
1

Reasoning in Attempto Controlled English

Technical Report ifi-2002.01

Norbert E. Fuchs, Uta Schwertel
Institut für Informatik, Universität Zürich

(fuchs, uschwert)@ifi.unizh.ch
www.ifi.unizh.ch

Abstract
Attempto Controlled English (ACE) – a subset of English that can be unambiguously translated
into first-order logic – is a software specification and knowledge representation language. To
support automatic reasoning in ACE we have developed the Attempto Reasoner RACE
(Reasoning in ACE). RACE proves that one ACE text is the logical consequence of another one,
and gives a justification for the proof. Variations of the basic proof procedure permit query
answering and consistency checking. Extending RACE by auxiliary first-order axioms and by
evaluable functions we can perform complex deductions on ACE texts containing plurals and
numbers. The implementation of RACE is based on the theorem prover Otter and on the model
generator Satchmo, both available off-the-shelf.

1 Reasoning in Natural Language
Discussing the pros and cons of natural language versus other languages for
specification or knowledge representation one could easily overlook that natural
language is not on a par with these other languages, but plays two important and
privileged roles. First, it is the prototypical means of human communication. Second, it
serves as metalanguage for all other languages, informal or formal ones; even the
discussion of the pros and cons of specification and knowledge representation
languages takes place in natural language. Some researchers consider natural language
"the ultimate knowledge representation language" since "after thousands of years of
evolution in intimate contact with every aspect of human experience [it] has attained a
greater flexibility and expressive power than any artificial language" [Sowa 2000].
Natural language effectively serves as its own meta-language, thus supporting
representation, explanation, argumentation, and analysis all in one and the same
notation. Natural language needs no extra learning effort, and – provided we exercise
some care to avoid vagueness and ambiguity – is easy to use and to understand.
We also use natural language to perform common sense reasoning that involves
logical inference operations like deduction, abduction, and induction. Knowing that

Every company that buys a machine gets a discount. Hardware
Corporation is a company and buys a machine.

we can deduce that
Hardware Corporation gets a discount.

Natural language and reasoning in natural language have fascinated people since
ancient times. In more recent years researchers have increasingly employed computers
to investigate the potential of natural language for knowledge representation and its
suitability for automated reasoning. A monograph on the state of the art in this field
[Iwanska & Shapiro 2000] describes among others the UNO Model by Iwanska, the
Montagovian Syntax by McAllester & Givan, KRISP by McDonald, Episodic Logic by
Schubert & Huang, and SnePS by Shapiro.
These systems tackle unrestricted natural language, typically do not use first-order
logic but richer alternatives, and try to perform "one-step" inferences by introducing
specialised inference rules that should closely mimic informal human reasoning in
natural language.

2

The Montagovian Syntax of McAllester & Givan [McAllester & Givan 1992] is the
system that Iwanska & Shapiro [Iwanska & Shapiro 2000, p. 3] consider closest to
natural language as knowledge representation and reasoning language. In the
Montagovian Syntax the sentence

Every dog ate a bone.
is represented as the quantifier-free formula

(every dog (ate (some bone)))
whose denotation is true if the set of dogs is a subset of the set of individuals each of
which has the relation denoted by ate to some member of the set of bones. McAllester
& Givan introduced a tractable decision procedure based on a set of 16 inference rules
for quantifier-free formulas. Here is an example of an inference rule

(at-most-one t), (every r t)
––––––––––––––––––––––––––––
 (at-most-one r)

where r and t range over class expressions denoting sets.
Sukkarieh [Sukkarieh 2001a, Sukkarieh 2001b] extended the work of McAllester &
Givan. She developed the sublange CLIP of English that is translated into a quasi-
natural language knowledge representation McLogic based on Montagovian syntax.
Sukkarieh performs reasoning in McLogic using a set of 34 inference rules that
resemble those of McAllester & Givan.
Suggestive and attractive as the approaches of McAllester & Givan and of Sukkarieh
appear, they seem to have two major drawbacks. First, the large number of inference
rules – requiring a combination of forward and backward reasoning – makes it hard to
find an effective and efficient inference strategy and can lead to a combinatorial
explosion of inferences. Second, each new language construct can introduce additional
inference rules threatening to further aggravate the inference process. Arguably, these
objections apply to all approaches that perform one-step inferences – inferences that in
first-order predicate logic would require several elementary steps.
Here we suggest an alternative approach to using natural language for knowledge
representation and reasoning. Our approach differs in three essential aspects from the
approaches mentioned above.
First, realising that we cannot hope to process full natural language on a computer, we
use a tractable subset of English called Attempto Controlled English (ACE) – where
tractable refers to both parsing and reasoning.
Second, ACE texts are unambiguously translated into first-order logic. Our conviction
that first-order logic is the adequate tool for our purposes is precisely expressed by "…
besides expressive power, first-order logic has the best-defined, least problematic
model theory and proof theory …" [Sowa 2000].
Third, to show that a set T of theorems expressed in ACE is the logical consequence of
a set A of ACE axioms we automatically translate A and T into their equivalent first-
order formulas LA and LT, try to deduce LT from LA with the help of a standard first-
order theorem prover or model generator, and then report the success or failure of the
proof – together with a justification – again on the level of ACE.
The advantages of our approach are twofold. First, we can rely on the correctness,
completeness and efficiency of first-order theorem provers and model generators
available off-the-shelf. Second, adding language constructs to ACE will not affect in
any way the inference rules and the inference strategy used on the logical level.
However, as will be seen in the sequel some language constructs of ACE require
auxiliary first-order axioms that necessarily enlarge the search space for inferences.
Theorem proving and model generation are increasingly being used in computational
semantics (cf. www.sigsem.org) to solve problems like disambiguation, presupposition
and resolution of anaphora. A recent publication in this field [Blackburn et al. 2001]
discusses presupposition and contains many helpful pointers to relevant information.
Our work reported here has a lot in common with computational semantics as far as

3

the technical aspects of theorem proving and model generation are concerned
[Blackburn & Bos 2000a, Blackburn & Bos 2000b], but differs in its goals, namely to
perform logical inferences on ACE texts.
In the following we briefly describe Attempto Controlled English (ACE) and its
translation into first-order logic (section 2). In section 3 we list and motivate our
requirements for the Attempto Reasoner RACE (Reasoning in ACE), in section 4 we
present our candidates Otter and Satchmo for the basis of RACE, and in section 5 we
show how we satisfy the requirements for RACE. Section 6 presents RACE's basic
functionality, while section 7 demonstrates RACE's application to the processing of
plurals and numbers using first-order auxiliary axioms and evaluable functions and
predicates. In section 8 we describe limitations of the current implementation of RACE.
Finally, we conclude and point to open issues and further research (section 9). The
appendix summarises our experiences with some other theorem provers and model
generators that we investigated.

2 Attempto Controlled English
Attempto Controlled English (ACE) has been described in detail elsewhere [Fuchs et
al. 1998; ACE Manual 1999; Schwertel 2000]. For the convenience of the reader we here
briefly recall its main features.
ACE is a controlled subset of standard English that allows users to express technical
texts, e.g. specifications, precisely, and in the terms of the respective application
domain. ACE texts are computer-processable and can be unambiguously translated
into first-order logic. ACE appears perfectly natural, but – being a controlled subset of
English – it is in fact a formal language with the semantics of the underlying first-order
logic representation. It is exactly this logic underpinning that allows us to reason in
ACE, e.g. to answer queries expressed in ACE and to check the consistency of an ACE
text.
The Attempto system and Attempto Controlled English are intended for domain
specialists – e.g. engineers, economists, physicians – who want to use formal methods,
but may not be familiar with them. Thus the Attempto system has been designed in a
way that allows users to work solely on the level of ACE without having to take
recourse to its internal logic representation.
Here is an ACE text from the example domain used in the sequel.

Every company that buys a standard machine gets a discount. A
British company buys a standard machine.

The Attempto system translates this ACE text unambiguously into a discourse
representation structure [Kamp & Reyle 1993]

drs([A,B,C],[drs([D,E,F],[object(D,company), structure(D,atomic),
object(E,machine), structure(E,atomic), property(E,standard),
predicate(F,event,buy,D,E)]) => drs([G,H],[object(G,discount),
structure(G,atomic), predicate(H,event,get,D,G)]),
object(A,company), structure(A,atomic), property(A,'British'),
object(B,machine), structure(B,atomic), property(B,standard),
predicate(C,event,buy,A,B)])

that constitutes the internal logical representation of the text.
The discourse representation structure drs/2 uses a syntactic variant of the language
of first-order predicate logic. The first argument of drs/2 is a list of discourse referents,
i.e. quantified variables naming objects of the domain of discourse. In our example the
discourse referents A, B, C, G, H are existentially quantified, and D, E, F being introduced
in the precondition of an implication are universally quantified. The second argument
of drs/2 is a list of simple and complex conditions for the discourse referents. The list
separator ',' stands for logical conjunction. Simple conditions are logical atoms, while
complex conditions are built from other discourse representation structures with the
help of the logical connectors negation '-', disjunction 'v', and implication '=>'.

4

Logical atoms are formed from a small set of predefined predicates like object/2,
property/2, or predicate/5. For example, instead of the usual company(D) we write
object(D,company). This 'flat notation' allows us to quantify over the arguments of
the predefined predicates and thus to express general aspects of relations in first-order
logic that otherwise would require higher-order logic.
The discourse representation structure gets a model-theoretic semantics [Kamp &
Reyle 1993] that assigns an unambiguous meaning to the ACE text from which it was
derived. Thus the Attempto system treats every ACE sentence as unambiguous, even
if people would perceive the same sentence as ambiguous in full English.

3 Requirements for the Attempto Reasoner RACE
For the Attempto Reasoner (RACE) we determined a number of requirements most of
which take our decision for granted to base RACE on first-order logic. Some
requirements reflect the particular needs of the typical users of the Attempto system,
that is to say domain specialists who may be unfamiliar with logic and theorem
proving. Other requirements concern complementing ACE as RACE's main input
language by alternative notations. Still other requirements refer to the implementation
of RACE.

Input and output of RACE should be in Attempto Controlled English.
To accommodate the needs of the typical users of the Attempto system the input and
output of RACE should be in ACE. Alternative forms of input should be available for
users familiar with first-order logic.

RACE should generate all proofs.
There can be several proofs of ACE theorems from ACE axioms, specifically several
answers to ACE queries. Or, an ACE text can have several inconsistent subsets. In all
these cases users will profit from getting all results. Users should be given options to
delimit or select the output of RACE.

RACE should give a justification of a proof.
RACE should provide a trace of a successful proof, or report which subset of the
axioms was used to prove the theorems. Especially the second alternative is of utmost
practical relevance if the ACE text is a software specification and users want to trace
requirements.

Using RACE should not presuppose detailed knowledge of its workings.
Many theorem provers allow users to control proofs through options and parameters.
Often these options and parameters presuppose detailed knowledge of the internal
working of a theorem prover or of theorem proving in general that not all users of the
Attempto system may have. Thus, RACE should preferably run automatically, and at
most expect users to set familiar parameters like a runtime limit.

RACE should allow for the definition of auxiliary axioms in first-order logic.
ACE is primarily a language to express domain knowledge. However, deductions in
ACE presuppose domain-independent knowledge, for instance general linguistic
knowledge like the relations between plural and singular nouns, or mathematical
knowledge. This domain-independent knowledge is best expressed in auxiliary
axioms using the language of first-order logic. Users may even prefer to state some
domain knowledge, for instance ontologies, in first-order axioms instead of in ACE.

RACE should have an interface to evaluable functions and predicates.
Auxiliary first-order axioms, but also ACE texts can refer to functions or predicates, for
instance to arithmetic functions or Boolean predicates. Instead of letting users define

5

these functions and predicates, it is much more convenient and efficient to make use of
evaluable functions and predicates made available by the execution environment.

RACE should combine theorem proving with model generation.
If a theorem T is the logical consequence of axioms A then A ∪ {¬T} is unsatisfiable.
Unsatisfiability is semi-decidable and can be detected by a correct and complete
theorem prover in finite time. Finding a single contradiction – for instance the always
false formula ⊥, or contradictory formulas F and ¬F – suffices to show unsatisfiability.
If, however, a theorem T is not the logical consequence of axioms A then A ∪ {¬T} is
satisfiable, i.e. does have a model. Satisfiability is undecidable, while finite satisfiability
is semi-decidable. A correct model generator that is complete for finite satisfiability
will detect satisfiability in finite time. Finding a single (finite) model suffices to show
satisfiability.
Thus theorem provers and model generators complement each other. If the problem is
unsatisfiable a theorem prover will find a proof while a model generator has to do an
exhaustive – and possibly non-terminating – search to find out that there are no
models. If the problem is satisfiable and admits finite models then a model generator
will find a finite model while a theorem prover must again do an exhaustive – and
potentially non-terminating – search to find that there are no contradictions. Finally, if
the problem is satisfiable but does only have infinite models, we can encounter non-
termination for both theorem provers and model generators – after all satisfiability is
undecidable.
Besides complementing theorem provers model generators generating (minimal) finite
models offer additional advantages [Bos 2001], foremost the possibility to construct
comprehensive answers to queries.

4 A Basis for the Attempto Reasoner
The computational aspects of first-order logic have been intensively investigated by
many researchers. To profit from the accumulated experience of these researchers we
decided to base RACE on first-order theorem provers and model generators freely
available off-the-shelf. While for theorem provers there is a large variety of
sophisticated candidates, for model generators the choice is still limited.
Since RACE's requirements imply extensions and possibly modifications of the
selected tools we wanted to have these tools locally available. This decision precludes
solutions like MathWeb (cf. www.mathweb.org) that farms out an inference task
simultaneously to theorem provers and model generators available on the internet and
then uses the first result returned. However, this competitive parallelism that leads to
super-linear speed-ups can also be implemented as parallel processes on one single
machine [Sutcliffe & Suttner 1997].
After an extensive – necessarily subjective – evaluation of selected candidates (cf.
Appendix) we chose to base RACE on the theorem prover Otter [McCune 1994] and on
the model generator Satchmo [Manthey & Bry 1988].
Otter. McCune describes Otter the following way: "Otter is a resolution-style theorem-
proving program for first-order logic with equality. Otter includes the inference rules
binary resolution, hyperresolution, UR-resolution, and binary paramodulation. Some
of its other abilities and features are conversion from first-order formulas to clauses,
forward and back subsumption, factoring, weighting, answer literals, term ordering,
forward and back demodulation, evaluable functions and predicates, and Knuth-
Bendix completion."
After nearly 20 years of development Otter is very stable, and – due to its
implementation in C – very efficient. For the fine-tuning of proofs Otter offers a rich set
of options and parameters that can even be modified interactively by users during a
proof. This fine-tuning, however, and the possibility of user-interactions during proofs
prevent general statements concerning the correctness and completeness of Otter.

6

Otter accepts first-order clauses, or first-order formulas that are automatically
translated into clauses.
Satchmo. Manthey & Bry write: "Satchmo is a theorem prover consisting of just a few
and simple Prolog programs. Prolog may be used for representing problem clauses as
well. Satchmo is based on a model-generation paradigm. It is refutation complete if
used in a level saturation manner."
Satchmo owes its high efficiency to the power of the underlying Prolog inference
engine. Satchmo accepts first-order clauses in implication form, or Horn clauses in
Prolog notation. Negation is expressed as implication to false.
If the clauses admit a finite model, Satchmo will find it. Satchmo is correct for
unsatisfiability if the input clauses are range-restricted – which can always be achieved
– and complete for unsatisfiability if used in level-saturation manner – technically
achieved with the help of Prolog's set predicates [Bry & Yahya 1996].
Otter & Satchmo. Currently we are using Otter and Satchmo independently but we
will later combine them into one integrated inference system.

5 Fulfilling the Requirements for the Attempto Reasoner
In this section we will only discuss technical aspects of fulfilling the requirements of
RACE while examples of using RACE will be presented in the following sections.
RACE consists of a set of Prolog programs with Otter, respectively Satchmo, at its core.
Some of RACE's requirements are already fulfilled by Otter, respectively Satchmo,
while others are satisfied by RACE's Prolog code making use of Otter's and Satchmo's
basic functionality and of special features of the logical representation of ACE texts.

Input and output of RACE should be in Attempto Controlled English.
Otter & Satchmo. RACE proves that one ACE text T is the logical consequence of
another ACE text A by translating T and A into their first-order representations LT and
LA, performing LA |– LT, and then reporting the result of the proof using again T and
A.
The Attempto parser generates discourse representation structures from ACE texts (cf.
section 2). These discourse representation structures are converted into the standard
form of the language of first-order logic and then into Otter or Satchmo clauses that are
passed to Otter, respectively to Satchmo. Otter, respectively Satchmo, is executed, and
its output is scanned for the results of the proof that are then reported to the user
reusing the original ACE input.

RACE should generate all proofs.
Otter. Otter can find all proofs of a problem. It provides a parameter max_proofs that
delimits the number of proofs Otter should try to find. If the parameter is set to -1 then
Otter will find as many proofs as it can within other constraints, for instance the setting
of the parameter max_seconds that delimits Otter's runtime.
Satchmo. The original version of Satchmo is designed to detect unsatisfiability as
quickly as possible, i.e. it will only find the very first proof. We modified Satchmo's
Prolog code so that Satchmo will find all proofs.

RACE should give a justification of a proof.
Otter & Satchmo. RACE generates for each proof a report which subset of the axioms
was used to prove the theorems. The implementation of this feature relies on an
extended internal representation of an ACE text called a paragraph.
The example

Every company that buys a standard machine gets a discount. A
British company buys a standard machine.

of section 2 is actually translated into

7

paragraph(
drs([A,B,C],[drs([D,E,F],[object(D,company)-1,structure(D,atomic)-1,
object(E,machine)-1, structure(E,atomic)-1, property(E,standard)-1,
predicate(F,event,buy,D,E)-1]) => drs([G,H],[object(G,discount)-1,
structure(G,atomic)-1, predicate(H,event,get,D,G)-1]),
object(A,company)-2, structure(A,atomic)-2, property(A,'British')-2,
object(B,machine)-2, structure(B,atomic)-2, property(B,standard)-2,
predicate(C,event,buy,A,B)-2]),
text(['Every company that buys a standard machine gets a discount.',
'A British company buys a standard machine.']))

where drs/2 is a slightly extended version of the discourse representation structure
discussed in section 2. The structure text/1 contains a list whose elements are the
input sentences represented as character strings. Logical atoms occurring in drs/2 are
actually written as Atom-I where the index I refers to the I'th element of the list in
text/1, i.e. to the sentence from which Atom was derived.
During the translation of the discourse representation structure into a first-order
formula the indices of the logical atoms are wrapped by axiom/1, respectively
theorem/1, to indicate whether an atom was derived from the ACE axioms or from
the ACE theorems.
The following steps are different in Otter and Satchmo.
Otter. During the translation of the first-order formula into a set of Otter clauses the
just wrapped indices will be wrapped once more by $ans/1 – Otter's notation for
answer literals [Green 1969]. The thus generated answer literals will be added as extra
disjuncts to their respective clauses. Thus we arrive at a set of clauses, that for example
could look like

object(sk1,company) | $ans(axiom(1)).
predicate(sk2,state,be,sk1) | $ans(axiom(2)).
- object(A,company) | - predicate(B,state,be,A) | $ans(theorem(1)).

The added answer literals are carried through all lines of the refutation proof. Then the
last line of a successful proof is not empty as usual, but consists of the answer literals
of the clauses participating in the proof, namely

$ans(axiom(2)) | $ans(theorem(1)) | $ans(axiom(1)).
Since the answer literals contain the wrapped original indices we can easily determine
which ACE axioms were used to derive which ACE theorems, and generate the
pertinent reports.
Satchmo. During the translation of the first-order formula into a set of Satchmo clauses
the wrapped indices remain attached to their atoms. Our modified version of Satchmo
collects the wrapped indices of atoms participating in a proof in a sorted list. There is
one list for each proof. These lists are then used to generate reports showing which
ACE axioms were used to derive which ACE theorems.

Using RACE should not presuppose detailed knowledge of its workings.
Otter. Otter offers a large set of options and parameters and furthermore allows users
to intervene during proofs. For RACE we use Otter's autonomous mode that – after
syntactically scanning the input – automatically selects appropriate options, inference
rules, and search strategies. The selected search strategy is usually refutation complete,
but may not be especially effective and efficient. Thus the convenience of the
autonomous mode is bought at a price. This is particularly noticeable in the case of
Otter's built-in equality. Equality triggers paramodulation that, unfortunately, cannot
be efficiently controlled in the autonomous mode. Thus we decided to represent
equality by the reflexive, symmetric and transitive defined relation is_equal/2.
Satchmo. Satchmo does not offer any options or parameters, nor can users interact
with Satchmo.

8

RACE should allow for the definition of auxiliary axioms in first-order logic.
Otter & Satchmo. Both Otter and Satchmo accept auxiliary first-order axioms of the
form

aux_axiom(Number, Formula, Text)
where Number labels the auxiliary axiom, Formula is a first-order formula, and Text is
a string describing the axiom. All auxiliary axioms are conjoined with the first-order
formula derived from the ACE axioms, and the conjunction is translated in Otter
clauses, respectively Satchmo clauses. While an auxiliary axiom is processed the atoms
A of its Formula are changed into A - aux_axiom(Number) so that the Text of the
auxiliary axiom becomes accessible to the justification of the proof via the index
aux_axiom(Number).

RACE should have an interface to evaluable functions and predicates.
This is the only requirement that Otter fulfils less well than Satchmo.
Otter. Otter provides a very limited set of evaluable functions and predicates for
integer and floating point arithmetic, Boolean operations and lexical comparisons that
allow users to program aspects of the deduction process – for instance list operations –
in a style similar to Prolog. To go beyond the limits of Otter's evaluable functions and
predicates, and to draw level with Satchmo, we will use Otter's gateway to foreign
evaluable functions to access predicates defined externally in Prolog.
Satchmo. Satchmo accepts any Prolog predicate – be it user defined or built-in.

RACE should combine theorem proving with model generation.
Otter. Otter functions only as a theorem prover.
Satchmo. Satchmo can be used both as a theorem prover and a model generator. If a
set of Satchmo clauses is satisfiable and admits a finite model then Satchmo will
generate a model that is returned as a list of ground instances of atoms.

6 Using the Attempto Reasoner
In its basic form RACE proves that one ACE text – the theorems – follows logically
from another ACE text – the axioms – by showing that the conjunction of the axioms
and the negated theorems leads to a contradiction. Variations of this basic proof
procedure allow users to check the consistency of an ACE text, or to answer queries
expressed in ACE. These two forms of deduction are especially interesting for the
analysis of specifications written in ACE, for instance for their validation with respect
to requirements.
The following examples are deliberately simple to clearly demonstrate the basic usage
of RACE. We will only show the ACE input and output of RACE and omit the internal
logical representation into which the ACE input is transformed by the Attempto parser
before being fed to RACE.
Given the three ACE axioms

Every company that buys a standard machine gets a discount. A
British company buys a standard machine. A French company buys a
special machine.

and the ACE theorem
A company gets a discount.

RACE will prove the theorem and generate the following output
RACE proved that the sentence(s)
 A company gets a discount.
can be deduced from the sentence(s)
 Every company that buys a standard machine gets a discount.
 A British company buys a standard machine.

9

Note that as a consequence of RACE's justification facility we only see the two axioms
actually used in the proof.
Given the same three axioms and the ACE query

Who buys a machine?
RACE generates the two answers

RACE proved that the query (-ies)
 Who buys a machine?
can be answered on the basis of the sentence(s)
 A British company buys a standard machine.

and
RACE proved that the query (-ies)
 Who buys a machine?
can be answered on the basis of the sentence(s)
 A French company buys a special machine.

All possible answers are generated, and for each answer we see only the axiom(s) used
to derive that answer.
Similarly we can check the consistency of an ACE text. If the text is inconsistent,
RACE's justification facility will identify all its inconsistent subsets. Given the ACE text

Every company that buys a standard machine gets a discount. A
British company buys a standard machine. A French company buys a
standard machine. There is no company that gets a discount.

we get the two results
RACE proved that the sentence(s)
 Every company that buys a standard machine gets a discount.
 A French company buys a standard machine.
 There is no company that gets a discount.
are inconsistent.

and
RACE proved that the sentence(s)
 Every company that buys a standard machine gets a discount.
 A British company buys a standard machine.
 There is no company that gets a discount.
are inconsistent.

showing that the text contains two inconsistent subsets.
The preceding examples demonstrated the basic usage of RACE. More advanced
applications making use of auxiliary first-order axioms and evaluable functions will be
shown in the next section.

7 Plural Inferences via Auxiliary First-Order Axioms
Plural constructions in natural language often raise hard linguistic problems and
trigger complex inferences. There are for example disambiguation presumptions
activated by world-knowledge, inferences induced by linguistic knowledge about the
structure and interpretation of plurals, or inferences that are driven by mathematical
knowledge. The treatment of disambiguation inferences has been addressed in
[Schwertel 2000]. Here we will show how linguistic and mathematical inferences can
be modelled by extending RACE with auxiliary domain-independent first-order
axioms for lattice-theory, equality and integer arithmetic.
The introduction of auxiliary predicates necessarily increases the search space.
However – as we noticed during our investigations – the larger search space does not
inevitably result in longer runtimes of RACE. This is most probably due to the efficient
implementations of Otter and Satchmo.

10

Lattice Theoretic Axioms
Various axiom systems governing the behaviour of plurals in natural language have
been proposed [Link 1998, chap. 2 and 10; Kamp & Reyle 1993]. For a practical
implementation we had to settle with an axiom system that provides a good trade-off
between empirical adequacy and computational tractability. For conciseness we can
only show a small selection of the many axioms that were implemented in RACE.
From the two ACE sentences

Every company that buys a machine gets a discount. Six Swiss
companies each buy a machine.

we want to infer
A company gets a discount.

To perform this inference we need to deduce from the second sentence the existence of
a company that buys a machine. The logical representation of the second sentence is

paragraph(
drs([A,B],[structure(A,group)-2,drs([C],[structure(C,atomic)-2,
part_of(C,A)-2])=>drs([],[object(C,company)-2,property(C,'Swiss')-2]),
quantity(A,cardinality,B,count_unit)-2,value(B,eq,6)-2,
drs([D],[structure(D,atomic)-2,part_of(D,A)-2])=>drs([E,F],
[object(E,machine)-2,structure(E,atomic)-2,
predicate(F,event,buy,D,E)-2])]),
text(['…','Six Swiss companies each buy a machine.']))

This representation assumes a lattice-theoretic structure of the domain of discourse
partially ordered by the relation part_of/2. Additionally it is assumed that for any
subset S of the domain there exists a unique least upper bound (supremum) of the
elements of S with respect to part_of/2. Thus, apart from atomic individuals (atoms)
there are complex individuals (groups) formed by the supremum operation which
serve as the denotation of plural nouns. In the above representation each object
variable is typed according to its position in the lattice. Lines 2 and 3 of the structure
express that there is a group A the atomic parts of which are Swiss companies, the
fourth line that the cardinality of A equals 6, and lines 5 to 7 express the distributive
reading triggered by the cue word each.
Since from this representation the existence of a company that buys a machine cannot
be directly deduced we add to RACE the following auxiliary first-order axiom stating
that each group consists of atomic parts:

aux_axiom(1,forall([X],(structure(X,group) =>
exists([Y],(part_of(Y,X) & structure(Y,atomic))))),
'Every group consists of atomic parts.').

Note, that the axiom is not domain specific since it models the meaning of plurals in
natural language. Hence the axiom has to be available for each proof.
Calling RACE with the conjunction of the clauses derived from the ACE text and from
the auxiliary axiom we get the desired deduction and RACE outputs

RACE proved that the sentence(s)
 A company gets a discount.
can be deduced from the sentence(s)
 Every company that buys a machine gets a discount.
 Six Swiss companies each buy a machine.
using the auxiliary axiom(s)
 Every group consists of atomic parts.

RACE includes other lattice-theoretic axioms, e.g. the reflexivity, transitivity and
antisymmetry of the part-of relation, the proper-part-of relation, or an axiom that states
that atoms do not have proper parts. The reverse direction of the last axiom, viz. if an
object does not have proper parts it is an atom, is not implemented since it explodes

11

the size of the search space. Also, the existence of a supremum is not axiomatised.
These restrictions are not harmful since we have not (yet) found empirical needs for
the introduction of the axioms. Commutativity, associativity and idempotence of the
lattice-theoretic join operation are not directly implemented via first-order axioms but
more efficiently simulated by list processing operations like permutation. In Otter, the
relevant list processing operations were simulated by further auxiliary axioms, for
Satchmo Prolog's built-in procedures could be used.

Equality
Many inferences require the interaction of several auxiliary axioms whereby equality
plays an important role. Asking the query

Who buys machines?
we expect to retrieve the second sentence

Six Swiss companies each buy a machine.
of the above example since the bare plural machines in the query is indeterminate as
to whether one or more machines are bought. To model this we represent both the
query word who and the bare plural machines as underspecified with respect to the
position in the lattice (structure(V,dom)). The query representation is

paragraph(
drs([A,B,C],[query(A,who)-1,structure(A,dom)-1,
structure(B,dom)-1,drs([D],[structure(D,atomic)-1,part_of(D,B)-1])
=>
drs([],[object(D,machine)-1]),predicate(C,event,buy,A,B)-1]),
text(['Who buys machines?'])).

Using the auxiliary axiom 1 introduced above and additionally the following three
auxiliary axioms

aux_axiom(2,forall([X],(structure(X,atomic) => structure(X,dom))),
'Atom is a subtype of the general type dom.')
aux_axiom(3,forall([X,Y],(structure(X,atomic) & part_of(Y,X) =>
is_equal(X,Y))), 'Atoms do not have proper parts.')
aux_axiom(4,forall([X,Y,P],(is_equal(X,Y) & object(X,P) =>
object(Y,P))), 'Identical objects have the same properties.')

will licence the deduction of the query from the second sentence. The relation
is_equal/2 models equality and is defined as reflexive, symmetric and transitive via
other auxiliary axioms. Equality substitution axioms like the fourth axiom can be
formalised directly in first-order logic due to our flat notation.
Otter. To process equality Otter provides paramodulation and demodulation.
However, paramodulation cannot be effectively controlled in Otter's autonomous
mode. Using the defined relation is_equal/2 instead of Otter's built-in equality
avoids triggering paramodulation, and turned out to be a viable – though perhaps
debatable – approach.
Satchmo. Since Satchmo has no built-in theory of equality we have no alternative than
to use the defined relation is_equal/2.

Mathematical Axioms
Assume the slightly modified ACE text

Every company that buys at least three machines gets a discount.
Six Swiss companies each buy one machine. A German company buys
four machines.

Answering the query
Who gets a discount?

needs mathematical knowledge about natural numbers.

12

Otter. In Otter the modelling of mathematical knowledge turned out to be rather
tricky. We combined Otter's evaluable relations like >/2 with auxiliary first-order
axioms, e.g.

aux_axiom(5,forall([V,N,M],(value(V,eq,N) & -value(V,geq,M) => M > N)),
'Number Axiom 5.')

RACE then outputs
RACE proved that the query (-ies)
 Who gets a discount?
can be answered on the basis of the sentence(s)
 If a company buys at least three machines it gets a discount.
 A German company buys four machines.
using the auxiliary axiom(s)
 Number Axiom 5.

One has to be careful though. The Otter manual recommends using evaluable
functions and relations only if one knows how the inferences are going to occur when
the formulas are conceived. This is difficult if you are using Otter's autonomous mode.
For example, we have found no general solution to prevent evaluable conditions to be
executed before all variables are instantiated. Due to these problems we consider our
treatment of evaluable functions and relations in Otter only preliminary. Currently, the
axioms work for all examples but scaling up to more complex examples cannot be
guaranteed.
Satchmo. In Satchmo mathematical knowledge about natural numbers can be
straightforwardly implemented by triggering the execution of Prolog predicates
during the proof. For the current example we use the user-defined predicate

value(Var,geq,NewNumber)-Index:-
 number(NewNumber),
 value(Var,eq,GivenNumber)-Index,
 number(GivenNumber),
 NewNumber =< GivenNumber.

Instantiation problems can be easily avoided by the Prolog predicate number/1.

Domain-Specific Axioms
Even domain-specific knowledge – e.g. special ontologies – could analogously be
formalised as auxiliary first-order axioms, although the representation in ACE is
preferable.

8 Temporary Limitations of RACE
Since we are still experimenting with the Attempto Reasoner RACE its current
implementation has the following temporary limitations some of which were already
mentioned in the preceding sections.
Otter and Satchmo are still used independently but will later be combined into one
integrated inference system.
Satchmo does not deliver all solutions, but only the first solution, if unsatisfiability is
caused by a Prolog built-in predicate.
Otter and Satchmo do not yet accept the same set of evaluable functions and
predicates. Otter uses its own set of built-in functions and predicates – that lead to
instantiation problems – while Satchmo uses Prolog predicates – that are
unproblematic. We plan to make Prolog predicates accessible to Otter via its interface
to foreign evaluable functions.
Since RACE is still in an experimental phase we decided to postpone the introduction
of settings to limit the runtime, or to restrict RACE's output in any way.

13

9 Conclusions
The Attempto Reasoner (RACE) proves that one text in Attempto Controlled English
(ACE) can be deduced from another one and gives a justification for the proof in ACE.
Variations of the basic proof procedure permit query answering and consistency
checking. Extending RACE by auxiliary first-order axioms and evaluable functions
and predicates we can perform complex deductions on sentences with plurals and
numbers.
Being based on the powerful theorem prover Otter and the efficient model generator
Satchmo, RACE is very fast and solves all examples of this paper in a few milliseconds.
Schubert's Steamroller [Stickel 1986] – a standard theorem proving example – takes 70
milliseconds on a 500 MHz Macintosh running Mac OS X. As a first check of RACE's
scaling up capability we contrived a contradictory example consisting of 10 complex
ACE sentences and altogether 56 auxiliary first-order axioms. RACE found all 5
contradictions in 2 seconds.
Though small the examples of this paper already exhibit the practicality and potential
of our approach. Much more remains to be done, though, besides investigating the
scaling up of RACE. To support the analysis of ACE specifications hypothetical
reasoning ('What happens if …?'), abductive reasoning ('Under which conditions does
… occur?'), and the execution of ACE specifications [Fuchs 1992] using ACE scenarios
would be helpful. Further extensions will be necessary for the practical applications of
ACE that we are investigating together with our partners in the fields of medical
documentation, synthesis of constraint logic programs, web site synthesis and
knowledge sharing, teaching logic and using ACE to control agents.

Acknowledgements
We would like to thank Johan Bos, François Bry, Michael Kohlhase, William McCune,
John Sowa and Sunna Torge for fruitful discussions concerning automatic theorem
proving. Our research was partially funded by grant 2000-061932.00 of the Swiss
National Science Foundation.

14

Appendix
Besides Otter and Satchmo we evaluated a – necessarily subjective – selection of other
theorem provers and model generators. Here we briefly describe our experiences with
these tools, and explain why we decided not to use them to implement the Attempto
Reasoner.
During our evaluation we learned two lessons. First, excellent theoretical credentials of
a tool do not necessarily mean that it is also practical and efficient. Second, not every
theorem prover or model generator is equally qualified for any type of problem,
specifically for the problems occurring in the processing of natural language. Both
insights are not actually new and have been stated previously by other researchers –
we were even forewarned [personal communication by M. Kohlhase] – but we
obviously needed to learn them from firsthand experience.

DRS Deduction Rules
In our first attempt to develop the Attempto Reasoner we implemented the deduction
rules for discourse representation structures [Reyle & Gabbay 1994] in Prolog. This
attempt differs from all our others in two aspects: first we performed deduction
directly in the language of discourse representation structures, and second we
developed a theorem prover virtually from scratch.
The seven DRS deduction rules were proven correct and complete for first-order logic.
They use run-time skolemisation to avoid losing structural information of DRSs.
As we found out the correct application of the DRS deduction rules requires a
combination of forward and backward reasoning which adversely affected the
efficiency of our implementation. In fact, eventually we had to realise that we were
unable to find a proof strategy that gave our implementation of the DRS deduction
rules an acceptable performance. Our negative experience correlates with the
cautionary remarks in [Blackburn et al. 2001, pp. 17-18].

leanTAP
leanTAP [Beckert & Posegga 1995] is a correct, complete and efficient theorem prover
based on free-variable semantic tableaux. Input to leanTAP are first-order formulas in
negation normal form. Like Satchmo leanTAP consists of a few lines of Prolog, and like
Satchmo leanTAP owes its efficiency to exploiting the Prolog inference engine as much
as possible.
To achieve the completeness that the Prolog inference engine lacks, leanTAP uses
limited depth-first search that can be combined with iterative deepening. Beckert &
Posegga write "… it is important in practice that the limit is not chosen too high, as the
search space grows exponentially with [the limit]. A good solution for this problem is
[…] iterative deepening".
Recall that RACE should hide from its users internal parameters like a search limit.
Thus for our purposes leanTAP could only be used in the iterative deepening mode.
However, if a proof fails then leanTAP could run forever unless we enforced
termination by an upper limit for iterative deepening or – perhaps better – for the run-
time. This upper limit would have to be sufficiently high not to miss any proofs,
meaning that many failing proofs would have to run for a long time until they finally
reached the upper limit. We felt that this was asking too much of the users of RACE.

EP Tableaux
Extended Positive Tableaux [Bry & Torge 1998; Torge 1998] is a model generation
method in the tradition of Satchmo. EP Tableaux is complete for unsatisfiability and
for finite satisfiability. The input language of EP Tableaux is a fragment of the
language of first-order logic called Positive Formulas with Restricted Quantification

15

(short PRQ formulas) that has the expressive power of full first-order logic. Torge
implemented EP Tableaux as the Prolog program Finfimo.
In an earlier publication [Fuchs et al. 2000] we used ACE as a front-end to EP Tableaux
and successfully solved a data base example and Schubert's steamroller [Stickel 1986].
However, as we found out, EP Tableaux as implemented in Finfimo does not scale up.
Here is why. EP Tableaux processes existentially quantified variables at run-time by
the ∃ expansion rule

 ∃xE(x)
–––––––––––––––––––––––––––––––––
 E(x/c1) |...| E(x/ck) | E(x/cnew)

where c1...ck are constants that occurred so far while cnew is a new constant distinct
from c1...ck. Since each existentially quantified variable can be substituted by a
previously used or by a new constant, each application of the ∃ expansion rule
introduces a choice-point in Finfimo resulting in an exponentially growing search
space.
Non-trivial ACE texts are translated into DRSs – and eventually into PRQ formulas –
with a large number of existentially quantified variables. Using Finfimo for deductions
from these ACE texts resulted in exploding run-times that we considered
unacceptable.

Mace
The theorem prover Otter is complemented by Mace [McCune 2001] – a generator for
finite models that accepts almost the same language as Otter.
Closer inspection revealed, however, that Mace is much more restrictive than Otter
concerning the language it accepts, and also interprets some symbols differently. For
instance, Mace does not accept relation symbols with arity greater than four, interprets
natural numbers not as constants, does not accept Otter's evaluable functions and
relations, and ignores Otter's answer literals.
For this reason we decided not to use Mace.

16

References
[ACE Manual 1999]
N. E. Fuchs, U. Schwertel, and R. Schwitter, Attempto Controlled English (ACE)
Language Manual, Version 3.0, Technical Report ifi-99.03, University of Zurich,
August 1999

[Beckert & Posegga 1995]
B. Beckert & J. Posegga, leanTAP: Lean Tableau-Based Deduction, Journal of
Automated Reasoning, 15(3), pp. 339-358, 1995

[Blackburn & Bos 2000a]
P. Blackburn & J. Bos, Representation and Inference in Natural Language: A First
Course in Computational Semantics (draft at www.comsem.org)

[Blackburn & Bos 2000b]
P. Blackburn & J. Bos, Working with Discourse Representation Theory: An advanced
Course in Computational Semantics (draft at www.comsem.org)

[Bos 2001]
J. Bos, Model Building for Natural Language Understanding (draft at
www.iccs.informatics.ed.ac.uk/~jbos)

[Blackburn et al. 2001]
P. Blackburn, J. Bos, M. Kohlhase, H. de Nivelle, Inference and Computational
Semantics, in H. Bunt, R. Muskens, E. Thijsse (eds.), Computing Meaning, vol. 2,
Kluwer Academic Publishers, pp. 11-28, 2001

[Bry & Torge 1998]
F. Bry & S. Torge, A Deduction Method Complete for Refutation and Finite
Satisfiability, Proc. 6th European Workshop on Logics in Artificial Intelligence, LNAI
1489, Springer-Verlag, 1998

[Bry & Yahya 1996]
F. Bry & A. Yahya, Minimal Model Generation with Positive Unit Hyper-Resolution
Tableaux, Research Report PMS-FB-1996-1, Institut für Informatik, Ludwig-
Maximilians Universität München, 1996

[Fuchs 1992]
N. E. Fuchs, Specifications Are (Preferably) Executable, Software Engineering Journal,
September 1992, pp. 323-334; reprinted in: J. P. Bowen, M. G. Hinchey, High-Integrity
System Specification and Design, Springer-Verlag London, 1999

[Fuchs et al. 1998]
N. E. Fuchs, U. Schwertel, R. Schwitter. Attempto Controlled English – Not Just
Another Logic Specification Language. in P. Flener (ed.), Logic-Based Program
Synthesis and Transformation, 8th International Workshop LOPSTR '98, LNCS 1559,
Springer-Verlag, 1999

[Fuchs et al. 2000]
N. E. Fuchs, U. Schwertel, S. Torge, A Natural Language Front-End to Model
Generation, Journal of Language and Computation, Volume 1, Number 2, pp. 199-214,
December 2000

17

[Green 1969]
C. Green, Theorem proving by resolution as a basis for question-answering systems,
Machine Intelligence, 4:183--205, 1969

[Iwanska & Shapiro 2000]
L. M. Iwanska & S. C. Shapiro (eds.), Natural Language Processing and Knowledge
Representation, AAAI Press/MIT Press, 2000

[Kamp & Reyle 1993]
H. Kamp & U. Reyle, From Discourse to Logic, Introduction to Modeltheoretic
Semantics of Natural Language, Formal Logic and Discourse Representation Theory,
Kluwer, 1993

[Link 1998]
G. Link, Algebraic Semantics in Language and Philosophy, CSLI Lecture Notes 74,
CSLI Publications, Stanford, 1998

[Manthey & Bry 1988]
R. Manthey & F. Bry, SATCHMO: A Theorem Prover Implemented in Prolog, in E. L.
Lusk and R. A. Overbeek (eds.), Proceedings CADE 88, Ninth International Conference
on Automated Deduction, LNCS, Springer Verlag, pp. 415-434, 1988

[McAllester & Givan 1992]
D. McAllester & R. Givan, Natural Language Syntax and First Order Inference,
Artificial Intelligence vol. 56, pp. 1-20, 1992; reprinted in [Iwanska & Shapiro 2000]

[McCune 1994]
W. W. McCune, Otter 3.0 Reference Manual and Guide, Technical Report ANL-94/6,
Argonne National Laboratory, 1994

[McCune 2001]
W. W. McCune, Mace 2.0 Reference Manual and Guide, Technical Memorandum
ANL/MCS-TM-249, Argonne National Laboratory, 2001

[Reyle & Gabbay 1994]
U. Reyle & D. M. Gabbay, Direct Deductive Computation on Discourse Representation
Structures, Linguistics & Philosophy, 17:343--390, 1994

[Schwertel 2000]
U. Schwertel, Controlling Plural Ambiguities in Attempto Controlled English, in 3rd
International Workshop on Controlled Language Applications, Seattle, Washington,
2000

[Sowa 2000]
J. F. Sowa, Knowledge Representation – Logical, Philosophical and Computational
Foundations, Brooks/Cole, 2000

[Stickel 1986]
M. E. Stickel, Schubert's Steamroller Problem: Formulations and Solutions, Journal of
Automated Reasoning, vol. 2, pp. 89-101, 1986

[Sukkarieh 2001a]
J. Sukkarieh, Quasi-NL Knowledge Representation for Structurally-Based Inferences,
3rd Workshop on Inference in Computational (ICoS-3)], Siena, Italy, 2001

18

[Sukkarieh 2001b]
J. Sukkarieh, Natural Language for Knowledge Representation, PhD Thesis, Computer
Laboratory, University of Cambridge, 2001

[Sutcliffe & Suttner 1997]
G. Suttcliffe & C. Suttner, Results of the CADE-13 ATP System Competition, Journal
Automated Reasoning, 18(2), pp. 259-264, 1997

[Torge 1998]
S. Torge, Überprüfung der Erfüllbarkeit im Endlichen: Ein Verfahren und seine
Anwendung, PhD thesis, Computer Science, University of Munich, 1998

