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Abstract

Capturing, representing and processing metadata promises to facilitate the management,
consistent use and understanding of data and thus better support the exploitation of
masses of information that is available online today. Despite the increasing interest in
metadata management, its purpose, requirements and problems are still not clear. This
is particularly true in the area of data warehousing. The reasons are multiple. Compared
to the past, today’s metadata management considers a significantly larger spectrum of
information (including even certain pieces of programs). Moreover, metadata are produced
by various tools and reside in different sources which need to be integrated in order to
ensure consistency and provide uniform access, impact analysis and tracking. Existing
work has only partially covered some of these aspects, such that no comprehensive view
exists so far. Therefore, this paper summarizes the most important issues of metadata
management for data warehousing, including the role of metadata and solved and unsolved
problems of the available solutions. The design of an appropriate information model,
metadata integration and advanced user interaction facilities are crucial questions to be
answered.

1 Introduction

Data warehousing is a collection of concepts and tools which aim at providing and managing
a set of integrated data (the data warehouse) for business decision support within an orga-
nization. The overall purpose is to discover and explore business trends and thus achieve
better and faster decisions regarding multiple aspects of business like sales and customer ser-
vice, marketing, or risk assessment. Starting with the pioneering work of Inmon [11], the
popularity of data warehousing grew exponentially during the last years. As a consequence,
an abundance of software products for building and exploiting data warehouses overflows the
market. This proliferation of tools and the spreading of data warehousing within enterprises
contribute to an increased complexity of data management and processes in general. In order
to master this complexity, a consistent management of related metadata is required.

*This work was partly supported by the Swiss Federal Office for Professional Education and Technology
under grant KTI-3979.1 (SMART) and by Rentenanstalt/Swiss Life



Metadata in this context is generally defined as any information that may be used to
support the administration and effective exploitation of data warehouses. Obviously, such
information exists everywhere: either directly in data dictionaries and certain tool reposito-
ries or hidden in skripts, programs, user manuals, or, worst of all, in paper documents and
people’s brains. However, metadata are not worth much unless they are captured, stored and
consistently managed in order to be uniformly accessible by users and software components.
Even if the domain of metadata management has significantly evolved in the last years and
many concepts have been developed, the construction of an enterprise-wide metadata man-
agement system is a demanding task. The reasons are multiple. On the one hand, there is a
large spectrum of metadata to be uniformly managed, covering not only various user purposes
(e.g., technical and business metadata) but having also fundamentally different scopes: gen-
eral documentation for users versus control information for software programs. Particularly
the second category raises problems not encountered in “classical” metadata management.
On the other hand, there are a lot of commercial products that claim to manage metadata
(either on purpose or as a side effect) but their elementary distinguishing features are not
clear at a glance. In the following, we address these and other aspects with the aim to clarify
the confusion that dominates in the area.

This paper provides an overview of metadata management for data warehousing. It dis-
cusses major aspects as what the pieces of information (i.e., the metadata) to be generated
and captured for data warehouses are and how they should be stored and managed in order
to achieve maximum benefits. We also discuss solved and unsolved issues and give some hints
about the weaknesses of partial solutions for metadata management proposed so far!. Finally,
we elaborate on metadata integration and present perspectives for more flexible approaches.
In practice, the main problem of integration is the lack of a unique standard that commercial
products comply with. The recently announced unification of the two available standards
for metadata representation and interchange (OIM [16] and CWM [17]) raises hopes that the
resulting standard will win a broader acceptance among vendors than the original ones.

The remainder of this paper is organized as follows: Section 2 introduces basic notions
necessary to understand the paper. Section 3 analyzes the concepts and requirements meta-
data management is based on. Section 4 characterizes the state of the art and its problems.
In Section 5 approaches for future metadata management are discused. Section 6 concludes
the paper.

2 Preliminaries

In the following, we first focus on the architecture of a data warehouse system; for deeper
consideration of the topic, an extensive literature is available [11, 7, 14, 15]. Then, we discuss
what information is considered as metadata. Because of its wide use, a compact, precise
definition of metadata can hardly be provided. Thus, we explain the notion by means of
examples and a coarse classification.

2.1 Data Warehouse Systems

The kernel of a data warehouse system is the data warehouse. It serves as an (enterprise-wide)
collection of integrated data, often stored in a relational database system. In particular, the

'This paper is not intended to be a snapshot of market offerings. Comprehensive overviews that include
more detailed descriptions of products and standards have been given in [20] and, with a broader discussion
of metadata in general, in [19].
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Figure 1: A typical data warehousing system architecture

data warehouse incorporates data collected from many data sources with various data mod-
els and heterogeneous structure, e.g., database systems, flat files, indexed files, proprietary
systems, etc. A typical data warehouse system architecture is depicted in Figure 1.

Data marts are data stores (usually subordinated to data warehouses) that are built with
the aim to fulfill specific application requirements of a certain group of users, e.g., of a de-
partment or a geographical region. A data warehouse and its data marts are populated by
performing an initial loading and then regularly updated during the periodical execution of
a refreshment process. The ETL (Extraction, Transformation and Loading or data acqui-
sition) component is responsible for populating the data warehouse: it extracts data from
sources, transforms and finally stores them in the data warehouse. Data transformation com-
prises various forms: reconciliation of syntactic and semantic differences between operational
sources, consolidation, and mapping from local data models to the global one. Similarly, the
aggregation and selection component prepares data to be fed into analysis applications or to
be stored into data marts.

Data warehouses are built for analysis purposes. Analysis applications are of various com-
plexity ranging from reports relying on simple calculations to complex data mining methods.
However, the most popular analysis means for data warehousing are OLAP applications which
enable users to examine data within a multidimensional model allowing to instantaneously
retrieve and summarize data. The multidimensional model provides measures (i.e., business
facts to be analyzed like sales or shipments) and dimensions for these measures (i.e., the con-
text in which the measures have values, e.g, products, customers, time, region). Dimensions
have associated hierarchies that specify aggregation levels for viewing the data. In order to
serve OLAP- applications, data warehouses or data marts are implemented either by special
multidimensional databases (MOLAP) or relational databases (ROLAP).

The metadata repository ideally stores and manages all the metadata necessary to improve
work with the data warehouse. It is the integrating component of the architecture and plays
a key role in every phase of data warehousing.



2.2 What is Metadata?

Metadata (data about data) is commonly understood as any information needed to develop,
maintain and exploit a data warehouse system. It is usually distinguished according to its
use into: business metadata, mainly needed by end-users, and technical metadata, produced
and used by database administrators or by software components of the data warehouse sys-
tem. The category of business metadata contains end-user-specific documentation, dictio-
naries, thesauri, and domain-specific ontological knowledge, business concepts and termi-
nology, details about predefined queries, and user reports. In contrast, technical metadata
includes schema definitions and configuration specifications, physical storage information,
access rights, executable specifications like data transformation and plausibility rules, and
runtime information like log files and performance results.

Another distinction regards descriptive versus transformational metadata. The former
category includes information related to the structure of data sources, data warehouses, and
data marts. In this context, we distinguish between metadata concerning the entire schema
(e.g., schema description, statistical values like, e.g., the number of entries in the database)
and metadata associated with parts of the schema. Examples include quality attributes that
specify the credibility of single attributes (e.g., birthdate).

In contrast, transformational metadata is information associated with data processing:
information regarding the loading and refreshment process, the analysis process, and inher-
ently the administration of the data warehouse system. Examples are rules specified for data
extraction, transformation, and aggregation and their execution schedules; rules are usually
defined by means of executable specification languages.

A special category constitutes metadata concerning the organisation of the enterprise
which includes administrative data, information related to staff, as e.g., user rights to access
the data warehouse, data sources, and data marts.

Specific information about certain aspects of data warehousing like ETL und OLAP is
stored as metadata as well. For example, cubes, dimensions, and hierarchies needed for
building multidimensional views are explicitly available as metadata.

In analogy to database design, metadata may be classified according to the three levels
of abstraction (conceptual, logical and physical). Examples are descriptions of conceptual,
logical and physical schemas, e.g. ER-schemas or relational schemas.

3 Metadata Management for Data Warehousing

Metadata are stored and maintained in repositories. These are structured storage and retrieval
systems, typically built on top of a conventional database management system. A repository
is not simply a storage component but also embodies functionalities necessary to handle the
stored metadata. It is (logically) independent of the data warehouse, even if physically the
same database management system (DBMS) platform is possibly used. Note that in reality,
more than one repository is used to manage metadata available in a data warehouse system.
However, for simplification, we consider in Section 3 the existence of a single repository
for managing all kind of metadata and postpone the discussion of metadata management
architectures with many repositories to Section 4.2.

In the following, we first discuss the role played by metadata management in Section 3.1
and then briefly address the requirements for metadata management in Section 3.2 and 3.3.



3.1 Role of Metadata Management

Metadata is captured, generated and managed in a repository in order to be used in two ways

e as consistent documentation about the structure, the development process and the use
of a data warehouse system. It may comprise both technical and business metadata and
is needed by users (i.e., end-users, system administrators, and application developers)
to achieve their tasks. Examples of information expected from a repository are:

— What means column payroll_a?

— What means the term insured person, depending on context? Where do I find
information about insured persons?

— How many data records are processed during data aquisition?

What is the difference between two versions of a certain software module?

— How granular is the history, i.e., what is the shortest time interval betweeen entries
in the history?

What happens if data source ACCOUNTING_DATA is disconnected from the sys-
tem?

— Which are the sources and tables the warehouse attribute payroll_a originates from?
Which fields of which sources are used to compute the warehouse attribute pay-
roll_a?

e as control information for certain tools. Tools store either static information (like struc-
ture definitions, configuration specifications, etc.) or part of the logic of their programs
as metadata. In other words, control information is stored in repositories, outside pro-
grams and applications. At runtime, this kind of metadata is read, (possibly) interpreted
and dynamically bound into software execution. If new requirements arise, metadata
may be easily changed without affecting the programs sharing it and without requiring
re-compilation of these programs.

In either way, the generation and management of metadata serves two purposes: to mini-
mize the efforts for development, maintenance and administration of a data warehouse and to
improve the effectivity of extracting information from it. The first objective mainly concerns

- improvement of the flexibility of the system and reuse of existing software modules. Since
reusable abstractions and configurations are explicitly stored as metadata outside appli-
cation programs, the system may be extended and adapted without difficulty. Besides
the reuse of “code fragments”, design decisions adopted for existing applications may
also be stored as metadata and thus reused for analysis and design of new applications.

- automation of various administration processes. Since the repository is (ideally) shared
by all tools or software components involved in data warehouse processes, they may
pass control of execution to each other by means of metadata (metadata-driven pro-
cesses). Information about process execution (access logs, number of records added
to the warehouse etc.) may be stored in the repository as well for easy access by the
administrator.

- impact analysis. Often, administrators need to evaluate the impact of potential changes
in the data warehouse system before they are actually executed. For example, changes
in the schema of sources may have consequences for transformation rules (e.g., resulting



in type mismatches, violations of referential integrity) and inherently for the structure of
the data warehouse or the data marts. Obviously, a prerequisite is to “link” information
in the repository: data sources are linked to transformation rules which are linked to
certain tables in the warehouse. In this way, one may automatically detect which
changes of the sources may affect the warehouse.

The second objective refers to the effective extraction of information from data:

- improving interaction with the data warehouse system during analysis. Interaction may
be performed either by means of simple queries and reporting applications or by using
complex analysis applications. Metadata provides information about the meaning of
data, terminology and business concepts used within the enterprise and their relation-
ship to the data. Thus, metadata improves query, retrieval and answer quality. It allows
for precise, well-directed queries and helps to understand the application domain and its
representation in the data warehouse in order to adequately apply and interpret results.

- improving data quality. Data quality includes dimensions like consistency (whether
the representation of data is uniform and no duplicates, no data with overlapping and
confusing definitions exist), completeness (whether data is missing), accuracy (the con-
formity of the stored value with the actual value, including precision and confidence of
data), timeliness (whether the recorded value is up-to-date). Quality assurance rules
have to be defined, stored as metadata and checked each time the data warehouse is re-
freshed. In addition, high data quality requires the support of data tracking. Metadata
provides information about the creation time and the author of data, the source of data
(data provenance), the meaning of data at the time it was captured (data heritage),
and the path followed from source to the current site (data lineage) [6]. In this way,
users may reconstruct the path followed by data during the transformation process and
verify the accuracy and credibility of returned information.

- enforcing a unique terminology and communication language within the enterprise.
Since the metadata repository is available as a unique documentation source for users,
it provides a consistent means for people to communicate, understand, and interpret
information provided by the data warehouse system, eliminates ambiguity and helps to
guarantee consistency of information within the enterprise.

In summary, metadata promises to solve a lot of problems for improving work with a
data warehouse. However, partially managing metadata for a specific purpose in a specific
sub-domain (like data acquisition, or OLAP) renders only reduced advantages. Benefits like
consistency, data tracking and impact analysis are provided only if the entire integrated,
consistent and uniform management of all metadata is supported.

3.2 General Features of Metadata Management Systems

A number of approaches exist that deal with general functional features of metadata manage-
ment. Inherently, insights gained so far apply for data warehousing as well. Among typical
general features which have been considered especially in the work of Bernstein [1, 3], we
pick the three most important ones (change management, interoperability and user access)
and discuss them below. The specific needs of a particular application domain (i.e., data
warehousing in our case) is only reflected in the repository schema which will be discussed in
Section 3.3.



Change Management. Change management handles of changes inside and outside the
repository. A notification mechanism is necessary to propagate changes to tools that have
registered their interest in being notified. Also, users who have previously “subscribed” are
informed. Furthermore, the repository has to provide version and configuration management
and impact analysis mechanisms.

Interoperability and Tool Access. The interaction of software components and tools
with the repository requires appropriate mechanisms, in particular:

- a comprehensive application programming interface (API) for metadata read and write
access by other software components,

- interfaces ensuring the interoperability with other repositories.

- a flexible core (meta)model that allows to easily extend a given set of types concerning
additional tools or new data sources.

User Access. The metadata repository has to offer an appropriate, user-friendly (and
thus highly graphical) interface and suitable mechanisms for interacting with human bee-
ings. Browsing mechanisms are necessary to navigate within the metadata collection along
the links between the individual metadata elements. Navigation is “driven” by the underlying
repository schema. The structure (schema) of the repository has to allow querying according
to specific conditions and filtering, i.e., the selection of relevant information based on infor-
mation retrieval techniques. User views are used to restrict access to information according
to both user interests and user access rights. Furthermore, user access tools have to support
editing and designing mechanisms for manually entering metadata elements and relationships
between them.

3.3 Metadata Structures

A metadata repository has to provide a schema fitting its utilisation purposes: first of all,
this structure has to reflect the diversity of information required by users and tools (e.g.,
business and technical metadata, descriptive and transformational, conceptual and logical,
etc). Then the repository schema should be easily extendable in order to support extension
of the system for additional demands, e.g., information types, sources and tools that access
it. At the conceptual level, the structure of the repository is described by a metamodel or an
information model. In order to better understand the role of a metamodel, we make a short
digression to the theory of modelling.

3.3.1 Metalevels

The notion of “meta” is closely related to the abstraction levels of modeling. For the modeling
of complex information systems, at least 4 modeling levels are required (see Figure 2). Each
level is the “meta” level for the next lower level, that means it comprises the modeling
constructs used to define the information on the level below. To start with, on the lowest
level, level 0, there are the actual data items (e.g., the customer data). The levels above
contain the metainformation: level 1 contains metadata (e.g., the database schema), level 2
specifies the schema used to store the metadata (the so-called metamodel, information model
or metadata schema). Typically, data models belong here. Level 2 also includes metamodels
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Figure 2: Levels of Metamodeling

of common modeling languages like UML (Unified Modelling Language) which, for example,
may be directly used to define a database schema. Level 3 contains the metametamodel that
unifies the different metamodels of the level 2. Note that an instantiation relationship exists
between levels (i.e., on the level below there are instances of the elements above) while on
the same level the (meta)model may be refined and extended with specialization relationship
between elements.

Among the extensive efforts of various organizations to establish a multi level system
architecture, we mention OMG? which aims with its approach at enabling the integration of
tools and applications running in heterogeneous, distributed environments accross their life
cycle. Further work on meta-modelling can be found in [2, 4, 5, 12].

Metadata management is concerned with levels 1 and 2 of the pyramid of Figure 2. The
aim is to have a uniform metamodel (or information model) that serves the following pur-
poses: users need the repository as a consistent documentation; software components may
use metadata of the repository as control information in order to achieve their tasks. In the
following, we give two simple examples of sub-metamodels: one for documentation purposes
and one for tool controlling. They may be seen as parts of a larger metamodel.

3.3.2 Metamodel for System Documentation

A common example for metamodels aiming at documentation is a metamodel representing
information regarding relational database structures on three schema design levels: concep-
tual, logical and physical. We use UML to depict metamodel classes, their associations on
the same level and - most important of all - between levels (see Figure 3). The conceptual
level manages information about ER-schemas, i.e., ENTIT(Y)ies, their RELATIONSHIPs
and their PROPERT(Y)ies. The logical level manages RELATIONSs, their FOREIGN_KEY
relationships and ATTRIBUTEs. The physical level represents platform dependent infor-
mation, in particular the ORACLE implementation of the relational schema (ORA/TABLE
contains one or more ORA/COLUMN, and zero, one or many foreign keys ORA /FK; in turn
ORA/FK is associated to one table, aso.) Since levels are related to each other (e.g., an
ENTITY is represented as a RELATION in the relational model and as a TABLE in the
ORACLE data model), navigation between the three levels is possible.

Instances of metamodel classes are the metadata objects (not illustrated in the figure),
e.g., entity CUSTOMER_ENT, table CUSTOMER_TAB, attribute NAME, etc. In turn, if we
consider a meta-metalevel with two classes CLASS and META_ATTRIBUTE, the following
instantiation relationships exist: ENTITY, RELATION, ORA/TABLE, RELATIONSHIP,
FOREIGN-KEY and ORA/FK are all instances of CLASS while PROPERTY, ATTRIBUTE,

*http: //www.omg.com/
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ORA/COLUMN are all instances of META_ATTRIBUTE.

Summarizing, the most important property of a metamodel for documentation is the
existence of relationships among classes and implicitly among their instances in order to
provide navigation possibilities within the structure. In this way, users have access to related
information starting with an initial entry point.

3.3.3 Metamodel for Automatic Generation of Structures

Systems driven by metadata are more flexible than hard-coded systems since they may be eas-
ily configured when new requirements arise. We take as example a metamodel representing
metadata that serves as controlling information for a tool to automatically build multidi-
mensional OLAP structures. These structures may be dynamically built instead of being
hard-coded in scripts or applications.

Consider the metamodel part depicted in Figure 4. There are four classes, Dimension,
Hierarchie, Fact and Cube. A dimension may have one or more hierarchies, a cube contains at
least one dimension and depends on a fact. Instances of these classes, i.e., the metadata, are
stored in the repository as class extensions. At runtime, when a cube has to be defined, the
method DefineCube() is invoked with corresponding (four) parameters. Their values are cho-
sen among the instances of class Dimension (e.g., object Time, Region and Product) and Fact
(e.g., Sales Revenue). The method DefineCube() may invoke some SQL commands applied
for example to a ROLAP structure in order to calculate (select and aggregate) the corre-
sponding cube. The flexibility of this design pattern is given by the fact that the method
DefineCube() may be executed for any instances of Dimension and Fact and may therefore
build any required OLAP cube.

Summarizing, we presented in a simplified form two kinds of metamodels: for documen-
tation purpose and for metadata-driven tools. The main distinguishing feature is that the
first metamodel may be easily extended without affecting its main purpose - navigation within
the documentation. In contrast, metamodels for metadata-driven tools, i.e., where metadata
serves as controlling information, are not designed to be extensible. They fulfill their (narrow)
purpose (in our case building OLAP structures) but to this end the behavior (e.g., Define
Cube()) has to be “wired” to the given structure (e.g., Dimension, Hierarchie, Fact).
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Figure 4: OLAP metamodel classes

4 State of the Art in Metadata Management for Data Ware-
housing

In this chapter, we give a brief overview of the state of the art with a focus on discussing
weaknesses of today’s information models provided by existing tools (Section 4.1) and by
existing solutions for metadata integration (Section 4.2).

4.1 Tools for Metadata Management

In accordance with the use of metadata disscused in Section 3.1 and the metamodels presented
in Section 3.3, two categories of tools that manage metadata can be distinguished:

e metadata-driven tools use metadata as a means to an end. They store and use metadata
as controling information for achieving their specific task. These are the new generation
of tool packages for data warehousing, e.g., for building the data warehouse (like Power-
Mart?, Ardent*) or for using it (like Cognos®, Business Objects®). Research prototypes
following the same principle exist for data aquisition [21] and data preprocessing for
data mining [13].

e general-purpose metadata management tools aim at enterprise-wide metadata manage-
ment mainly for system documentation. Their objective is the extensive provision of
information for all user categories and the sharing of metadata between software com-
ponents within a company. According to a Gartner Group survey[9], Computer Asso-
ciates” is classified as the “leader” in the general-purpose metadata management market
segment while three vendors (Allen Systems Group®, Unisys® and Microsoft'?) are clas-
sified as “visionaries”.

In the following, we discuss particularities of both approaches considering mainly their
metamodels and user access interfaces.

3http:/ /www.informatica.com/

4 Ardent Software was recently acquired by Informix, http://www.ardentsoftware.com
Shttp://www.cognos.com

Shttp://www.businessobjects.com

"acquired recently Platinum Technology, http://www.cai.com

8acquired recently Viasoft with its Rochade product, http://www.asg.com

http: //www.marketplace.unisys.com/urep/
Ohttp://msdn.microsoft.com/repository/
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4.1.1 Metadata-Driven Tools

Metadata-driven software packages have as kernel a repository with various tools accessing
it. A typical architecture is illustrated on the basis of two commercial products in Figure 5.
Metadata is specified by means of adequate tools (e.g., Designer, Administration tool) and
stored into the repository. Data structure definitions have to be extracted and stored as meta-
data as well (see the interactions at specification time). At runtime, an appropriate tool has
to read the data from a given data collection, process it and, depending on the purpose, either
store it into a target database (e.g., PowerMart) or return an analysis result (e.g., Business
Objects). For a better understanding, we consider in detail the two metadata-driven tools of
Figure 5.

PowerMart aims at implementing data acquisition, i.e., the extraction, cleaning, integration,
transformation and loading of the data into the warehouse. The process is split into many
steps (mappings) which are then executed in a certain order. Mappings are specified by
means of a component called Designer and stored in a repository. In Figure 6, the graphical
interface of Designer is illustrated. Each mapping has one or more sources (e.g., flat files)
and one or more targets (e.g., ORACLE tables). Sources and targets are schema definitions
imported either from corresponding data sources, the data warehouse or data marts or from
temporary tables. The data “flows” between sources and targets through transformations
which perform certain operations on it. Transformations are depicted in Figure 6 as the icons
that make the link between the source on the left and the target table on the right of the
window. When specifying mappings, the developer has to choose among 14 transformations
(including e.g., aggregation, join, expression), configure and link them in accordance with
the processing algorithm. When the mapping definitions and the order of their execution are
stored, they are“broken” into code parts specified in an SQL-like language and dispersed over
many tables in a relational database (usually ORACLE). At runtime, these code parts are
read, interpreted, linked and executed by the Engine and the results are stored in the target
database.

A major characteristic of the PowerMart language is the set-oriented processing of data.
This feature may sometimes facilitate the processing, but may also require to rethink the
(usually procedural, instance-oriented) algorithm in a different programming paradigm®!.

"For example, iteration has to be hand-coded because no iteration construct is directly available.
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Figure 6: PowerMart Designer

Business Objects is a software package for querying, reporting and applying simple data
mining with a typical metadata-driven architecture (see Figure 5). Besides access rights and
generated documents, the repository is used as storage for universes. A universe contains map-
pings between business terms commonly used by end-users (like “product”, “sales revenue”,
“last year”) and their representation on the implementation level, e.g., corresponding tables,
SQL queries or stored procedure calls. The end-user manipulates known terms available on
an intuitive drag & drop interface and generates queries which are internally translated into
queries understandable by the data source (e.g., SQL if the data source is a relational database
system). The universe represents the metadata. It allows users to query database systems
(e.g., the data warehouse) without any database technology knowledge. The prerequisite is
to have the universe specified by means of the Designer tool before use.

Discussion. As expected, metadata-driven tools cover only a limited diversity of meta-
data; only metadata necessary to fulfill the purpose of the tool is stored. Furthermore, since
the operation of these tools requires their software components to read metadata of a certain
structure and format, they are “bound” to the given repository structure which is inherently
not designed for extension or update purposes.

The advantage of explicitly storing semantic aspects outside skripts and programs is cer-
tainly their reuse during development. In addition, it is claimed that maintenance is easier
with metadata-driven tools since metadata may be changed independently of the clients ac-
cessing it. However, the problem of metadata-driven tools is to offer right abstractions, i.e.,
the right granularity of metadata to enable reusability and improve maintenance of the sys-
tem. If the granularity is low like in the case of transformations in PowerMart, the developer
still has to use a low-level implementation language, lacking higher abstractions'?. For com-
plex algorithms, elegant reusable implementation is as challenging as with any other general
purpose implementation language. Thus, maintenance is still a demanding task.

Since transformation rules are stored in the natural form “source -> target”, data can be
(kind of) tracked from the source to the target (e.g., data warehouse, data mart or OLAP
view) and impact analysis may thus be automatically provided. However, note that data
tracking is only possible to some extent. Only dependencies between attributes and fields of
the original sources and targets are available. The processing track or the calculation formula

12As an example, a “higher abstraction” would be a reusable component for history strategy, which offers
many alternatives for implementing histories of any data element (e.g., record, attribute, table)
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cannot be derived. A developer must have a look at the transformation rules (e.g., mappings)
by means of the Designer to possibly understand how an attribute of the target has been
calculated.

As far as tools like Business Objects are concerned, their metadata is used for a narrow
scope, the structure is less complex and thus the tool’s purpose is easier to achieve. The
reason is that Business Objects uses descriptive metadata which are easier to handle than the
transformational metadata (mappings, transformations) of PowerMart.

4.1.2 General-Purpose Metadata Management Tools

General-purpose metadata management mainly consists of a repository, a browser that al-
lows user access and interfaces for import/export data from other tools or repositories. In
the following, we focus on repository structures, i.e., metamodels and user access mechanisms.

Metamodels. Since the main purpose is the documentation of structures, systems and
applications, a flexible metamodel is provided with a granularity that allows to store the en-
tire spectrum of metadata required and the effortless extension for new user demands and new
tools that have to access the repository (e.g., CASE tools, versioning tools, impact analysis
tools).

Regarding the representation on different abstraction levels (e.g., conceptual, logical phys-
ical illustrated in Figure 3), descriptive metadata for data structures do not raise significant
problems. In contrast, transformational metadata are more difficult to handle. The complex-
ity of the task is not suprising since it is closely related to software engineering objectives
people are still working on: to break a problem into smaller tasks and solve and describe these
in a sequence of steps (analysis, design and implementation), such that maintenance and reuse
are facilitated. Even if transformational metadata in data warehousing concerns data process-
ing rules only (e.g., the mappings of PowerMart), their documentation and representation on
higher abstraction levels than the implementation level and the link to business rules govern-
ing the enterprise is a challenge for the repository administrator; no generic solution exists yet.

User Access. User access tools have to enable the navigation within the metamodel and
display any metadata, independent of the given application domain. Thus, user access tools
are bound either to the meta-metamodel (level 3 of the metalevel pyramide in Figure 2) or to
given core metamodel(s). If, for example, a graphical representation is hard-coded for some
given classes, any user-defined specialisation of a class is similarly displayed as its superclass
during navigation within the repository structure.

A solution for ensuring extensibility and flexibility of the metamodel is the use of “self
description”. That means, both metadata schema and instances are managed by the same
(hard-coded) metamodel. Figure 7 depicts first experiments [18] with browsing interfaces for
both metadata classes (i.e., the metamodel) and its instances (i.e., the actual metadata). One
can easily switch between the two views; navigation mechanisms within a view are similar
since classes and instances are uniformly managed through the use of “self description”.

User views have to restrict access to parts of the metamodel according to specified roles
(e.g., power user, administrator, developer).

General-purpose metadata management systems cannot be successful as standalone infor-
mation systems. They require the integration with other tools which both automatically
update the information in the repository and use metadata for development and maintenance
purposes.
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4.2 Metadata Interoperability and Integration

The simplest solution for metadata management would be a single, centralized repository for
managing all kinds of metadata within an enterprise. In this case, metadata is uniformly
and consistently managed, and accessed by all possible consumers (i.e., users, applications).
However, the use of different tools, software components and repositories with divergent data
models, following diverse representation formats, makes centralization close to impossible.
The usual solution adopted in enterprises is decentralized metadata management, based on
ensuring interoperability between repositories.

Interoperability. Bi-directional tool-specific interfaces are used when repositories have to
exchange metadata (e.g., Business Objects has to import the warehouse schema definitions
stored in PowerMart). This requires to agree on a common metadata representation in a given
tool environment or to use a predefined one-to-one interchange format between commercial
products, assuming they provide any. In other words, a common interchange representation
format has to be adopted and used when data is imported or exported between repositories
and/or tools. Apart from the problems raised by agreeing on a unique exchange format, the
main disadvantage of decentralized metadata management is simply the lack of system-wide
metadata integration. Repositories are storing and importing only some kinds of metadata,
necessary to achieve their special purposes. They cannot establish and exploit links between
metadata of various domains, they cannot perform system-wide impact analysis since only a
reduced amount of metadata is available in a certain repository. For example, data tracking
for figures in a certain OLAP report is based on questions like “which fields of which data
sources have been used for calculating these figures”. The answer can be given only in an in-
tegrated metadata management system where all metadata (including those originating from
data acquisition, data warehouse and OLAP) are consistently and uniformly managed and
thus all links between related metadata elements are available as well.

Integration. First of all, integration presumes the existence of a unique metamodel that
combines and links all the types of metadata with their various purposes (including e.g., sys-
tem documentation and tool controlling). All tools and repositories to be integrated have
to find a place for their metatada in this metamodel. Finding or selecting such a unique
metamodel is not a trivial task. The most often adopted solution for integrating metadata
is the use of general-purpose metadata management tools. The metamodel provided with
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the tool is used to manage metadata uniformly. Import/export interfaces are used to import
all metadata available in metadata-driven tools or other repositories into the given general-
purpose tool.

Standards. For both, interoperability and integration, the main problem is actually to agree
on a common metadata representation and exchange format to be used for exchange interfaces
and as a core metamodel for integration. Coalitions of manufacturers or all-from-one-hand ar-
gumentation of certain vendors are only partial solutions. The freedom of combining products
from any manufacturer to create a customized system is only given if a standard exists and all
products comply with it. One step in this direction has been made with the recent announce-
ment to merge Open Information Model (OIM) [16] and Common Warehouse Metamodel
(CWM) [17], the two standards for metadata representation and exchange proposed by Meta
Data Coalition and OMG (a comparision between the two standards is given in [22]). Even if
their metamodels cover extensive information of both general areas (like analysis, design, re-
lational schemas) and data warehousing specific areas (like OLAP and data transformation),
they also show some deficiencies. They fall short in providing different conceptual levels of
metadata as e.g., suggested by Zachman [23] and abstractions for transformational metadata
that would really enforce reusability and facilitate maintenance. Moreover, the metamodels
do not handle some specific aspects which have been identified as demanding for data ware-
housing: security aspects, temporal evolution of structures and mechanisms for ensuring data
quality (e.g., plausibility systems). But the main open question remains whether the CWM
release resulted from the unification of the two will win acceptance in practice as the unique
representation and exchange modality for metadata in data warehousing.

5 Perspectives for Metadata Integration

Since metadata integration is typically required for querying only, metadata could still be
locally updated but it should be available to the whole enterprise. There are two integration
alternatives one can take into account: either a (kind of) federation with an apriori defined
global schema, or a more flexible way of querying where no integrated global schema is
required.

5.1 Federation

Assuming the new CWM release will be adopted by all commercial products to be employed
within an enterprise, the implementation of a federated metadata management system will
be the most convenient solution. A typical federation architecture is depicted in figure 8.
Metadata is captured and stored in repositories which have their own data models and store
metadata according to a so-called local schema. They are managed by the metadata manager
in accordance with a global schema covering all necessary metadata. The global schema
provides the integrated view over the repositories. Obviously, the adopted standard or a self-
defined refinement of it should be taken for representing the global schema. For each of the
repositories a wrapper is needed for mapping local repository schemas to the global schema.
In this way, metadata is still locally stored and repositories may be individually maintained
with separate tools (like the standalone tool in figure 8), but the federation layer (i.e., the
metadata manager and the wrappers) performs the virtual integration such that a trade-off
between the advantages of centralization and those of local control is achieved.

Various metadata producer and consumer tools are using the metadata management sys-
tem. Tools access information of repositories only through the metadata manager by means
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of one of the alternatives offered by its interface layer: the API, the query language or the
XML-interface. The interface layer passes operations to the metadata manager which in turn
passes the operation to the corresponding repository storing the metadata of interest.

Note that often users and tools accessing the federation are interested in some kind of
metadata only and thus this and only this metadata needs to be mapped into the global
schema. Metadata of low level granularity needed for example to control standalone tools
may be relevant only for these tools and not for the whole federation.

5.2 Single Access Point for Heterogeneous and Distributed Repositories

Metadata sources may be highly heterogeneous regarding their structure. Besides the known
structured metadata collections like data dictionaries, tool repositories (e.g., PowerMart and
BusinessObjects), other databases, Excel files, etc., there is a huge amount of unstructured or
semistructured metadata collections in Word documents, pdf-files, e-mails, HTML and XML
files, which should be managed as well. Since today’s metadata management systems rely
on traditional database technology, they require the management of metadata in structured
repositories (usually databases). If metadata is available in semi-structured or unstructured
sources, it has to be first imported into the structured repository for being uniformly man-
aged later. Also the federation presented above is based on a rigid global schema defined
beforehand. However, things should change in order to avoid the expensive costs of im-
porting (or mapping) metadata to the structured repository and make use of the possibly
more effective query capabilities for semi-structured and unstructured data of the original
information sources. The approach of SINGAPORE (Single Access Point for Heterogeneous
and Distributed Repositories) [8] combines database and information retrieval technology and
provides a unified interface to effectively query the metadata sources available. It is more
flexible than a federation since it does not rely on a global schema but instead uses integration
through the query language. However, this solution is not for free; homogenization of data is
still required, and the exactness of query results often cannot be guaranteed.
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Future challenges include the embedding of metadata management into enterprise-wide
knowledge management systems. Such systems require the appliance of advanced approaches
from various fields of computer science in order to manage and extract knowledge from the
huge data and information assets available in enterprises.

6 Conclusion

Developing a successful metadata management system within an enterprise is not a trivial
task. Besides technical issues like integrating and building the right structure for managing
metadata, there are other problems which should not be underestimated: the costs of the un-
avoidable initial manual documentation (including connections between metadata elements)
and the everlasting problems of maintaining the system. The expensive efforts to build a
metadata management system are in vain if the metadata available is not actual and correct;
users lose their trust and the metadata management system becomes useless.

This paper gave an overview of the topic of metadata management for data warehousing
covering both, requirements and the state of the art. We gave examples of good solutions
for employing metadata to support rather narrow tasks like querying OLAP views by us-
ing common business terms. But we also revealed problems of existing tools for metadata
management aiming at broader tasks like generally supporting the implementation of ETL
process. These problems are inherently closely related to still open software engineering tasks
like finding of appropriate abstractions for improving reusability and maintenance of imple-
mented software. In the same context, the ideal representation of transformational metadata
on higher levels up to the business rules and their links to the lower implementation levels is
still an open issue.

Regarding metadata integration, efforts are underway to establish standards for a global
schema to manage all metadata in the data warehouse system and to provide the infrastructure
for metadata exchange between tools. However, the future will show whether the new release
of the CWM standard will win broad acceptance among vendors in a way that enables the
enterprise-wide metadata integration. According to a recent Gartner Group note [10], it will
take some time until CWM will be eventually considered.

In summary, a lot of promising work exists in the area of metadata management for data
warehousing but its successful, large-scale use still needs more research to be done.
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