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Abstract

Today’s data mining algorithms and tools have specific input requirements
which inherently demand preparation of data before their use. As a conse-
quence, one of the most time-consuming steps in the process of knowledge
discovery in databases (KDD) is data preprocessing, i.e., preparing data for
data mining. Common preprocessing operations include the construction
of new features derived from existing ones, adjustment of data formats,
data segmentation, sampling and cleansing. The Mining Mart project pro-
poses a case-based reasoning approach that enables both automatization
of preprocessing and reusability of defined preprocessing cases for data
mining applications. The system architecture follows a metadata-driven
software approach. This paper mainly deals with the structure of the meta-
data to be stored. This metadata structure is called metamodel and is the
core of the system since all components have to be built in accordance
with it.

The metamodel considered in this paper (M*) has been developed as
a collaboration between two projects, Mining Mart! and SMARTZ2. The
latter project deals with metadata management for data warehousing and
considers metadata globally, with a focus on metadata integration. The
aim of SMART is an enterprise-wide metadata management system that
consistenly and uniformly manages all metadata available in a company in
order to provide better support for complex data warehousing processes.
In this context, M* may be seen as part of the global metamodel behind
the SMART metadata management system.

1 Introduction

Extracting information and knowledge from data is the purpose of advanced
technologies like data mining, data warehousing and information retrieval. Data
mining combines statistical and mathematical techniques with machine learn-
ing algorithms and other artificial intelligence approaches and aims at detecting
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unknown patterns in data. This knowledge is then used for supporting busi-
ness analysis and trend prediction. Even though a significant amount of algo-
rithms and tools is available on the market, data mining is a complex task. It
needs to be embedded in a comprehensive process, called knowledge discovery
in databases (KDD) [2]. Data has to be first collected, selected, integrated,
cleaned, and then preprocessed in order to fullfil the input requirements of the
chosen data mining tool or algorithm. Preprocessing operations include data
transformations (e.g., data type conversion), aggregation, scaling, discretiza-
tion, segmentation, sampling [5]. Practical experiences [9] have shown that
50-80% of the efforts for knowledge discovery are spent for data preprocessing
which is not only time-consuming but also requires profound business, data
mining and database know-how.

In this context, the aim of the Mining Mart project is to provide a user-
friendly environment for performing preprocessing for data mining. To this end,
a case-based reasoning framework has to be built [5]. The framework provides
a collection of cases and tools to design these cases. A case consists of the
specification of a mining task (e.g., selecting suitable addresses for a mailing
action), the data to be mined, i.e. the population, and a chain of preprocessing
operators to be applied to this population. Each mining task deploys a certain
mining tool or algorithm with special input requirements (see Figure 1) and
thus the target of the preprocessing chain is data prepared in accordance with
these requirements.

A defined case may be either directly executed or reused for developing new
ones: on the one hand, an end-user without any data mining and database
knowledge may retrieve one of the prepared cases, make some simple adaption
if required (e.g., the selection of a different population) and initiate the case
execution. On the other hand, the highly skilled power-user (i.e., the KDD-
expert) may use the framework for creating new cases. To this end, he reuses
building blocks (i.e., operators) or parts of the chains available from the already
defined cases.

One of the particularities of the Mining Mart approach is the implemen-
tation of the framework as metadata-driven software (see next section). This
solution enhances reusability and flexibility of the system.

The remainder of this paper is organized as follows: the next section ex-
plains the notion of metadata and metadata-driven software in order to better
understand Section 3 which discusses general aspects of the system architecture.
In Section 4 we present an overview of the metamodel of the repository, M*.
Section 5 and Section 6 describe the metamodel in more detail: each individual
class with its attributes, associations and restrictions is presented; Section 5
deals with the data modelling part while Section 6 addresses the case modelling
part of M*. Section 7 concludes the paper.

2 Metadata-Driven Software

In information systems area, metadata (data about data) is a general notion
that captures all kind of information necessary to support the management,
query, consistent use and understanding of data. In particular, metadata may
be any information related to schema definitions and configuration specifica-



e 1no ‘unknown’ (NULL) values are allowed
for specific attributes

e scalar and ordinal attributes have to be nu-
meric

e nominal attributes must have character
values or be represented as sets of boolean
values

e 1o numeric or no non-numeric attributes
are admissible

e not more than N different values are al-
lowed for nominal attributes

e always the same scale for numeric at-
tributes is required

e no key attributes are considered

e input data must consist of a single flat table

Figure 1: Input restrictions of data mining tools [5]

tions, physical storage, access rights, etc. Metadata may also represent end-
user-specific documentation, dictionaries, business concepts and terminology,
details about predefined queries, and user reports. Overviews of the state-of-
the-art in metadata management with a focus on data warehousing are provided
in [10, 11].

In the case of a metadata-driven software package, metadata is stored in a
repository and is used as control information for applications implemented with
this software package. Examples of control information are static information
(like structure definitions, configuration specifications, etc.) as well as some
parts of application logic: conditions (e.g., for dynamic SQL), methods, or pa-
rameters for stored procedures. At runtime, metadata is read by a tool engine,
is dynamically bound into the engine software and the resulting application
is then executed. In other words, application semantics is simply distributed
between the repository and the engine and is pieced together at runtime only.
Examples of metadata-driven software are the new generation tool packages
for data warehousing, e.g., for building the data warehouse (like PowerMart?,
Ardent*) or for using it (like Cognos®, Business Objects®).

To summarize, metadata-driven software provides a framework consisting
of a repository structure and an engine which fits this structure. Users have to
specify metadata instances (i.e., to fill in the repository in accordance with this
structure) in order to achieve executable task-oriented applications.

One of the main benefits expected from metadata-driven software is reusabil-
ity and flexibility. On the one hand, objects encapsulating control information
are explicitely stored in the repository (instead ob being hidden in scripts and
programs) and may be reused in different contexts and applications. On the
other hand, the engines running on top of the repository may be used for all
metadata instances fitting the given metadata structure. This results in im-
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Figure 2: Architecture of Mining Mart System

proved flexibility. The system may be extended and adapted without difficulty.
If new requirements arise, metadata instances may be easily changed without
affecting the clients (i.e., engines) sharing it. Thus, maintenance is easier. More-
over, since operational metadata is for sure kept up-to-date, the documentation
of the system is implicitly up-to-date as well.

Nevertheless, the main advantage of using metadata-driven software is when
enterprise-wide metadata integration [12] is considered. Metadata stored in var-
ious repositories (e.g., from various tools like those for building a data warehouse
resp. for using it) is integrated and linked with each other such that it is con-
sistenly and uniformly managed by an enterprise-wide metadata management
system. In this way, links between metadata of various domains are established
and exploited and thus up-to-date system information and documentation is
available to all users and tools across the enterprise. Efforts are underway
to establish metamodel standards for enterprise-wide metadata integration and
exchange (for a comparison between two important standard proposals see [13]).

3 Architecture of the Mining Mart System

Mining Mart follows a typical metadata-driven software architecture, depicted
in Figure 2. The core of the system is the Repository which is implemented
on top of a DBMS. Case-specific information is stored in the repository: the
specification of the business problem to be solved by the case, the specification
of structures of the data to be mined, the specification of processing operators
to be applied on the data with corresponding parameters, the description of the
data mining tool for which the data has to be prepared, etc. At runtime, a MD-
Compiler reads these metadata and uses them in order to generate code. When
executing this code, data is read from the data source (e.g., a data warehouse),
is preprocessed and stored into the target system on which data mining will
be applied later. The Editor is used for manipulating metadata (insert, delete,
update) within the repository.

Note in Figure 2 that metadata may be produced and stored into the reposi-
tory by means of other components as well. This component represents the MSL
tools (multistrategy learning tools) [5] which are used for determining operator
parameters when these cannot be manually specified. MSL tools accompany
manual preprocessing operators and produce the metadata they require, i.e.,
the input parameters for them. A typical example is the discretization opera-
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Figure 3: Coarse Description of the Metamodel (the marked rectangle denotes
the part of M* that considers data representation)

tor. One of the input parameters is a discretization table which specify for a
given attribute, value intervals and their corresponding discrete values. During
preprocessing, the discretization operator checks whether an attribute value is
in the range of given intervals and substitutes it with the corresponding discrete
value of the input table. Since the manual specification of an optimal discretiza-
tion table is not always feasible, an MSL tool has to be used for discovering the
best discretization table by means of data analysis. When optimal parameter
settings depend on data, their discovering by means of MSL tools is the pre-
requisite for case reuse. For example, if discretization tables are automatically
rendered by a tool, the same case may be directly re-executed without designer
intervention for different populations.

The software components accessing the repository (Editor, MD-Compiler,
MSL-Tools) are “bound” to the given metadata structure which is conceptually
described by a metamodel. The domain-specific language for specifying appli-
cations is derived from the metamodel as well. The next section introduces the
Mining Mart metamodel which is then described in more detail in the remainder
of the paper.

4 Overview of M*

We now give a coarse description of the metamodel of Mining Mart with a
focus on the data representation part. Since a metamodel should “catch” the
particularities that are relevant for a specific domain, our data representation
part reflects the features of the data set that are important for preprocessing.
The Mining Mart Metamodel (M*?) is illustrated as a class diagram in the
Appendix. M* can be logically divided into two main parts, one managing
information with regard to data modelling and the other one regarding case
modelling. Each part is again subdivided in accordance with the abstraction
level into conceptual and mining specific representation on the one hand and
implementation representation on the other hand. Figure 3 depicts the four
parts resulting from this partition; they are tightly coupled to each other.

- Data modelling part comprises classes for describing the relational data
representation, which corresponds to the implementation level and the
conceptual data representation which essentially deals with the entity-
relationship model enhanced with data mining specific aspects (as e.g.,



special data types - Time, Ordinal, Nominal, etc) and ontology knowledge
of the application domain.

- Case modelling part describes preprocessing operators and the required
controlling structures. This submodel is again divided into the mining-
specific description of the case semantics (including for example operators
like feature selection and discretization) and their implementation as e.g.,
function, stored procedure or SQL-query. We call the two metamodel
parts conceptual case representation and representation of the case imple-
mentation respectively.

On the one hand, partitioning M* in data vs. case modelling representation is
necessary for ensuring reusability: the already specified operators may be used
within cases which have parameter values represented in the data modelling
part. Cases may be reused for different data sets (i.e., populations), represented
within the data modeling part. On the other hand, distinguishing between the
two abstraction levels (conceptual vs. implementation) is required for enhancing

- user-friendliness: End-users may manipulate familiar elements on the
conceptual level in order to configure cases for execution. Regarding tech-
nical users, the two main categories are case designer and case adapter.
The case designer accesses and manipulates only the elements of the up-
per, conceptual level during his work. Thus, the implementation is trans-
parent to him: he deals with mining-specific elements and constructs and
has not to be aware of how they are implemented (which DBMS is used,
how functions are implemented, etc.). In contrast, the case adapter is
responsible for building the connection between the two levels when the
structure of the database changes.

- (again) reusability: The conceptual, abstract level may be (re)used inde-
pendently on the actual implementation of the database or of the opera-
tors. A relational data model has been chosen for data storage on the im-
plementation level. That means, the input and output data will be stored
in a relational database system (we considered Oracle). However, for the
same specification on the conceptual level, also other data models may
be used on the implementation level (e.g., hierarchical, object-oriented
model, etc.).

- transportability (which is a sort of reusability as well): The idea is to be
able to reuse (parts of) the cases not only in the same company (e.g.,
Swiss Life) and the same branch (life insurance), but in other branches
as well. To this end, the representation of ontologies [3, 4, 8] has to be
considered within the conceptual data representation part. A common
ontology basis has to exist which is then specialized by domain-specific
ontologies.

The four parts of M* are linked to each other and connections between meta-
data instances are often navigatable in both directions such that the required
information may be rapidly accessed. Note that the consideration of the case
implementation submodel (the quarter right below) is optional. Since this part
represents detailed information related to the implementation of operators, it
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makes sense only if a step-by-step tracing of data transformations is intended. In
other words, the case implementation submodel is relevant only if pieces of code
corresponding to the execution of operator are broken in smaller pieces which
have to be extensively documented. These pieces need to be linked with the
data modelling part where the input and output data elements are explicitely
stored. This could be desired for supporting understanding, debugging and
maintenance of code. Otherwise, if implementation information is stored with
a coarse granularity only (e.g., to an operator corresponds an atomic function
call), the two case levels, conceptual case and implementation case representa-
tion are merged.

M* combines ideas from two existing standards for metadata representation
and exchange in the area of data warehousing (OIM and CWM) [13]. They are
drastically simplified but extended with data mining and preprocessing ele-
ments to make the metamodel domain-specific. Since both standards have the
metamodel of UML as their core, M* uses some UML classes as foundation as
well. That means, UML is not only used as (graphical) language for describing
class diagrams but it is also used as the core metamodel, extended within M*.
That means, UML classes are specialized in M*. For describing the foundation
classes and the classes of M*, we adopt the following description format: class
name, brief description, supertypes, class attributes and associations with other
classes (including association multiplicity).

Foundation of the Metamodel: UML Classes
Figure 4 depicts the UML classes which are specialized for defining M*. These
are:

ModelElement is the base for all modeling metaclasses in the UML. All other
modeling metaclasses are either directly or indirectly specialized from
ModelElement.

Classifier A classifier is a general element that describes behavioral and struc-
tural features; it appears in several specific forms, that means, the class
Classifier may be specialized as Class, DataType, Interface, Component,
aso.

Class A Class is a description of a set of objects that share the same attributes,
operations, methods, relationships, and semantics. Specializations in M*
of the UML class Class are ColumnSet and Concept (supporting concep-
tual and relational modelling).



Supertype Classifier

Subtypes (in M*) Concept, ColumnSet

Associations attributes: points to the corresponding set of class at-
tributes. Multiplicity: 0..n.

Attribute An attribute is a named slot within a classifier that describes a
range of values that can be assigned to instances of the classifier. Attribute
is specialized to support different needs, and associated with a data type.
Supertype StructuralFeature
Subtypes(in M*) Column, FeatureAttribute, Value, RoleRestriction
Associations classes: is an association to the class this attribute is in.
Multiplicity:1..1.
dataType: points to the DataType of this attribute. Multiplicity: 1..1.

DataType A data type is attached to an attribute. Data types include primi-
tive built-in types (integer, strings etc.) as well as definable enumeration
types (e.g. boolean, true and false).

Supertype Classifier

Subtypes(in M*) Integer, String, DomainDataType etc.

Associations has: points to the Attributes having this data type. Mul-
tiplicity: 0..n.

In the following, we present M* in more detail. The next two sections deal
with the two submodels obtained through vertical partition (data resp. case
modelling part). We present each class in turn with some of its particularities
and we do not make explicit distinction between class and its instances - it is
visible from the context whether class or instance is meant. Even if not always
explicitly stated, each instance of the classes in the metamodel has a unique ID
which identifies it, a name and a description (which is simple text). Moreover,
each class manages its extension which contains the set of all instances of this
class.

5 The Mining Mart Data Representation

The data modelling part of M* is illustrated in Figure 5. It consists of the
conceptual and the logical data representation which are strongly coupled with
each other. The logical level follows the relational data model which is known
from other metamodels as well (e.g., [13]). We start with its description.

5.1 Relational Data Representation

This submodel comprises classes for representing data structures that use the
relational data model. The main classes are: Column, ColumnSet (with its sub-
classes Table, View, Snapshot) and Key. Column and ColumnSet have each a
class containing statistical information ( ColumnsStatistics and ColumnSetStatis-
tics). A ColumnSet consists of a list of Columns.

5.1.1 Column

An instance of the class Column defines a set of values in a result set, e.g., a view
or a table. All values of the same column are of the same data type. A value
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Figure 5: The class diagram of Mining Mart data representation

from a Column is the smallest unit of data that can be selected from a table or
view and the smallest unit of data to be updated. A Column corresponds to a
BaseAttribute at the conceptual level.

Supertype Attribute
Subtypes None
Attributes

— name: name of the column in the database schema (e.g., PTANSCH,
PTEPFI, etc.).

— dataType: data type in the implementation language of the column
(e.g., integer, string, etc).

Associations

— belongsToColumnSet: an aggregation’ to ColumnSet (i.e., Column
is part of ColumnSet). It points to the ColumnSet that contains this
Column. Multiplicity: 1..1.

— keys: an association describing in which keys this column is part of.
Multiplicity: 0..n.

" Aggregation will be implemented as an attribute TableIndentifier being foreign key to
ColumnSet.



— correspondsToBaseAttribute: an association pointing to the corre-
sponding BaseAttribute at the conceptual level. Note that a Feature-
Attribute may be either a BaseAttribute or a MultiColumnFeature.
In the latter case there are more than one corresponding columns.

5.1.2 ColumnSet

A ColumnSet describes any general set of columns - typically a table, view or
snapshot.

Supertype Class

Attributes

name: name of the table, view, etc.

number: number of columns.

file: name of the file containing the command creating the ColumnSet.

dbConnectString: name of the database where the ColumnSet be-
longs to.

user: the name of the owner of the ColumnSet (e.g., for the access
in Oracle User.Name@DBString is needed).

Associations

— hasColumn: an aggregation over Columns (ColumnSet has Column).
It points to all the Column(s) that form this ColumnSet. Multiplic-
ity: 1..n.

— hasKeys: an association to the corresponding primary and foreign
keys that apply to the ColumnSet. Multiplicity 1..n.

— correspondsToConcept: an association to the corresponding concept
at the conceptual level. Multiplicity 0..1.

— correspondsToRelationship: an association to the corresponding re-
lationship at the conceptual level. Multiplicity 0..1.

Constraints ColumnSet points either to a Concept or a Relationship.
There are ColumnSets which do not point to any concept but to a rela-
tionship - this is the case when the Relationship has the multiplicity m:n,
then it will be implemented as a separate table.

5.1.3 ColumnStatistics

ColumnStatistics contains statistic information for columns necessary during
data mining. This information includes statistics of the values for each Col-
umn (e.g., maximal and minimal value, average, etc) but also the distribution
blocks necessary for further preprocessing (if such information is available).
Distribution blocks contain values grouped in accordance with some criteria.
Mining specific types play an important role when building distribution blocks:
for nominal attributes, every value is counted and those with the same weight
are grouped. For ordinal attributes, values are grouped according to certain
intervals (at most 1000 intervals). For time attributes the distribution usually
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depends on the number of months between the minimal and maximal value
according to the following rules:

month_number > 600 = values are grouped into years
60 < month_ number <= 600 = values are grouped into quarters
3 < month number <= 60 = values are grouped into months
months_number <= 3 = values are grouped into days

Supertype ModelElement
Attributes

— wunique: number of different values of this column within the ColumnSet.
— missing: number of missing value(s) within the ColumnSet.

— min: minimal value of the column within the ColumnSet.

— maz: maximal value of the column within the ColumnSet.

— average: average value of the column within the ColumnSet.

— standardDeviation: standard deviation value of the column within

the whole ColumnSet.

The last two attributes make sense for numeric (i.e., scalar) attributes
only. The distribution information consist of:

— distribution Value: name of one distribution block, e.g "YOUNG’ for
the attribute ’AGE’. If the attribute is of the type ordinal, the aver-
age value of the block is used.

— distributionCount: number of counted records for this distribution
block.

— distributionMin: minimal value of the distribution block (makes
sense for ordinal attributes only).

— distributionMaz: maximal value of the distribution block (makes
sense for ordinal attributes only).

e Associations

— forColumn: an association that points to exactly one Column. Mul-
tiplicity: 1..1.

Note Statistics could be represented at the conceptual level as well.

5.1.4 ColumnSetStatistics

ColumnSetStatistics contains statistic information for ColumnSets. For each
instance of ColumnSet, the number of columns having the same mining specific
data type (e.g., ordinal, nominal time) has to be stored.

Supertype ModelElement
Attributes

— allNumber: total number of tuples within the ColumnSet.

— ordinalNumber: number of ordinal attributes of the ColumnSet.
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— nominalNumber: number of nominal attributes of the ColumnSet.

— timeNumber: number of time attributes of the ColumnSet.
Associations

— forColumnSet: an association pointing to exactly a ColumnSet. Mul-
tiplicity: 1..1.

5.1.5 Table, View, Snapshot

These classes represent the notions of table, view and snapshot known from
implementation data models of database management systems (like Oracle).
Their superclass is ColumnSet. View and Snapshot have an attribute containing
the filtering condition (the WHERE part of the SQL- query used for view
definition) and one association pointing to one or more instances of ColumnSet
it has been applied on (FROM part of the view definition). Snapshots require
also attributes for updating as howRefresh (i.e., either FAST or COMPLETE)
and refreshInterval.

5.1.6 Key, PrimaryKey, ForeignKey

The PrimaryKey and ForeignKey classes represent the corresponding notions
known from the relational model. The class Key is the superclass of PrimaryKey
and ForeignKey and is an abstract class.

Supertype (applies for Key) ModelElement
Attributes

— isUsedForIndez (applies for PrimaryKey): a boolean attribute which
may take two values, yes or no.

Associations

— hasColumn: an association to the Column(s) that form the Key.
Multiplicity: 1..n.

— 1sAssociatedTo ColumnSet: an association to the ColumnSet where it
is Key (it is a sort of redundancy to the aggregation between Column
and ColumnSet).

— isConnectionTo (it exists for ForeignKeys only): an association to
the Table where is key (usually a primary key). Multiplicity 0..1.

— correspondsToRelationship (it applies for ForeignKey): an associa-
tion pointing to the corresponding relationship at the conceptual
level. Multiplicity 0..1. Relationships 1:m or 1:1 will be imple-
mented as ForeignKeys. A relationship m:n will be implemented
as ColumnSet and 2 ForeignKeys. Multiplicity 1,2 or more.

12
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5.2 Conceptual Data Representation

Due to the significant role it plays for user-friendliness and reusability, the con-
ceptual layer is the most important part for the data representation in M*.
It is essentially Entity-Relationship (ER) data representation enhanced with
description logic (DL) and ontology representation, extended with data mining
specific features. The main two classes are Concept and Relationship. A Con-
cept (e.g., Customer, Partner) may have subconcepts (e.g., Partner between
30-40 years or Mailed Person), that means there are IsA relationships between
Concepts (see Figure 6). Application-specific Relationships exist as well (e.g.,
Buys, Owns Insurance, Owns Insurance A; they are binary Relationships (as
in DL), e.g., Concept Customer Buys Concept Product, Concept Partner is in
Relationship Owns Insurance with Concept Insurance Contract. Relationships
may be bound to each other with IsA relationships as well. Figure 7 illustrates
these semantics as represented in the metamodel.

As shown in Figure 6, the three perspectives covered in the conceptual data
representation are:

e the ontology level contains general business ontologies; is useful for reuse
of cases in different companies; Mailed Person IsA Partner which in turn
IsA Customer, Taz-priviledged Contract IsA Insurance Contract and In-
surance Contract IsA Product; IsA applies for Relationships as well. Cus-
tomer and Product are included in the basis ontology which should be
common to many companies.

e the database schema level represents the conceptual schema of the database;

13



this is mapped to the implemented schema. In Figure 6 this level corre-
sponds to Partner, Insurance Contract and Owns Insurance which have
direct correspondents on the implementation level in terms of relational
tables. So far, only the relational model is considered on the implementa-
tion level in M* (see Section 5.1) but other data models may be considered
as well. Note that the basis ontology (Customer, Product, Buys) has no
direct correspondence on the implementation level.

e the mining data level describes data sets needed for and produced dur-
ing preprocessing for mining; contains also mining specific data types.
In Figure 6 these are the Mailed Persons, Taz-priviledged contracts, and
the Relationship Owns Insurance A. These are subconcepts and subrela-
tionships of the elements beyond and are directly used for configuring or
designing Mining Mart cases. They correspond on the implementation
level to views or snapshots on tables.

We consider in turn the classes of the conceptual data representation with
their attributes.

5.2.1 Concept

A Concept is the basic element of the conceptual data representation. It ex-
presses a “thing” in the application domain.

Supertype Class, Parameter
Attributes

— name: name of the concept (e.g., Partner, Product, Customer).

— subConceptRestriction: specification (using a machine processable
language!) of the characteristics of a subconcept (in relation with
its superconcept), e.g., the specification of the fact that concept
YoungéPowerful represents the Partner(s) between 30-40 years while
Young represents Partner(s) between 20-30 years. Both are subcon-
cepts of Partner.

Associations

isA: an association to the (super)concept e.g, Young isA Partner.

— correspondsToColumnSet: an association pointing to the correspond-
ing ColumnSet that implements the concept. Multiplicity 0..1.

— FromConcept: an association pointing to the Relationship the Con-
cept is linked with. For example, Concept Partner is in Relationship
HasPartnerRole to the Concept Contract. Then Partner is associ-
ated by means of FromConcept to HasPartnerRole. Multiplicity 1..1.

— ToConcept: an association to the Relationship the Concept is linked
with. E.g.,Contract is associated by means of ToConcept to Rela-
tionship HasPartnerRole. Multiplicity 1..1.

14



Constraints Each ColumnSet has a Concept or Relationship but not each
Concept or Relationship points to a ColumnSet (e.g., the basis ontology
has no correspondant on the database side.

For each instance of FromConcept association an instance of ToConcept
association has to exist and conversely.

5.2.2 Relationship

A Relationship expresses the connection existing between two concepts.
Supertype ModelElement, Parameter
Attributes

— name: name of the relationship (e.g., HasPartnerRole, IsInsuredPer-
son, IsInsuranceHolder, OwnsInsurance).

— subRelationshipRestriction: specification (in a machine processable
language!) of the characteristics of a subrelationship in relation with
its superrelationship, e.g., the specification of the fact that Relation-
ship IsInsuredPerson resp. IsInsuranceHolder represents a subset
of HasPartnerRole fulfilling some conditions. These are formulated
using FeatureAttributes, Concepts, and so on. A possible language
could be DL role-terms [1]. IsInsuredPerson and IsInsuranceHolder
are both subrelationships of HasPartnerRole.

— defined: an attribute that specifies whether the Relationship is de-
fined according to the restriction above or primitive (sufficient con-
dition or not).

Associations

— 4sA: an association pointing to its (super)relationship e.g, IsInsur-
anceHolder isA HasPartnerRole.

— correspondsToForeignKey: an association to the corresponding For-
eignKey(s) that implement(s) the Relationship. Multiplicity 1..n.
Relationships 1:m or 1:1 will be implemented as ForeignKeys. A re-
lationship m:n will be implemented as ColumnSet and 2 ForeignKeys
(only binary Relationships like in Description Logic are considered).

— correspondsToColumnSet: an association to the corresponding ColumnSet
that implements the Relationhip. This applies only when the rela-
tionship is m:n. Multiplicity 0..1.

— FromConcept: an association to one of the Concepts connected by
the Relationship. Multiplicity 1..1.

— ToConcept: an association to the other Concept. Multiplicity 1..1.
E.g., HasPartnerRole is associated by means of FromConcept to Con-
cept Pariner and by means of ToConcept to Concept Contract.

Constraints Each Relationship corresponds to either a ColumnSet or a
ForeignKey on the implementation level. That means, the association cor-
respondsToForeignKey may exist without the association correspondsTo-
ColumnSet. However, when correspondsToColumnSet exists, it requires
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two ForeignKeys as well (i.e.,correspondsToForeignKey exists as well).
A Relationship cannot exist without FromConcept and ToConcept.

5.2.3 FeatureAttribute

Contains features of Concepts. It may be either a BaseAttribute or a Multi-
ColumnFeature.

Supertype Attribute (from UML), Parameter
Subtypes BaseAttribute, MultiColumnFeature
Attributes

— name: name of the feature attribute. The name should be more
comprehensive (e.g., postal address of partner) than usual names of
columns (as. e.g, PTANSCH and PTEPFI).

— relevanceForMining: a boolean attribute expressing whether the
FeatureAttribute is relevant for mining or not.

— attributeType: an attribute which depicts whether it is a base at-
tribute, a result or an intermediate attribute produced during case
execution.

Associations

— belongsToConcept: an aggregation to the concept it belongs to. Mul-
tiplicity 1..1.

— correspondsToColumns. an association to the column (or columns)
it represents. Multiplicity 1..n. Note that a feature attribute may
have more than one column if it is a MultiFeatureColumn.

5.2.4 BaseAttribute

A BaseAttribute may have various mining relevant data types (they follow be-
low).

Supertype FeatureAttribute
Associations

— domainDataType: an association to the mining-specific data type,
i.e., to the DomainDataType. Multiplicity 1..1.

— isPartOfMultiColumnFeature: an aggregation to a MultiColumnFea-
ture if it is part thereof. Multiplicity 0..1.

5.2.5 MultiColumnFeature

A MultiColumnFeature consists of a set of BaseAttributes. Note that a Multi-
ColumnFeature has no data type, only a BaseAttribute has one.

Supertype FeatureAttribute

Subtypes Timelnterval (not depicted in the diagram)

16



Associations

— consistsOfBaseAttributes: an aggregation representing the set of BaseAt-

tributes that builds the MultiColumnFeature. Multiplicity 1..n.

Note Timelnterval has only two BaseAttributes it points to: startOfInterval
and endOfInterval. Their data type is Time. Another example of a Multi-
ColumnFeature is “Money” which could be represented with two components
(value, currency). Note that, in contrast to Time, Money is represented as an
instance of MultiColumnFeature, not as subclass.

5.2.6 Value

Value is needed within arithmetic expressions and conditions used in operators
like for e.g., segmentation operators. That means, operators may have param-
eters that are constants (like e.g., scalingfactor) and these constants have to
be expressed as Values. Value is part of Userlnput. This aggregation is not
additionally depicted in the figure since superclasses of Value and UserInput
(i.e., Attribute and Class) are anyway linked by an aggregation.

Supertype Attribute (from UML), Parameter
Attributes

— name: name (or representation) of the value.
Associations

— domainDataType: an association to the mining-specific data type,
i.e., to the DomainDataType. Multiplicity 1..1.

— belongsToUserInput: an aggregation to the UserInput it belongs to.
Multiplicity 1..n., not depicted in the diagram.

Note Values could be any complex structure as well, e.g., decision trees, regres-
sion trees, discretization tables, instance lists, aso. Complex structures have not
been considered so far.

5.2.7 TUserInput

Contains the set of Values entered by users when specifying cases.
Supertype Class (from UML)
Attributes
— name: name of user input.
Associations

— contains Values: an aggregation pointing to Values. Multiplicity 1..n.
Not depicted in the diagram.
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5.2.8 RoleRestriction

It is a special Attribute. It is necessarily bound to a Relationship and a Concept.
It actually expresses a constraint, the fact that if a Relationship is linked to a
Concept by means of FromConcept, it has to be linked to another Concept by
means of a ToConcept. RoleRestriction considers the constraint from another
perspective, for THIS (i.e., the given) Concept for which the RoleRestriction
attribute has been defined, there exists a Relationship and (at least) another
Concept (such that the relationship exists between these two concepts).
Warning: the semantics may possibly be found in the Concept-Relationship
modelling as well but it seems that various operators need the information
explicitly available in form of “role restriction” and not hidden as Concept-
Relationship representation. That is the reason RoleRestriction had to be in-
troduced. It corresponds to the DL terms: all, atleast and atmost [1].

Supertype Attribute (from UML)
Attributes

name: name of the role restriction.

— restrictionForRelationship: a pointer to the Relationship it is a re-
striction for.

— restrictionForConcept: a pointer to the (sub)Concept it applies to.

— restrictionToConcept: a pointer to the Concept where all instances
of the range of the relation will be member of (DL-all).

— min: minimum number of Concept instances® in Relationship with
every instance of THIS Concept.

— maz: maximum number of Concept instances in Relationship with
every instance of THIS Concept. (Note that Relationships may exist
only between two Concepts).

Associations

e belongsToConcept: an association to THIS Concept for which roleRestric-
tion is an attribute (in the diagram is depicted as an association between
Attribute and Class).

5.2.9 DomainDataType and its Subclasses

We only briefly mention below the domain-specific data types relevant for data
mining and data preprocessing.

DomainDataType This class represents the domain specific data type of
BaseAttribute. Each BaseAttribute has a data type; this will be rep-
resented as an association hasDataType, multiplicity 1..1. Generally, note

8In this case, “instance” is meant as data object (e.g., “Meier”, “contract no. 119725”,
“contract no. 129726”. It is important to make the distinction between data (i.e., “Meier”),
metadata (concept “Partner”) and metamodel (class “Concept”). “Meier” is an instance of
the concept “Partner”, which is an instance of the class “Concept”.
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that constraints have to be implemented for these data types. In partic-
ular, operators making sense for each of the domain-specific data types
have to be defined and processing information for them is required. For
example, “<” and “<=" make sense for ordinal attributes only. In con-
trast, “=" makes sense for binary and categorial attributes. Distance is
allowed for scalar attributes only. Operators like +, - are applied to scalar

attributes. Logical operators are applicable to binary attributes.

Ordinal All values of this attribute are ordered. Distance between values
makes no sense.

Scalar Distance makes sense. Scalar attributes are usually represented as nu-
meric or date on the implementation level.

Time It represents the absolute point in time. It may have two attributes,
value and timeScale (second, minute, hour, day, month, year).

Binary Has only two values, 0 or 1. “<” and distance makes sense (it is ei-
ther 0 or 1). The two logical operations, “xor”(+) and “and” (-) are also
applicable and result in the following arithmetic logic:

XOR: AND:

1+1=0 0-0=0
1+0=1 0-1=0
0+1=1 1-0=0
04+0=0 1-1=1

Categorial Has a fixed small number of values.

KeyAttribute This kind of attributes is used for identification and is not
suitable for mining (the number of different values is too high). Subclasses
are TimeGroup and Spatial.

TimeGroup It represents the identification of an individual for which Time
data is collected. It makes sense only if it is paired with a set of Time
attributes (representing the time series). It has as attribute numberOfD-
ifferentIndividuallnstantiations and missing values.

Spatial This data type is used for geographical information systems (GIS) and
mining visualisation.

Constant It has only one possible value and thus it is not suitable for mining.
Typically is the result of a selection.

6 Mining Mart Case Representation

As depicted in Figure 8, classes in this submodel manage metadata for configur-
ing cases, preprocessing operators and metadata for connecting these operators.
A case consists of a list of steps and each step embeds an operator; the output
of a step is the input for the next one. Operators have Parameters which are
instances of Concepts, Relationships, FeatureAttributes or Values - to be found
in the data modelling part (not all these semantics are represented in the dia-
gram). Cases have as parameters, among others, the population (i.e., the base
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Figure 8: The class diagram of Mining Mart case representation

concept) and the target attribute which need to be specified at the conceptual
level. The result of the preprocessing chain is usually a (sub)concept (of the
base concept) and one or some FeatureAttributes on which the actual data
mining has to be finally performed.

6.1 Conceptual Case Modelling

This layer contains domain-specific classes which represent preprocessing on
a higher abstraction level than the implementation code behind (represented
within the case implementation part in Section 6.2).

6.1.1 Case

A case consists of many steps. Note that a case has to contain an attribute
documentation which describes by means of natural language what the case
does. This documentation is important for retrieving the appropriate case from
the set of already defined cases.

Supertype ModelElement
Attributes

— name: name of the case.

— case mode: a flag denoting whether the case is in training or final
mode.

— caselnput: a heterogeneous list containing Concepts, FeatureAt-
tributes, Values, Relationships representing the input for the case.

— caseQutput: a Concept representing the output of the case; it is
actually the input required by the DataMiningStep.
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— documentation: an attribute containing the description of the case.
Associations
— listOfSteps: an aggregation of the steps that build the case. Multi-
plicity 1..n.

— population: an association to a Concept (which is an element of
caselnput). The case has to be applied on this Concept; it will be
taken as parameter for RowSelection operators®.

— targetAttributes: an association to the FeatureAttribute(s) for which
the mining case is applied; It will be needed as parameter value for
many of the operators.

6.1.2 Step

Steps are parts of cases (that means, they make sense only in connection with
a case). Hach step has to be linked to a set of predecessors and successors
which are steps as well. In this way, parallelisation of operator execution is
possible because no fixe sequence is enforced, only prioritisation is specified -
that means, the operator may be executed only if its predecessors have been
executed. Each step embeds one operator. The output of the operator belonging
to the predecessor step is needed as the input of the operator belonging to THIS
step.

Supertype ModelElement(from UML)
Subtypes LoopStep, MultiStep
Attributes

— name: name of the step.

— description: an attribute describing what the step does.
Associations
— belongsToCase: an association pointing to the corresponding Case.

Multiplicity 1..1.

— embedsOperator: an association pointing to the corresponding oper-
ator. Multiplicity 1..1.

— predecessors: an association pointing to the preceding steps. Multi-
plicity 0..n.

— successors: an association pointing to the succeding steps. Multi-
plicity 0..n.

9Typically, RowSelection operators have to be used within any case specification.
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6.1.3 LoopStep

LoopStep is a special kind of Step. It allows the iteration along more than one
input element (e.g., MissingValue-Operator has to be applied to more than one
attributes and this has to be done during the same step). LoopStep may be
applied only toOperators having loopable = yes. These may be only instances
of FeatureConstruction and MultiRelationalFeature Construction. Other opera-
tors like RowSelection, FeatureSelection, TimeQOperators are not loopable. The
output description is the same as for a single operator call.

Supertype ModelElement (from UML)
Attributes

— iterationSet: a set of FeatureAttributes; for each element of the set
the operator (embedded in step) is called.

— outputSet: a set of FeatureAttributes.

6.1.4 MultiStep

MultiStep is another special kind of Step. While LoopStep is an iteration over
input elements, MultiStep is an iteration over output elements. That means, the
remainder of the chain preprocessing is applied to each of the output element
in the list. In other words, the remainder of DAG (directed acyclic graph)
that describes the case for a single output element of this (multi)step has to be
repeated for each output element. It results into a multiplication of the DAG’s
according to the number of output elements.

Supertype ModelElement (from UML)
Attributes

— iterationCondition: the condition for looping over output elements.

Note OutputSet is taken over from the Operator embedded in Step.

6.1.5 Operator

It is the superclass of all operators in MiningMart.
Abstract Yes
Supertype ModelElement (from UML)
Attributes

— loopable: a boolean attribute which may take two values, yes/no.
FeatureConstruction and MultiFeatureConstruction could be loopable
while the other ones (RowSelection, FeatureSelection, TimeOpera-
tors) are not loopable.

— numberOfinputParameters: an attribute denoting the number of in-
put parameters for this operator.
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— number OfOutputParameters: an attribute denoting the number of
output parameters for this operator.

— manual: a boolean attribute which may take two values, yes/no. If
manual = no then it is a MSL-supported operator and the tool used
has to be specified in the next attribute.

— tool: an attribute containing the call of the MSL-tool in case the
operator is not manual.
Associations
— 4nput: an association pointing to an ordered list of Parameter. Mul-
tiplicity 1..n.

— output: an association pointing to an ordered list of Parameter. Mul-
tiplicity 1..n.

— realizes: an association pointint to an ExecutionElement. Multiplic-
ity 1..1.

Since the special data mining preprocessing operators are not the focus of this
paper, we do not consider the operator classes in detail. We only give one
example in 6.1.7.

6.1.6 Parameter

Parameters are input or output values of Operators and thus may be instances of
Value, Concept, Relationship or FeatureAttributes. In this version, we modelled
Parameter as the superclass of these classes. Parameter instances may be also
updated at runtime (in case they are generated by MSL-tools).

Supertype ModelElement
Subtypes Value, Concept, Relationship, FeatureAttribute
Attributes

— name: name of the Parameter.
— place: the place of the parameter in the signature of the operator.

— ParameterType: the type of the Parameter, it may be Value, Con-
cept, Relationship or FeatureAttribute. Note that Value and Fea-
tureAttribute may have data types themselves.

Associations
— belongsToOperator: an association pointing to the Operator to which
the parameter belongs. Multiplicity 1..1.
6.1.7 FeatureConstruction

The operator FeatureConstruction creates a new feature for a concept; on the
implementation level that means a new attribute in a table or view. The new
attribute is based on one or more base attributes. The total number of data
records is the same as before the operation. Examples of feature construction
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operators are: age computation for a person by using his date of birth, com-
putation of the entry-age into an insurance contract, resp. the end-age of an
insurance contract. Scaling is a specialization of FeatureConstruction oper-
ator. The scale of numeric attributes is significant for distance-based mining
algorithms (like e.g., clustering) because attributes with larger values are more
influential on the result. To avoid this usually unintended weighting of at-
tributes, all attributes have to be rescaled, i.e., the range of an attribute values
has to be changed in such a way that it fits into a specified new range. Input
and output parameters have to be scalar BaseAttributes.

Supertype Operator
Attributes

— scaling factor: a number which is either fixed or has to be computed.
To compute the scaling factor the domain intervals for input and
output BaseAttributes are needed. They have to be read from the
data representation submodel.

Associations

— input (inherited): an association pointing to a BaseAttribute of type
Scalar.

— output (inherited): an association pointing to a BaseAttribute of
type Scalar.

— realizes (inherited): an association pointing to the corresponding
ExecutionElement which should be a StoredProcedure. This Stored-
Procedure does the scaling in accordance with the given scaling fac-
tor.

6.2 Modelling of Case Implementation

The representation of case implementation contains informations needed for al-
gorithms implementing the preprocessing operators. It also contains the links
to the data elements which are the input and output for the ExecutionEle-
ments implementing the operators. Recall that each operator instance on the
conceptual level corresponds to an instance of an EzecutionFElement. This sub-
model is necessary only if a detailed tracing of data transformations is intended.
In particular, this submodel makes sense only if the aggregation between the
TransformationGroup and Transformation is used (see Figure 9); in this case,
the TransformationGroup corresponding to an operator is broken in smaller
pieces of code and each piece represents a Transformation. Each Transforma-
tion has as input and output a DataObject which is either a ColumnSet, Column
or a Value. Note that the consideration of case implementation representa-
tion causes a proliferation of ColumnSets and Columns because information for
(temporary) Columns or ColumnSets produced by any small Transformation
has to be stored in the metadata repository. This information may be use-
ful but the developer has to be aware of what it means to collect and store
it. In contrast, if each operator is realized by a single, atomic ExecutionEle-
ment (be it a StoredProcedure, Function or SQL-Query), the conceptual and
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implementation case levels may be merged; the explicit representation of case
implementation does not bring advantages anymore.

6.2.1 ExecutionElement

Supertype ModelElement
Associations

— source: an association to the DataObject(s) which are the “source”
on which the operator is executed.

— target: an association to the to the DataObject which is the “target”
of the operator execution.

DataObject makes the connection between the two parts of the implemen-
tation level. It is a placeholder for either a Column, a ColumnSet or a Value
which are input and/or output for an ExecutionElement. Only the association
to ColumnSet is depicted in the diagram of Figure 9.

6.2.2 Transformation

A Transformation may be either a Function, a StoredProcedure or the defini-
tion of a SQL-Query (not the result). Function and StoredProcedure have as
attribute nameOf which is the name of the function or StoredProcedure that
contains the implemented code. Signature contains the signature of the called
function or stored procedure. SQL Query contains (at least) three attributes:
- select contains the specification of what has to be selected in the query (i.e.,
the list of columns),

- from specifies the tables or views of which has to be selected

- where specifies the conditions for selection

For the operator Scaling considered above (see Section 6.1.7), there is at least
an instance of the class StoredProcedure (let us call it Scaling as well). The
Stored Procedure instance contains only the call of the PL/SQL procedure. The
code itself is managed by the database software and look as follows:

PROCEDURE Scaling(Interval LowRangeInput REAL,

Interval HighRangelInput REAL, Interval LowRangeQOutput REAL,
Interval HighRangeOutput REAL,

NewColumn REAL, OldColumn REAL)

IS

ScalingFactor REAL;

BEGIN

ScalingFactor = (Interval HighRangeOutput — Interval Low RangeOutput) /
(Interval HighRangelnput — Interval LowRangeInput)

SET NewColumn AS Interval LowRangeQutput +
ScalingFactor(OldColumn — Interval LowRangelInput)
RETURN;

END Scaling
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The DataObject instance as “source” of this EzecutionElement is the value of
OldColumn and the “target” is NewColumn. Note that Transformations works
with implementation data types like REAL, INTEGER and not with (concep-
tual) mining types (e.g., SCALAR, NOMINAL, BINARY). Moreover, note that
the procedure above could be “broken” in smaller code modules, e.g., Scaling
could call a function ComputeScalarFactor which would be then an instance
of the class Function. In this way, the implementation of operators could be
better tracked and maintained.

7 Conclusion

This paper presents first ideas of a metamodel design for a metadata-driven
software package performing preprocessing for data mining. In the course of
software development, metamodel changes have to be expected. However, the
main features derived from the four part distinction (data/case modelling vs.
conceptual/implementation representation) should be preserved.

Using metadata-driven software is particularly beneficial if enterprise-wide
integration of metadata is planned. There are currently two groups proposing
metamodel standards to store and exchange metadata within the data ware-
housing area: Object Management Group (OMG)!® and Meta Data Coalition
(MDC)!t. The OMG standard CWM (Common Warehouse Metamodel)[7] is
restricted to (technical) metadata for data warehousing, whereas the MDC stan-
dard OIM (Open Information Model)[6] is much broader in scope, covering, be-
sides data warehousing, also aspects like business engineering (business rules,
business processes etc), organizational elements, object-oriented analysis and
design etc. A unification of the two standards has been recently announced'?
and will emerge in a new release of CWM. In the future, the metamodel pro-
posed in this paper has to be eventually integrated with the new standard
expected to be the unique representation and exchange modality for metadata
in data warehousing.
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