
Car: The Class Archive Format

Denis N. Antonioli

Technical Report 2001.01
January 2001

Department of Information Technology, University of Zurich
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

<antonioli@ifi.unizh.ch>
he
ppli-
ive

ion
-

m
, it

in
the

ire
m-
fast
be

r-
of
a
er

or-
both
ls.
t it

k,
ar
ar
he

lass

1.
e-
iver
“If I eat one of these cakes,” she thought, “it’s sure to
make some change in my size; and, as it can’t possibly
make me larger, it must make me smaller, I suppose.”

Lewis Carroll, Alice’s adventure in wonderland

ABSTRACT

A Java application is built of a large number of Java class files,
which are collected and compressed in Java archive (jar) files.
But the jar files typically shrink original class files by only fifty
percent. Various projects have pursued ever smaller class files
and they achieved very impressive results, but these results
come at the cost of complicated and slow transformations. The
class archive (car) format is an alternative for groups of class
files. Car files are between one third and two thirds of the size
of the corresponding jar files and between one seventh and one
half of the size of the original class files. Although there are
more compact archive formats, the car tools themselves are
smaller and take far less time than the alternatives. This article
also introduces a method to compare wire formats. The method
does not only consider the size of the archive but also the band-
width and the decompression speed. This method demonstrates
that car is a better archive format in many situations.

Keywords

object file, object file compression, wire format, class file,
reflection, customClassLoader , Java.

1 INTRODUCTION

Dynamic linking is an often overlooked main feature of Java:
Every class is managed independently of the others and the Java
Virtual Machine loads them as the need arises. This gives an
extraordinary amount of flexibility to the developer, as he can
easily replace any classes, but the consequence is that Java
binaries are composed of a large number of class files, which
are predominantly small or even very small.

This proliferation of files hinders the distribution of the devel-
oped application: As each file has to be transmitted separately,
their large number affects the communication delays. A large
number of class files also increases the storage requirement, in

memory or on the file system. In Java 1.1, Sun introduced t
Java archive as a mean to aggregate the components of an a
cation, its class files and the other resources. The Java arch
format can compress its content as well, but the compress
ratio achieved is not very good. Typically, the Java archive com
presses the class files to about half their original size.

An important aspect of Java is the distribution of the progra
over a network or a slow communication channel. In this case
is interesting to develop a program representation that results
faster transmissions, even if the receiver has to decompress
program before executing it. Such a format, also called a w
format, has to reconcile three goals: (1) the format has to co
pact as much as possible, yet (2) the format has to expand
and (3) its decoder has to be small, if the decoder has to
transmitted with the compacted program.

This article presents the class archive (car) format, a wire fo
mat for archives of class files that is on the average one third
the size of the original class files. The class archive is not
replacement for the Java archive, which usually contains oth
kinds of data, and they can be used together. Although this f
mat does not achieve the smallest size, the decompressor is
noticeably smaller and faster than all the other existing too
This advantage does not result from clever programming bu
is inherent in the approach taken.

2 TOOLS AND BENCHMARKS

Concurrently with the definition of this new format, I wrote a
prototype implementation of the tools necessary to pac
unpack and load in the Java Virtual Machine the content of c
archives. The tools require Sun’s JDK 1.2. To create c
archives, the tool has to perform simple transformations of t
class files; the libraryJavaClass [5, 6] provides all the meth-
ods necessary to read, parse and write the content of the c
files.

I tested the new format on the applications listed in Table
Along with their names and a short description, the table pr
sents the compression ratios achieved with Sun’s Java arch
and gnu’s gzip, a popular, all-purpose compression tool.

i-
of

the

a-
re
00
t of

an
nd
a-
al

].
he
ore

3

7

d with
3 THE CANONICAL ARCHITECTURE

The distribution and the execution of Java applications build
upon three pillars: The Java class file, the Java archive and the
ClassLoader . The Java class files are the individual compo-
nents of the application, the Java archive groups these compo-
nents in a single file and theClassLoader brings them into
memory.

3.1 The Java Class File
The Java class file is the compiled representation of a Java class.
According to the specification [16], the class file holds three
kinds of information. The class file contains the information
that is necessary to execute the class, that is the definition of the
class with its bytecode. The class file also contains the informa-
tion that is necessary to link the class, that is all the references
to other classes and all the references accessible from other
classes. These first two categories encompass the required con-
tent of the class file: Without this content, the class would not
be recognized by the Java Virtual Machine. Finally, the class
file may contain any supplementary data, such as debugging

information, or support for language extensions [21, 23]. Typ
cally, tools make use of this last category to cache the results
code analyses or to supplement the information available to
run-time system.

Analysis of class files [1] measured the size of files; Java bin
ries are mainly made of small files: 50 percent of the files a
smaller than 2’000 bytes and 80 percent smaller than 6’0
bytes. The same analysis found on the average eight percen
the file taken by unnecessary information.

3.2 The Java Archive
The Java archive groups together the files needed to run
application. The Java archive is not restricted to class files, a
it may also contain any kind of data: Resources for the applic
tion, such as images, or meta-information for the Java Virtu
Machine, such as certificates for the security manager.

The format of the Java archive builds upon the zip format [22
This format stores both the description and the content of t
archived files, and this allows the decoder to extract and rest

size
[byte]

compression
[% of raw size]

benchmark raw jar jar0.gz jar jar0.gz description vers.

200 40’381 23’651 17’208 59 43 SPEC: Test features of the JVM 1.03

201 17’821 11’451 6’270 64 35 SPEC: Modified LZW compress 1.03

202 396’536 182’969 85’403 46 22 SPEC: Java Expert Shell System 1.03

205 57’000 30’810 21’077 54 37 SPEC: ray tracing 1.03

209 10’156 6’106 5’058 60 50 SPEC: database 1.03

213 1’955’030 1’134’101 751’358 58 38 SPEC: Sun’sjavac (jdk 1.0.2) 1.03

222 120’182 67’308 46’103 56 38 SPEC: mpeg audio decompressor 1.03

227 859 895 728 104 85 SPEC: driver for benchmark 205 1.03

228 130’889 74’002 51’924 57 40 SPEC: Java parser generator Jack 1.0

999 5’899 4’023 2’937 68 50 SPEC 1.03

cs 1’851’883 1’181’008 753’738 64 41 Crédit Suisse: Internet banking 1.4.0

hotjava 1’975’655 1’115’681 804’372 56 41 Sun: Web browser 3.0

JavaCC 783’731 371’216 311’719 47 40 Metamata: Parser generator 1.0

JavaClass 446’493 279’569 150’657 63 34 Bytecode engineering library 3.2.

jdk-swing 157’480 84’560 49’019 54 31 Sun: Swing 1.2.2

jdk-tool 1’735’412 925’727 674’558 53 39 Sun:javac , javadoc , … 1.2.2

jgl 874’244 355’397 179’677 41 21 ObjectStore: Java Generic Library 3.1.0

jre-i18n 5’464’618 2’974’146 2’688’584 54 49 Sun: Internalization library 1.2.2

jre-rt 10’001’194 5’927’797 3’824’231 59 38 Sun: Run time 1.2.2

jws 6’013’281 3’199’604 2’429’377 53 40 Sun: Java Workshop 2.0

Table 1: Benchmarks Used and Compression Achieved with Popular Tools
The columnraw is the sum of the sizes of all the class files, as they are distributed. The columnjar is the size of a Java archivea that contains only these
classes; they are individually compressed. For the columnjar0.gz, the classes are grouped uncompressed in a Java archive that is then compresse
gzip. The fifth and sixth columns show the compression achieved in these two cases as a percentage of the original size.

a. The jar files were produced with zip, for speed and convenience.
2

ti-
ree
ion
]
of

s-
all

and

f
be
in
In

ion
tri-

:

sor
m-

the
f

e
er
ib-
d

n a
ssi-

nd
ple
r-
h
t

than

e
r-
ble
dth
any individual archive member. The member files may, option-
ally, be compressed. In this case, they are compressed individu-
ally, in order to grant fast access to any member file. However,
this independent compression holds down the compression ratio
because it limits the scope of investigation for the compressor
to one file and this file is, in the majority of the cases, small.

3.3 The ClassLoader
TheClassLoader brings class files into memory whenever
the Java Virtual Machine needs the definition of a new class.
TheClassLoader does not internalize the data, it does not
consider the content of the class file, it merely locates the defi-
nition of the class file, reads the bytes into memory and handles
them to the security manager of the Java Virtual Machine. This
latter component will check their correctness and build an inter-
nal representation of the class for the interpreter.

TheClassLoader itself is a Java class and the Java Virtual
Machine can be extended with newClassLoader s. Although
the intention of Sun was for newClassLoader s to define
other search strategies, such as theSecureClassLoader ,
this mechanism also allows the introduction of other formats for
the class file. Indeed, the Java Virtual Machine is only con-
cerned with the bytes delivered by theClassLoader , not
those in the file.

4 RELATED WORKS

The search for smaller program representations proceeds along
three independent directions: The pruners, the semantic com-
pressors and the syntactic compressors.

The pruners pare down the content of the class files. Through
different analyses, they determine which parts are actually
needed during the execution of the application and remove all
the other parts. Whereas the first tool described, JDistill [17],
restricted itself to class members, methods or fields, more
recent tools, such as Jax [20], also transform the class hierarchy,
collapsing or removing classes that are not directly used. These
tools give reduction of 17 to 32 percent and are best used right
before archiving the application.

The semantic compressors of the object file try to determine an
other instruction set which encodes the same program with less
bytes. The general idea is to replace recurring instructions
sequences with super-operators. Proebsting et al. [18, 11]
present an iterative algorithm to select an optimal set of super-
operators for a given program. With this process, every applica-
tion is written with its own dedicated instruction set and needs a
custom interpreter. Franz [10] and Kistler [15] propose to rec-
ognize patterns of instructions and to encode them with a
dynamic dictionary. Semantic compression is typically limited
to the instructions sequences and does not handle the rest of the
object file, such as the constants.

The syntactic compressors consider the structure of the program
instead of its content and attempts to detect the redundancy
there. The transformation of the class name presented in
Section 5.2 is a good example: It is entirely based on the gram-

matical definition of the Java identifier and not on some statis
cal analysis. Eck et al. [8] propose to compress the syntax t
of the Java source. Corless [4, 13] established the foundat
for the compression of single class files. Bradley et al. [3
extend this to groups of class files. They introduce the idea
sharing theConstantPool between classes. Further along
this path, Pugh [19] builds withpack a completely new data
structure to represent a set of class files.

5 THE CAR APPROACH

I designed the car format with the twin objectives of compres
ing more than the standard Java archive and of having a sm
and fast decompressor. This section details these goals
explains the techniques I used in achieving them.

5.1 Goals
The aim of car is to become a wire format for the distribution o
Java applications. Wire codes [9] are codes “that need not
interpreted directly but can be at least partly decompressed
an interpretable form or even compiled before they are used.”
this case, a customClassLoader expands the content of the
car file into the format expected by the Java Virtual Machine.

As with the Java archive, car is to be used once the applicat
leaves the realm of the developers and is packaged for the dis
bution. One can make at this time the following assumptions

• as this step occurs infrequently, the speed of the compres
is much less important than the performance of the deco
pressor;

• the aggregation of many classes becomes an entity, and
revision of the entity subsumes the individual revisions o
the classes;

• the application has been exhaustively debugged.

The Java Virtual Machine has hefty requirements, so th
decompressor will certainly have sufficient processing pow
and memory at disposal. But the applications are often distr
uted over a medium with limited bandwidth, be it a congeste
network or a modem. The size of the transmitted data is the
decisive factor and the car archives want to be as small as po
ble.

Finally, the decompressor for car wants to stay as simple a
lean as possible. The decompressor is built around a sim
ClassLoader and it does not require changes to the Java Vi
tual Machine. The decompressor itself will be distributed wit
the application, so its size is an important factor. It would no
make sense to use car if the decompressor took more space
was saved by the compression.

5.2 Reduce the Meta-Information
A car file is an archive, which Howes [14] defines as “a singl
file containing one or (usually) more separate files plus info
mation to allow them to be extracted (separated) by a suita
program.” The intended usage of the archive shapes the brea
of these meta-information.
3

his
to

of
oth
tio

re
ing
ion
h-
t

eir

:

ey
’s
py

pal
m-

its
e
ces.
nit

ed
ion
ref-
ith a
d

e 1
al
Zip, upon which the Java archive format is built, is in this regard
a backup tool. Zip is not only interested in restoring the content
of the member files, but also all the file system attributes, such
as the creation date or the owner of the file.

In a car archive, the meta-information consists of only two ele-
ments: The name and the size of the member class. The name is
required to identify the correct class file member in the archive,
and the size is needed to bound it. It would in theory be possible
to leave out even these two items because they are already
present in the class file itself. I left them in, as omitting these
two elements requires theClassLoader to completely parse
the class file, and parsing the class files has three adverse
effects:

• the ClassLoader becomes larger because it needs its
own code to parse the class file;

• theClassLoader becomes slower because it has to parse
the class file;

• the work performed by theClassLoader will be redone
by the Java Virtual Machine, which expects an array of
bytes and not some internalized structure.

The names of the member files are at the same time the names
of the Java classes, which means that they abide by a very strict
grammar (Code 1). In particular, the fact that the names are
taken out of a restricted alphabet enables their further compac-
tions.

Car compresses the class names with a simple three-steps dic-
tionary coder. Car first sorts lexicographically all the names,
taking care to group the inner classes after their enclosing class.
Car then takes advantage of this proximity and rewrites the
name of the inner class with a colon and just the name of the
inner class; the colon means “this is an inner class of the pre-
ceding top level class.” Finally, car numbers the packages
sequentially as they come and replaces further occurrences with
a dot followed by the sequence number of the first appearance
of a package.

This description calls for two comments. First, the productions
of Code 2 use illegal characters, the dot and the colon, to extend
the productions of Code 1; it is hence always possible to mix
compac ted and un-compac ted name. Second , the
knownPackageIndex is coded as a Unicode character; this
allows to elegantly introduce the index into the name but at the

same time restricts car archive to packages. Although t
should be sufficient for any application, it is always possible
split the archive.

To judge the effect of this transformation, I measured the size
the Utf8 encoding of all the class names in the benchmarks b
before and after the conversion. The median compression ra
is 52 percent and the extrema are 36 and 79 percent.

5.3 Strip the Classes
The class files typically contain additional informations that a
not required to execute correct Java applications but help dur
the development stage. As car is to be used for the distribut
of applications, these parts of the file can be thrown away wit
out incurring any loss of functionality. Note that this does no
prevent further developments with these classes, only th
debugging or their integration in some tools.

I stripped the classes by performing the following operations

• Remove all but the Code, Exceptions and
ConstantValue attributes.

• Rid theConstantPool of all unreferenced entries.

• Sort theConstantPool by the type of the entries.

• Sort lexicographically theUtf8 s.

Pugh presented the idea for the last two operations [17]. Th
did not prove very effective in classes compiled by Sun
javac , but I kept them as safeguard against other, more slop
tools.

5.4 Compress the Classes Together
The third step writes and compresses the car file. The princi
advantage of car over jar comes now: Car submits all its me
ber files together to the compression engine whereas jar subm
every member file individually. That the member files ar
grouped together instead of separately has two consequen
First, the compression engine wraps every compression u
with initialization data for the decompressor, which is repeat
with every member of a Java archive file. Second, compress
is performed by replacing repeating sequences of bytes by a
erence to a previous occurrence of the same sequence. W
larger input, the likelihood to find repetitions is also greater an
the compression is consequently more effective.

className
packageName javaName
innerClassName.

innerClassName
{ ‘$’ javaName }.

packageName
{ javaName ‘.’ }.

javaName
JavaLetter { JavaLetter | Digit }.

Code 1: Java Grammar for the Names of Classes
Java uniquely identifies the classes with their fully qualified names. See
Gosling [12] § 3.8 for the definition of the terminalsJavaLetter and
Digit .

className
(packageName javaName)
| innerClassName.

innerClassName
‘:’ javaName { ‘$’ javaName }.

packageName
[‘.’ knownPackageIndex]
{ javaName ‘.’ }.

Code 2: Car Grammar for the Names of Classes
The production of this grammar extends and supplants those in Cod
to take advantage of the packages’ structure. The termin
knownPackageIndex is the (short) index of another class in the
same package.

2
16
4

is
f

ive
es.
th
ive.
cut-
nd

ar

nvi-

he
is

p
he
he
to

gu-
he
ide

2)

r

ava
nt
The structure of the file is given in Code 3. A very short header
identifies the file type and version of the format; it is followed
by a series of file members. Each member consists of its coded
name, its uncompressed length and the content of its class file.
The single character ‘]’, which is an illegal Java name, marks
the end of the archive. The resulting byte stream is compressed
with the zip library.

6 INTEGRATION IN THE JAVA VIRTUAL

MACHINE

Car integrates with the standard Java Virtual Machine at two
places, to create car archives and to execute the packed applica-
tions directly out of the car archive.

The toolCar 1 manages the car archives. It is similar in fuction-
ality with Sun’sjar tool. Car is a Java application that packs a
set of class files into an archive, or extracts the content of an
archive to conventional class files.Car can read and write the
class files as individual files or as members of a Java archive.
The tool contains 17 classes, for a total size of 34’799 bytes.
Packed itself into a car archive, the tool has just six files and
20’311 bytes.

To execute an application packed in an car archive, the Java Vir-
tual Machine must look for the classes in three different places:
The classes can be compressed in a car archive, they can be
packed in a Java archive or they can stand alone as a set of class
files. Furthermore, the classes of an application can be distrib-
uted simultaneously in different formats, maybe for a part in a
car archive and the rest in a Java archive. Thanks to the standard
class loader, the Java Virtual Machine knows how to look in the
usual Java archives and class files, but it needs a custom
ClassLoader to access to the content of the car archives.

A small Java application,Run, functions as a bootstrap loader
for the car format.Run instantiates aClassLoader for the
car format and asks it to search for the main class in a given set
of car archives. TheClassLoader further delegates the

search to the default class loader to look in the standard places2.
Run then uses the reflection API to call themain method with
the correct arguments and hence launches the application. Fur-

ther requests for classes will automatically route through th
customClassLoader , hence providing access to the rest o
the car archive. TheClassLoader and the launcher applica-
tion contain together five classes and are 8’219 bytes.

The car archive format is not a substitute for the Java arch
format but a more efficient way to compress the Java class fil
It is consequently still useful to pack the car archives along wi
the bootstrap loader and other resources in a Java arch
Among other advantages, the Java archives are directly exe
able on some platforms (see the fourth example in Code 4) a
they should not lose this property when they contain c
archives.

When asked to execute a Java archive, the Java run-time e
ronment launches the class identified by theMain-Class
attribute of the manifest file with the arguments specified on t
command line. If the Java archive contains car archives, th
Main-Class attribute must necessarily identify the bootstra
loader. But the bootstrap loader still needs the names of t
actual main class and of the set of car archives to search. T
third example in Code 4 shows the command line necessary
employ the bootstrap loaderRun: The two arguments are
inserted between the name of the Java archive and the ar
ments of the application. This is not satisfactory because t
name of the main class, which was neatly stashed away ins
the manifest, is now exposed on the command line.

carFile
cookie version
{ className length classFile }
‘]’.

cookie
0x53736172. -- ASCII ‘Ssar’

version
0x0100. -- major.minor

length
u8.

Code 3: Structure of an Car File
Car files are reduced to the name, the size and the content of the class.
The length of the size is encoded in a long, writtenu8 .

1. Unless explicitly specified, all the classes belong to the packageli.antonio.car .

2. The different versions of Java define how and where the classes are searched with mechanisms such as theCLASSPATH variable.

1.
java fully.qualified.class.name arg0

arg1 ...

2.
java li.antonio.car.Run fqcn.car

fully.qualified.class.name arg0
arg1 ...

3.
java -jar fqcn.jar fqcn.car

fully.qualified.class.name arg0
arg1 ...

4.
java -jar fqcn.jar arg0 arg1 ...

5.
java -jar zip.jar -car zip arg0 arg1 ...
java -jar zip.jar -car unzip arg0 arg1

...

Code 4: Launching Java Application
The code demonstrates four ways to launch the applicationname in
the packagefully.qualified.class with the two arguments
arg0 andarg1 . The application is present (1) as a set of class files, (
in the car archivefqcn.car . In (3), the car archive is packed into the
Java archivefqcn.jar with a simple bootstrap loader. In (4), the ca
archive is packed into the Java archivefqcn.jar with the enhanced
bootstrap loader. (4) has the same syntax as with a traditional J
archive. Finally (5) shows how aliases allow to access differe
applications packed in a Java archive.
5

n
At
ces
ro-
ir-
e

s-
ng
an-
-
l

es

ce

ly
not

hat
the
un-
he

at.
the
the
n-

. In
e

-

for-

ly
gle
an-
sult

on
a-

e

The solution to this problem is the introduction of a second
manifest, acar manifest, stored in the file CAR-INF/MANI-
FEST.MF in the root directory of the Java archive. The primary
function of this manifest is to identify the main class and the car
archives needed to execute the application. Two further func-
tions came during the development of this format. First, the
manifest allows for the bootstrap loader to identify alternate
applications. This is a practical feature when a set of small
applications are build upon the same library; for example, the
zip and unzip tools wrap around the zlib library. In that case, the
library and all the applications can be distributed in a single
Java archive. Second, the manifest recognizes aliases for the
names of the class files. This feature lets invoke the application
with short identifiers instead of the fully qualified class names.

The car manifest follows the syntax defined by Sun [7] and is
compatible with the classjava.util.jar.Manifest , but
it has other attributes. The main attributes identify the applica-
tion called per default. The other attributes either map an alias
name to a fully qualified class name or they identify alternate
applications stored in the Java archive. The fully qualified name
of the main class and the set of car archives required identify
each application.

The bootstrap loaderJarRun performs the same function as
Run, butJarRun gets its arguments from the manifest instead
of the command line. WithJarRun installed in the Java
archive, the invocation of the default application looks like the
fourth example of Code 4. In the fifth example,JarRun gets
from the optioncar the alias of an application stored in the
Java archive;JarRun uses the manifest to map this alias to a
class name. This example posits that the zip and unzip applica-
tions are both thin wrappers around a common library.

7 SECURITY CONSIDERATIONS

The integration of the security in the run-time environment is
one the strong features of Java. It is also important to consider
the influence of this new archive format and, in particular, of the
self executing archive, on the security of the system.

In Java 2, the security results from the combined action of dif-
ferent mechanisms. As the classes are loaded, the bytecode ver-
ifier checks their correctness, which effectively prevents

malicious code to execute. The Java Virtual Machine the
checks the behavior of the application during its execution.
the lowest level, it prevents direct access to important resour
and controls the access to all the resources. Finally, Java p
vides an authentication architecture, which allows the Java V
tual Machine to relax, or tighten, its policy according to th
application provider.

Corless [4] identifies next to the lossless and lossy compre
sions a third kind of compression: The semantically-preservi
compression. A file that is packed and unpacked with a sem
tically-preserving compression algorithm is not bit-for-bit iden
tical with the original, but it acts the same. Car is a typica
semantically-preserving compression tool: Car remov
attributes from the class file, reorders theConstantPool ,
and eventually rewrites the bytecode, yet it does not influen
the execution of the application.

The bytecode verifier and the low-level access control are on
concerned with the semantic of the application, so they are
affected by the compression.

The authentication architecture rests on digital signatures t
rely by nature on the specific byte sequences. This part of
security system is not supported yet by car, but there are no f
damental hurdles to the integration of car archives into t
authentication architecture.

8 RESULTS

This section presents experimental results for the car form
The experiments study the compression ratio achieved and
speed of the decompression. In order to better appreciate
efficacy of car, the section also reports the results for the sta
dard Java archive and the best available compressor,pack(see
Section 4).

8.1 Compression size
Table 2 presents the size of car archives for the benchmarks
the table,car are archives which are simply compressed. Th
members of thesorted cararchives are first stripped of unnec
essary content and theirConstantPool reordered. The best
available compressor,pack, shows the bottom limit. The table
also reports the compression ratios of these three archive
mats against uncompressed class files (raw) and against com-
pressed Java archives (jar). The reference sizes are in Table 1.

The average compression of the simple car format is 38± 10
percent of the original size and 65± 12 percent of the equiva-
lent Java archive file. This second improvement comes sole
from the compression of all the archive members as a sin
stream, which offers the compressor more potential redund
cies. Stripping the classes and sorting their constant pools re
in even better compression of 30± 9 percent of the original size,
respectively 51± 11 percent of the Java archive.

Compared to pack, the car format produces larger archives,
the average 197± 62 percent. The more elaborate transform
tions performed by pack are incontestably superior to th

Manifest
Default { \n Alternate }

Default main attributes
MainClass

Alternate
Alias | MainClass

Alias Name1 is an alias for Name2
‘Name: ’ Name1 \n
‘Alias:’ Name2

MainClass
‘Name:’ Name \n
‘Path:’ Name { Name }

Code 5: CAR-INF/MANIFEST.MF
The manifest identifies the main class; it also maps names to class and
car archives;aliases let different names be synonymous.
6

ents

ess
he
ery
the
m-

lass

7

5

6

4

9

0

8

58

4

6

7

ry
approach advocated in car, but the next section will show that
the higher compression comes at a considerable runtime pen-
alty.

8.2 Decompression Speed
This section compares the influence of the three formats on the
execution time. The compression of applications is a classic
asymmetric process. The compression ends the development
cycle and occurs hence infrequently. On the opposite, the
decompression is the first step of every execution; it occurs

often and its speed matters. Consequently, this section pres
only the decompression performance.

For the Table 3, I measured the time necessary to decompr
each of the archive formats into memory; the table shows t
averages and the standard deviations of three runs for ev
cases. Beside the execution time, the table also gives
decompression speed, which is defined as the size of the co
pressed data divided by the time needed to re-establish the c
files in memory.

size [byte] against jar0 [%] against jar [%] against pack [%]

benchmark car sorted car pack car
sorted

car pack car
sorted

car pack car
sorted

car

200 16’618 12’559 7’176 41 31 18 70 53 30 232 175

201 5’818 5’341 2’876 33 30 16 51 47 25 202 186

202 80’389 58’699 23’063 20 15 6 44 32 13 349 255

205 20’125 14’698 7’274 35 26 13 65 48 24 277 202

209 4’875 4’798 2’890 48 47 28 80 79 47 169 166

213 719’916 531’951 191’775 37 27 10 63 47 17 375 27

222 44’579 43’182 22’161 37 36 18 66 64 33 201 19

227 583 475 377 68 55 44 65 53 42 155 12

228 50’250 34’216 16’742 38 26 13 68 46 23 300 20

999 2’754 1’844 1’178 47 31 20 68 46 29 234 157

cs 711’854 674’529 225’509 38 36 12 60 57 19 316 29

hotjava 782’986 591’297 846’819 40 30 43 70 53 76 92 7

JavaCC 308’323 209’334 105’714 39 27 13 83 56 28 292 19

JavaClass 144’743 118’766 46’073 32 27 10 52 42 16 314 2

jdk-swing 47’326 29’688 28’423 30 19 18 56 35 34 167 10

jdk-tool 662’736 505’758 245’637 38 29 14 72 55 27 270 20

jgl 168’088 162’031 61’469 19 19 7 47 46 17 273 264

jre-i18n 2’614’042 2’157’605 1’846’200 48 39 34 88 73 62 1429 11

jre-rt 3’683’179 2’713’534 1’109’347 37 27 11 62 46 19 332 245

jws 2’375’137 1’575’787 640’612 40 26 11 74 49 20 371 246

Table 2: Compression Ratios
The table presents the compression ratios of the proposed approach and compares them to the more radicalpack. The columncar reports the results
when all the classes are only compressed with the zlib library; for the columnsorted car, the classes are first filtered to remove the supplementa
information and their constant pools are sorted to offer more and better opportunities to the compressor.

time [ms] speed [kByte/s]

benchmark jar sorted car pack jar sorted car pack

200 54± 20 39± 2 407± 49 473± 144 323± 17 18± 2

201 33± 2 43± 17 731± 374 344± 16 136± 45 5± 3

202 251± 2 108± 1 741± 13 724± 4 542± 6 31± 1

205 55± 1 42± 1 405± 1 562± 6 350± 8 18± 0

Table 3: Timing the Decompression
The table presents the run time and the speed of the three approaches considered, the traditional Java archive (jar), the compactpackand the proposed
car format. The results are the averages and the standard deviations measured for three runs of each test case.
7

r as

her
unt
er

e
ack
The comparison of the execution times shows that pack is the
slowest decompressor. This is a consequence of the compli-
cated transformations that produced the excellent compression
ratios. For short bout of time, less than 50 ms, jar is the fastest
decompressor, after that, the car decompressor leads. The com-
parison of the decompression speeds confirms that pack is one
order of magnitude slower than jar and car. The comparison
also tells that car is slightly slower than jar.

Figure 1 illustrates this fact and it explains the times measured:
For small files, the Java archives and the car archives are about
the same size and the jar decompressor finishes first. But as
soon as the files get larger, car compresses more efficiently and
the car decompressor has markedly less data to handle. That is
why the car decompressor is then faster overall.

9 DISCUSSION

The Table 4 summarizes the relevant characteristics for a wire
format: The compression ratio, the size of the decoder and the
decompression speed. It is at once apparent that pack produces
the smallest files but also that pack’s decoder is slower and
larger. How these factors combine is not so apparent and will be
investigated in this section.

The elapsed time between the request for an archive and its

delivery is a function of the transmission time and the

decompression time (Equation 1). I omit factors such as

the transmission setup time or the seek time on the serve
they are constant for the three archivers.

(EQ 1)

The speed of the link and the amount of data determine toget
the transmission time. The choice of an archiver sets the amo
of data transmitted through the size of the archive read

209 23± 1 31± 4 310± 1 273± 7 158± 18 9± 0

213 1’021± 62 638± 15 4’545± 108 1’107± 69 834± 20 42± 1

222 102± 2 59± 1 709± 32 655± 15 736± 14 31± 1

227 18± 1 26± 1 265± 3 56± 2 18± 1 1± 0

228 100± 1 65± 0 625± 1 737± 7 526± 0 27± 0

999 21± 1 29± 1 287± 4 199± 6 64± 2 4± 0

cs 1’248± 5 612± 6 6’235± 22 937± 4 1’102± 11 36± 0

hotjava 1’046± 133 615± 75 6’064± 573 1’078± 130 971± 121 140± 13

JavaCC 280± 7 176± 1 2’951± 644 1’324± 32 1’192± 4 37± 7

JavaClass 454± 7 200± 1 1’355± 18 618± 10 595± 3 34± 0

jdk-swing 92± 11 73± 16 917± 241 931± 107 421± 84 32± 8

jdk-tool 735± 47 486± 28 4’517± 286 1’264± 78 1’043± 60 55± 3

jgl 423 ± 6 233±2 2’743 ± 79 835± 11 694± 5 22± 1

jre-i18n 1’821± 242 1’399± 128 nana 1’655 ± 239 1’552± 150 nana

jre-rt 4’959± 327 3’259± 214 25’443± 1’638 1’197± 76 835± 53 44± 3

jws 2’065± 5 1’345± 96 13’630± 535 1’544± 3 1’176± 80 47± 2

a. The unpacker aborted with ajava.lang.IndexOutOfBoundsException during the decompression of this application.

time [ms] speed [kByte/s]

benchmark jar sorted car pack jar sorted car pack

Table 3: Timing the Decompression
The table presents the run time and the speed of the three approaches considered, the traditional Java archive (jar), the compactpackand the proposed
car format. The results are the averages and the standard deviations measured for three runs of each test case.

ttrm

tdec

Figure 1: Comparison of the Decompression Times
The Java archive (jar) and car formats decompress at about the sam
speed, but car archives are smaller, so car is faster overall. The p
archives are more complex and their decoding is markedly slower.

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7

D
ec

om
pr

es
si

on
 ti

m
e

[s
]

Archive size [MByte]

jar
sorted car

pack

t ttrm tdec+=
8

l-
/s.
va
en
e,

ms
/s,
he
t
an

ant

ee
he
ore
ies

he
on

he
em
sizeof(dec) and the size of the uncompressed archive, which is

the compression factor time the overall size of the archive
members (Equation 2).

(EQ 2)

The decompression time is simply the overall size of the archive

members div ided by the decompressor ’s speed

(Equation 3).

(EQ 3)

With these definitions and the values summed up in Table 4, the
Equation 1 allows an objective comparison of the archivers.

This equation identifies three characteristics of a wire format,
which are its compression factor, the size of its decompressor
and the decompression speed. The investigation will hence first
find out how important these characteristics are. The answer to
this question should tell which parts of a new format are impor-
tant to optimize.

Under the assumption that the communication channels are
always getting faster, the Equation 4 shows that the time differ-
ence between two archivers, indicated with the superscripts one
and two, is determined by the ratio of the compression factor
over the decompression speed: The smaller the ratio, the faster
the system is overall. With the results reported in Table 4, car
has a ratio of 5, Java archive 7 and pack 54.

(EQ 4)

Of course, the speed of the communication channels is hardly
ever infinite and the behavior of the three formats under various
speeds is important for the selection of a format. Figure 2 and
Figure 3 show the overall decompression times for the three
formats studied for two possible application domains. In both
figures, the Java archive benefits from being a standard part of
Java; as such, it is always included in the run-time system and
does not need to be transmitted. For the other two formats, all
transmissions have to include the decoder and this offsets the
two lines upward.

The first application domain for a wire format are systems with
a very slow communication channel. As an example for such a

system, I offer in Figure 2 GSM, the European standard for ce
lular phone; GSM transmits digital data at a speed of 9.6 kbit
At this speed, the three formats have an utility. The Ja
archives are best for applications smaller than 29 KByte, th
the car format is the fastest for applications up to 389 KByt
after which the pack format is faster.

The second application domain considered are all the syste
that are connected through a plain analog modem. At 56 kbit
which is the highest standardized speed for a modem, t
Figure 3 shows an important difference: The car forma
achieves the fastest transmission for all the archives larger th
28 KByte. The decompression speed is already the domin
factor for this connection speed.

Where are then the optimal application domains for the thr
formats? The Equation 1 can answer this question too. As t
connection slows down, the transmission rate becomes m
and more important. The Equation 5 calculates the boundar

jar pack car

Median compression ratio [% of raw] 57 18 30

Size of decompressor [KByte] 0 36 8

Median decompression speed [KByte/s] 826 33 663

Table 4: Characteristics of the Archive Formats
The table lists the three main features of the Java archive (jar), pack and
car formats.

k

ttrm
dec()sizeof k members()sizeof+

vtrm
---=

vdec

tdec
k members()sizeof

vdec
--=

t
1

t
2

–
vtrm ∞→

lim k
1

v
1

dec

---------- k
2

v
2

dec

----------–
 
 
 

members()sizeof=

Figure 2: Decompression Time Over GSM
The figure plots the estimated time for the transmission and t
decompression of archived application over a GSM communicati
channel. GSM transmits digital data at 9.6 kbit/s.

Figure 3: Decompression Time Over a Modem
The figure plots the estimated time for the transmission and t
decompression of archived application over a modem. The V.90 mod
standard transmits at up to 56 kbit/s.

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450 500

T
im

e
[s

]

Archive size [KByte]

jar
car

pack

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400 450 500

T
im

e
[s

]

Archive size [KByte]

jar
car

pack
9

ady
the
n.
e
ack
d

hi

t

-

,
e

of

es

en

o-
n

-
e

of the three domains. At the limit, for an hypothetical transmis-
sion speed of zero bit/s, Java archives are best for applications
smaller than 29 KByte and pack archives are best above 233
KByte; in between, car is the better format. A simple computa-
tion also finds pack slower than the car format for all connec-
tions faster than 24 kbit/s; pack is also slower than the Java
archive above 82 kbit/s.

(EQ 5)

10 CONCLUSION

I presented in this article a new wire format for archives of Java
class files. Whereas others have elected to achieve the smallest
possible file and completely overhauled the existing format in
the process, I choose to balance the size of the archive with the
simplicity and the velocity of the decoder.

The proposed format has these properties:

• car archives are on the average 30 percent of the size of the
original class files and 51 percent the size of the corre-
sponding compressed Java archives.

• car archives are twice the size of the best available archive,
pack.

• the car decompressor itself is markedly smaller than pack’s
decompressor (five KByte against 36 KByte).

• the car decompressor is an order of magnitude faster than
pack’s decompressor.

I also presented in this article a theoretical foundation for the
comparison of wire formats. The characterization of the format
does not only consider the compression factor, but also the size
of the necessary decompressor and the decompression speed. It
is possible with these criteria to derive the important features of
a wire format.

• for slow transmission channels, the compression ratio and
the size of the decompressor are the most important factors;

• for fast transmission channels, the compression ratio and
the decompression speed are the most important factors;

With this theory, I contrast my proposed format, car, with Sun’s
Java archives and Pugh’s pack. The comparison finds that:

• the Java archive is an optimal format whenever the applica-
tion is smaller than 29 KByte;

• car is without competition for applications larger than 29
KByte and over connections faster than 24 kbit/s;

• car is also the best format over connections slower than 24
kbit/s for applications larger than 29 KByte and smaller
than a moving threshold; the threshold moves between 233
KByte, at zero bit/s, and up to five MByte, at 23 kbit/s;

• in the remaining cases, for applications larger than this
threshold and over connections slower than 24 kbit/s, pack
is the best format.

These results assume that the Java archive decoder is alre
present on the receiver system but that the decoders for
other two formats have to be transmitted with the applicatio
The results would be slightly different if the receiver had th
decoders pre-installed. In this case, the more compact p
would be ideal for communications slower than 24 kbit/s an
my car format for all faster transmission channel.

11 ACKNOWLEDGMENTS

I express here my gratitude to Markus Pilz and Takas
Suezawa for their numerous but constructive criticisms.

12 REFERENCES

[1] Denis N. Antonioli and Markus Pilz,Analysis of the Java
Class File Format, Technical report ifi-98.04, Departmen
of Information Technology, University of Zurich,
Switzerland, 1998 <ftp://ftp.ifi.unizh.ch/pub/techreports/
TR-98/ifi-98.04.ps.gz>

[2] Denis N. Antonioli,Compressing Java Binaries: The Ris
tretto Project, PhD Thesis, Department of Information
Technology, University of Zurich, Switzerland, 2000

[3] Quetzalcoatl Bradley, R. Nigel Horspool and Jan Vitek
JAZZ: An efficient compressed format for Java archiv
files, in Proceedings of CASCON ’98, November 1998

[4] Jason D. Corless,Compression of Java class files, MSc
Thesis, Department of Computer Science, University
Victoria, Canada, 1996

[5] Markus Dahm,Byte code engineering, in Java-Informa-
tions-Tage 1999 (JIT ’99), ed. Clemens H. Cap, Springer-
Verlag, pp 267-277, 1999

[6] Markus Dahm,JavaClass, <http://www.inf.fu-berlin.de/
~dahm/JavaClass>

[7] Thomas Dell, David Hopwood, Dave Brown, Benjamin
Renaud, David Connelly,Manifest format, in Sun’s JDK
from version 1.1 onward, 1996

[8] Peter Eck, Xia Changsong, and Rolf Matzner,A new com-
pression scheme for syntactically structured messag
(programs) and its application to Java and the Internet, in
International conference on data compression, Snowbird,
Utah, U.S.A., March 1998

[9] Jens Ernst, William Evans, Christopher W. Fraser, Stev
Lucco and Todd A. Proebsting,Code compression, in
Proceedings of the ACM SIG-Plan conference on pr
gramming language design and implementat io
(PLDI’97), ACM SIG-Plan Notices, v. 32 n. 5, pp 358-
365, June 1997

[10] Michael Franz,Code–generation on the fly: A key to port
able software, PhD Thesis 10497, Swiss Federal Institut
of Technology, Zurich, Switzerland, 1994

[11] Christopher W. Fraser and Todd A. Proebsting,Custom
instruction sets for code compression, unpublished,
<http://reasearch.microsof t.com/~toddpro/papers/
pldi2.ps>, 1995

t
1

t
2

–
vtrm 0→
lim dec

1()sizeof dec
2()sizeof–

k
2

k
1

–
---=
10

http://www.inf.fu-berlin.de/~dahm/JavaClass
http://www.inf.fu-berlin.de/~dahm/JavaClass
ftp://ftp.ifi.unizh.ch/pub/techreports/TR-98/ifi-98.04.ps.gz
ftp://ftp.ifi.unizh.ch/pub/techreports/TR-98/ifi-98.04.ps.gz
http://reasearch.microsoft.com/~toddpro/papers/pldi2.ps
http://reasearch.microsoft.com/~toddpro/papers/pldi2.ps

g

d

-
s,

-

[12] James Gosling, Bill Joy and Guy Steele,The Java lan-
guage specification, Addison-Wesley, 1996

[13] R. Nigel Horspool and Jason Corless,Tailored compres-
sion of Java class files, Software – Practice & Experience,
v. 28 n. 12, pp 1253 – 1268, October 1998

[14] Denis Howe (ed.),The free on-line dictionary of comput-
ing, <http://foldoc.doc.ic.ac.uk/>, 1993

[15] Thomas Kistler and Michael Franz,A tree-based alterna-
t ive to Java byte-code, Technical report 96-58,
Department of Computer Science, University of
California, Irvine, U.S.A., 1996

[16] Tim Lindholm and Frank Yellin, The Java Virtual
Machine specification, Addison-Wesley, 1996

[17] Éamonn McManus,JDistill, a program to shrink Java
packages, <ht tp: / /www.gr.osf .org/~emcmanus/
jdistill.html>, April 1998

[18] Todd A. Proebsting,Optimizing an ANSI C interpreter
with superoperators, in Conference record of POPL’95:
The 22th ACM SIG-Plan – SIG-Act symposium on princi-

ples of programming languages, pp 322–332, January
1995

[19] William Pugh,Compressing Java class files, in Proceed-
ings of the ACM SIG-Plan conference on programmin
language design and implementation (PLDI’99), ACM
SIG-Plan Notices, v. 34 n. 5, pp 247-258, May 1999

[20] Frank Tip, Chris Laffra, Peter F. Sweeney, and Davi
Streeter,Practical experience with an application extrac-
tor for Java, in Proceedings of the fourteenth annual con
ference on object-oriented programming system
languages, and applications (OOPSLA’99), ACM SIG-
Plan Notices, v. 34 n. 10, pp 292-305, 1999

[21] Philip Wadler,GJ: A generic Java, Dr. Dobb’s Journal, v.
25 n. 2, pp 23-28, Februray 2000

[22] Info-ZIP, zip, <http://www.cdrom.com/pub/infozip/>

[23] Sun,Connected, limited device configuration: Specifica
tion version 1.0, Java 2 platform micro edition, Sun
Microsystems, 1.0, May 2000
11

http://foldoc.doc.ic.ac.uk/
http://www.gr.osf.org/~emcmanus/jdistill.html
http://www.gr.osf.org/~emcmanus/jdistill.html
http://www.cdrom.com/pub/infozip/

	1 Introduction
	2 Tools and Benchmarks
	3 The Canonical Architecture
	3.1 The Java Class File
	3.2 The Java Archive
	3.3 The ClassLoader

	4 Related Works
	5 The Car Approach
	5.1 Goals
	5.2 Reduce the Meta-Information
	5.3 Strip the Classes
	5.4 Compress the Classes Together

	6 Integration in the Java Virtual Machine
	7 Security Considerations
	8 Results
	8.1 Compression size
	8.2 Decompression Speed

	9 Discussion
	10 Conclusion
	11 Acknowledgments
	12 References

