz

ayay

X

Z . . .

S Actor

Figure 11. Simulation unit consisting of three
components A, B, and C, implicitly includ-
ing D, which is partial and therefore repre-
sented as a simulation stub.

As soon as an event is sent to a stub, modeler interaction
is required. The simulation is paused to let the modeler send
further events. Then, the simulation continues.

Both input and output events are recorded for two pur-
poses. Firstly, modeler interaction can be replaced with
a previously recorded set of interactions. This allows the
automation of stub simulations as well. Secondly, the
recorded interactions help specifying the behavior of the
simulation stub and thus evolving partial components to
complete ones. This is described in the following section.

5 Model Evolution

In the following, we present two techniques to evolve a
model towards a more formal and complete one. Our in-
tention is not to eventually arrive at a completely formally
specified model, but to support formalization of selected
parts. The modeler has to choose the parts for which evolu-
tion is reasonable.

In the previous section, stub simulation was used to val-
idate partial components. The resulting sequence charts

describe the unmodeled behavior by example. In the fol-
lowing subsection, we present a semi-automatic technique
for deriving statecharts that model the behavior which has
been captured in sequence charts during previous simula-
tion runs.

Component evolution entails also evolution of their as-
sociations. When abstract components are refined to com-
ponents with concrete behavior, abstract associations must
also be concretized to preserve a consistent model. The de-
tails of this technique are given in the Subsection 5.2.

5.1 Evolution of Partial Components

Principally, a state machine model could be generated
automatically from the recorded sequences. For example,
we could apply the algorithm of [23] that takes a collec-
tion of sequence charts to generate hierarchically structured
statecharts. However, automatic generation has serious dis-
advantages when further manual changes during evolution
become necessary because these statecharts are hardly man-
ually changeable or extensible.

A . . .

bcB . . .

B A

send x() over bc
send y() over bc

receive x() over bc /
send y() over bc

send z() over bc

. . .

receive z() over bc / -

1 2

Figure 12. Semi-automatic generation of a
statechart from a sequence chart.

Therefore, we offer the modeler a semi-automatic gen-
eration technique for evolving components in small steps.
The resulting models are better and more valuable with re-
spect to changeability and extensibility than automatically
generated ones.

The modeler draws the statechart manually, but with
guidance by a tool that suggests what is still missing or what
should be drawn next. The whole problem is divided into
many smaller, simpler problems. In each step, only one
small problem is focused. In our context, the whole prob-
lem is to generate a statechart that can handle all recorded
sequences. We do this by drawing one transition per step.

For any existing parts of a statechart, it can be easily
evaluated which events in a message sequence chart are
handled by the statechart. Regarding the example in Fig. 12,
the first two events in the chart that were recorded for com-
ponent A during a stub simulation, can be handled by the
transition between the existing states 1 and 2.



This is the starting point for the transformation. A sin-
gle step consists of the following procedure: The first un-
handled event is transformed into a transition. The mod-
eler decides the location where to insert the transition and
whether it will lead to a new state or to an existing one.
So, the resulting layout is determined by the modeler. This
step is repeated until all events are handled. Between two
steps, the modeler is free to perform any other editing opera-
tions. After the statechart was changed, the first unhandled
event is searched to be the new starting point. As long as
not all events are handled, the component is marked as par-
tial. Otherwise, the statechart is finished and the modeler is
asked to remove the is-partial indicator.

In the example, the event z() is going to be modeled. Our
tool would suggest adding the dashed model elements to the
existing model in order to handle the next event in the chart.
The position of the new state is chosen by the modeler, sym-
bolized in the diagram with a mouse cursor.

The resulting statechart is surely better extensible than a
generated one because the modeler has drawn it and knows
why she or he has drawn certain states and where to find
them. Furthermore, the modeler has the chance to discover
errors in a semi-automatic modeling process.

As the presented evolution technique can handle compo-
nents with any degree of completion, it supports our evolu-
tionary process well.

5.2 Evolution of Abstract Associations

Associations can be set abstract to express that some
communication between the connected components respec-
tively child components is planned but not modeled yet. It is
a placeholder for future concrete associations. In diagrams,
abstract associations are drawn as thick lines. In contrast to
that, a concrete association shows that the two connected
components actually can communicate with each other, i.e
they can send / receive events over this association to each
other.

Note that associations can also be used to express a more
general relationship of two components. Communication
via events is just one particular application of associations.
But for refinement, we focus on these kind of associations.

In the example given in Fig. 13, the abstract association
bv abstracts from a future concrete association cy. Bv su-
perposes cy (indicated by dashed interrelationship).

The aim is to replace abstract associations with concrete
ones when evolving a model. Both kinds of associations
can get inconsistent with the modeled behavior of the con-
nected components. An abstract association can get out-
dated when the behavior of its connected components or
child components is modeled, and, hence, the abstract re-
lationship should be replaced with the corresponding con-
crete associations. A concrete association can get outdated

V

bv X
Y

B

C

cy

Figure 13. Hierarchy of concrete and abstract
associations.

if components are restructured, so that the connected com-
ponents do not communicate any more directly with each
other, but child or sibling components do.

We do not consider the evolution of part-of-relations to
parent components and child components, because they are
not explicitly modeled using associations.

Whether a component communicates with another com-
ponent can be easily found out by investigating its modeled
behavior. The statements “send event over association” and
“receive event over association” indicate communication
over the specified associations. They appear in the modeled
statechart of a component in the transition descriptions. For
a consistent model, the following rules must apply:

• For all used association names in behavioral descrip-
tions of components, the corresponding concrete asso-
ciation must exist.

• For each concrete associations, there must exist at least
one send statement on one side and one receive state-
ment on the other.

• There may be at most one abstract association between
each pair of components.

• For each abstract association, at least one of the con-
nected components or child components must be par-
tial.

The consistency can be checked by calculating the re-
quired associations for each pair of components based on
their modeled communication and comparing them to the
actual modeled associations. Table 2 shows the possible
cases that can occur. The upper half refers to the case that
communication between two particular components is mod-
eled, therefore a concrete association should exist. The left
column shows whether there exists a concrete association,
the middle one whether there exists an abstract association
on this or a higher level, and the right one which action can
be performed to attain a consistent model again. If several
actions are possible, the modeler can choose. The lower
half of the table refers correspondingly to the case where no
communication is modeled and therefore no concrete asso-
ciation should exist.

Assuming in the example of Fig. 13 that the concrete
association cy does not yet exist and the behavioral descrip-
tion of C and Y communication is modeled, cases 3 and 4



Table 2. Comparison between modeled com-
munication and associations (

√
= yes, – = no,

* = doesn’t matter).

Communication is modeled
Exists concrete Superposed by Action to solve mismatch

association? abstract assoc.?
1

√

– No changes
2

√ √

Ask to remove abstract assoc.
3 –

√

Concretize abstr. association
4 – * Insert concrete association

Communication is not modeled
5 – * No changes
6

√

– Abstract concrete association
7

√

* Remove concrete association

in Table 2 would match. Which action should take place
depends on the modeler’s intention. If bv did abstract only
from cy, then it should be concretized, i.e., the abstract as-
sociation is replaced by a concrete one (case 3). If more
communication is intended to take place between B and Y
or between their child components, then the abstract asso-
ciation must be kept to show this intention. Instead, a new
concrete association must be inserted (case 4).

6 Case study: Heating Control System

In this section, we apply the presented process to sketch
the development of a part of the heating control system
(Fig. 2) by using the simulation and evolution techniques. In
reality, the process would actually require more iterations.
We summarize here some interesting steps.

Suppose a customer interview yields the following spec-
ification: ”The heating control system consists of a mas-
ter module and several room modules. The master mod-
ule allows the operator to switch the system on and off
and to request and adjust the default temperature for each
room. Furthermore, the master module controls the con-
nected boiler to heat if the water temperature falls under a
fix threshold value of 60 degrees Celsius. Each room mod-
ule controls the opening and closing of the radiator valve
in a way that the room temperature is getting close to the
room default temperature or to an individual temperature if
set by the room user.”

We start with the identification of actors and the extrac-
tion of the type scenarios to draw scenario charts which are
derived from Jackson Diagrams [9] and extended with par-
allelism (||), and numbered sequence (1, 2, . . . ). Next, we
model the structure of the system by correlating the men-
tioned components. Intentionally incomplete components
are marked as partial (three dots). Planned communication
is indicated with abstract associations (bold lines). Assign-
ing the scenariocharts to the component structure results in

Fig. 14.

Figure 14. Structural and user aspects of the
Heating Control System (tool generated).

For further refinement, we concentrate on development
of the MasterModule. We can now perform a stub simula-
tion recording typical instance scenarios for the Operator
and Boiler actors. All components participate as stubs and
are therefore under control of the modeler. Three possible
simulation cases are shown in Fig. 15.

With these recorded sequences, we can evolve the Boil-
erControl to cover this behavior (Fig. 16). Still we want to
keep the is-partial indicator as we expect more details to be
modeled here. The other components can be evolved ac-
cordingly.

In the meantime, some associations have got outdated
and we have also to evolve them. The association user-
Interface is converted into a concrete one, a new concrete
association controlRoomTemp between BoilerControl and
RoomModule is inserted and the abstract controlRoom is
kept, as we expect further concrete associations there. The
high level association communicate is removed, as we don’t
expect communication on this level any more, see Fig. 16.

Finally, we simulate the current system together with the
customer to validate the modeled behavior before contin-
uing with the RoomModule. While further refining, the
recorded sequences charts are often revalidated to be sure
that the existing behavior is still valid.

7 Related Work

There exist quite a large number of approaches that aim
at the simulation of requirements models for validation pur-



Figure 16. The Heating Control System after refinement containing behavioral aspects in Boiler Control
(tool generated).

poses. Mostly, a formal model is required to perform simu-
lations. We do not know any approach that uses simulation
as a means for model evolution. Below, we briefly survey
those approaches which are most similar to our one.

Labeled Transition Systems are used in the approach of
Magee & Kramer [13] to prove safety and liveness prop-
erties of formal models. Partial Labeled Transition Sys-
tems [22] help to identify undefined scenarios based on pos-
sible, but unmodeled transitions in a formal LTS by compar-
ing pre- and postconditions.

Whittle & Schumann [23] provide an algorithm for au-
tomatic synthesis from sequence charts to state machines.
The resulting statecharts are readable thanks to the use of
hierarchical structure. Modifying the statecharts breaks the
link to the sequence charts and therewith prevents model

evolution. Furthermore, the sequence charts must be en-
hanced with additional information to improve identifica-
tion of common states.

The SCR method provides a simulator tool [8] that al-
lows to validate SCR models by detecting the violation of
invariants on execution and watching the behavior when en-
tering scenarios. The models must be specified formally
in dictionaries and tables. This approach aims mainly on
model checking techniques; semi-formal models are not
supported.

The most similar approach is probably the Play-Engine
by Harel et al. [7]. They record instance scenarios by
playing-in and perform validation steps by playing-out. Ex-
istential and universal life sequence charts (LSC) are used
as notation. Regression testing is performed by replay-
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Figure 15. Three simulation cases showing
instance scenarios of the Operator and the
Boiler.

ing recorded runs and verified whether existential LSCs are
still successful and universal charts are not violated. For
playing-in and -out, they require a graphical prototype that
must be designed first. There is no focus on evolution of
partial components.

8 Conclusions

In this paper, we presented a concept for simulating par-
tial, semi-formal requirements models which allows model-
based validation of requirements at any stage of an evolu-
tionary process. The approach transfers the ideas of drivers,
stubs, and regression from testing to the simulation of re-
quirements models. It also uses the simulation results for
evolving an incomplete model in a systematic way towards
a more formal and complete one.

Our approach is limited with respect to proving formal
liveness and safety properties. Furthermore, we did not fo-
cus on an animated model in the context of the modeled
application domain yet.

We have already developed a modeling tool in Java that
allows to draw and simulate formal ADORA models. The
extension of this tool to the simulation of partial models is
currently being implemented. We are also working on ex-

tensions of our approach towards the integration of further
semi-formal properties of models.

Next, we are going to integrate the evolution techniques
described in this paper into our tool. This allows us to per-
form real case studies demonstrating the usability of our ap-
proach. We also want to do further research in the field of
semi-formal requirements modeling.
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