
The ADORA Approach to Object-Oriented Modeling of Software

Martin Glinz, Stefan Berner, Johannes Ryser, Stefan Joos
Nancy Schett, Reto Schmid, Yong Xia Robert Bosch GmbH
Institut für Informatik, Universität Zürich Postfach 30 02 20

Winterthurerstrasse 190
CH-8057 Zurich, Switzerland D-70469 Stuttgart, Germany

+41-1-63 54570
http://www.ifi.unizh.ch/~glinz stefan.joos@de.bosch.com

Technical Report 2000.07, Institut für Informatik, Universität Zürich

ABSTRACT
In this paper, we present the ADORA approach to object-
oriented modeling of software (ADORA stands for A nalysis
and D escription o f R equirements and A rchitecture). The
main features of ADORA that distinguish it from other
approaches like UML are the use of abstract objects (in-
stead of classes) as the basis of the model, a systematic
hierarchical decomposition of the modeled system and the
integration of all aspects of the system in one coherent
model.

The paper introduces the concepts of ADORA and the ra-
tionale behind them, gives an overview of the language,
sketches a novel concept for visualizing the model hierar-
chy with a tool and reports the results of a validation ex-
periment for the ADORA language.

Keywords: Object-oriented modeling, specification, re-
quirements engineering, ADORA

1 INTRODUCTION
When we started our work on object-oriented specification
some years ago, we were motivated by the severe weak-
nesses of the then existing methods, e.g. [4][6][17]. In the
meantime, the advent of UML [18] (and to a minor extent,
OML [8]) has radically changed the landscape of object-
oriented specification languages. However, also with UML
and OML, several major problems remain.

There is still no true integration of the aspects of data,
functionality, behavior and user interaction. Neither do we
have a systematic hierarchical decomposition of models
(for example, UML packages are a simple container con-
struct with nearly no semantics). Models of system context
and of user-oriented external behavior are weak and badly
integrated with the class/object model.

So there is still enough motivation not to simply join the
UML mainstream and to pursue alternatives instead. We
are developing an object-oriented modeling method for
software that we call ADORA (A nalysis and D escription o f
R equirements and A rchitecture). ADORA is intended to be
used primarily for requirements specification and also for
logical-level architectural design. Currently, it has no lan-
guage elements for expressing physical design models
(distribution, deployment) and implementation models.

The main reason why we pursue a new approach and do
not integrate our ideas into UML is because basic concepts
of ADORA are essentially different from those of UML.
Thus, integrating ADORA into UML would require a con-
siderable redefinition of UML (see section 7).

In this paper, we present the ADORA approach, focusing
on the general concepts and on the language.

The main contributions of ADORA are

• a method that creates an integrated model that is based
on abstract objects, not on classes and that uses hier-
archical decomposition as its main means of structur-
ing a system,

• a tool that visualizes models in context according to
their logical structure,

• an open and flexible modeling process that, in par-
ticular, allows tailoring the formality of ADORA mod-
els to the problem at hand.

Throughout this paper, we will use a distributed heating
control system as an example. The goal of this system is to
provide a comfortable control for the heating system of a
building with several rooms. An operator can control the
complete system, setting default temperatures for the
rooms. Additionally, for every room individual temperature
control can be enabled by the operator. Users then can set
the desired temperature using a control panel in the room.
The system shall be distributed into one master module
serving the operator and many room modules.

The rest of the paper is organized as follows. In sections 2-
4 we present the main features of ADORA, starting with the
key concepts and presenting then the language and the
visualization concept of the tool. Section 5 briefly sketches
how ADORA fits into software processes. In section 6 we
present the results of a first validation of the ADORA lan-
guage. Finally, we compare the concepts of ADORA with
those of UML and conclude with a discussion of results,
state of work and future directions.

2 KEY CONCEPTS OF THE ADORA APPROACH
ADORA is based on five principal ideas:

• Working with abstract objects (instead of classes)
• Structuring the system being modeled with hierarchi-

cal decomposition

– 2 –

• Using an integrated model (instead of collections of
models)

• Allowing users to express different parts of a specifi-
cation with varying degree of formality (adapted to the
importance and risk of the parts)

• Visualizing models in context by presenting details of
a model always with an abstraction of its surrounding
context.

In this section, we briefly describe these five principles and
give our rationale for choosing them.

Abstract Objects instead of Classes
When we started the ADORA project, all existing object-
oriented modeling methods used class diagrams as their
model cornerstone. However, class models are inappropri-
ate when more than one object of the same class and/or
collaboration between objects have to be modeled [14].
Both situations frequently occur in practice. For an exam-
ple, see the buttons in Fig. 1. Moreover, class models are
difficult to decompose. As soon as different objects of a
class belong to different parts of a system (which often is
the case), hierarchical decomposition does no longer work
for class models [14]. Wirfs-Brock [22] tries to overcome
the problems of class modeling by using classes in
different roles. However, decomposition remains a
problem: what does it mean to decompose a role?

We therefore decided to use abstract, prototypical objects
as the core of an ADORA model (Fig. 1). An equivalent to
classes (which we call types) is only used to model com-
mon characteristics of objects: types define the properties
of the objects and can be organized in subtype hierarchies.
In order to make models more precise, we distinguish be-
tween objects (representing a single instance) and object
sets that represent a set of instances. Modeling of collabo-
ration and of hierarchical decomposition (see below) be-
comes easy and straightforward with abstract objects.

In the meantime, others have discovered the benefits of
modeling with abstract objects, too. UML, for example,
uses abstract objects for modeling collaboration in collabo-

ration diagrams and in sequence diagrams1. However,
without a notion of abstraction and decomposition, only
local views can be modeled. Moreover, class diagrams still
form the core of an UML specification.

Hierarchical Decomposition
Every large specification must be decomposed in some
way in order to make it manageable and comprehensible. A
good decomposition (one that follows the basic software
engineering principles of information hiding and separation
of concern) decomposes a system recursively into parts
such that

(i) every part is logically coherent, shares information
with other parts only through narrow interfaces and
can be understood in detail without detailed knowl-
edge of other parts,

(ii) every composite gives an abstract overview of its parts
and their interrelationships.

The current object-oriented modeling methods typically
approach the decomposition problem in two ways: (a) by
modeling systems as collections of models where each
model represents a different aspect or gives a partial view
of the system, and (b) by providing a container construct in
the language that allows the modeler to partition a model
into chunks of related information (e.g. packages in UML).
However, both ways do not satisfy the criteria of a good
decomposition. Aspect and view decompositions are co-
herent only as far as the particular aspect or view is con-
cerned. The information required for comprehending some
part of a system in detail is not coherently provided. Con-
tainer constructs such as UML packages have semantics
that are too weak for serving as composites in the sense
that the composite is an abstract overview of its parts and
their interrelationships. This is particularly true for multi-
level decompositions. Only the ROOM method [21] can
decompose a system in a systematic way. However, as
ROOM is also based on classes, the components are not

1 There is no consistent notion of abstract objects in UML. In

collaboration diagrams Classifier Role is used to represent abstract
objects whereas in sequence diagrams Object is used for the same
purpose. The UML reference manual increases the confusion by stating
that collaborations use objects ([18] pp. 29, 196 and 530).

BoilerControlPanel

BoilerDisplay: Display

Keypad... On: Button

Off: Button

RoomTempControlPanel

RoomDisplay: Display

Off: Button

On: Button

Plus: Button

Minus: Button

Enter: Button

HeatingControlSystem

MasterModule... RoomModule...

(1,n)

BoilerControl
Panel

RoomTemp
ControlPanel

Keypad Button Display

Top right: Conventional class model of the
control panels

Left: ADORA model of a distributed heating
control system. MasterModule and Room-
Module are partially visualized (indicated
by dots after name); showing the control
panels only. Display and Button are types.

Figure 1. An ADORA object model (left) vs. a conventional class model (top right)

– 3 –

classes, but class references. This asymmetry makes it
impossible to define multi-level decompositions in a
straightforward, easily understandable way.

In ADORA, the decomposition mechanism was deliberately
chosen such that good decompositions in the sense of the
definition given above become possible. We recursively
decompose objects into objects (or elements that may be
part of an object, like states). So we have the full power of
object modeling on all levels of the hierarchy and only vary
the degree of abstractness: objects on lower levels of the
decomposition model small parts of a system in detail,
whereas objects on higher levels model large parts or the
whole system on an abstract level.

Integrated Model
With existing modeling languages, one creates models that
consist of a set of more or less loosely coupled diagrams of
different types. UML is the most prominent example of this
style. This seems to be a good way to achieve separation of
concerns. However, while making separation easy, loosely
coupled collections of models make the equally important
issues of integration and abstraction of concerns quite
difficult.

In contrast to the approach of UML and others, an ADORA
model integrates all modeling aspects (structure, data, be-
havior, user interaction...) in one coherent model. This
allows us to develop a strong notion of consistency and
provides the necessary basis for developing powerful con-
sistency checking mechanisms in tools. Moreover, an inte-
grated model makes model construction more systematic,
reduces redundancy and simplifies completeness checking.

Using an integrated model does of course not mean that

everything is drawn in one single diagram. Doing so would
drown the user in a flood of information. We achieve sepa-
ration of concerns in two ways: (1) We decompose the
model hierarchically, thus allowing the user to select the
focus and the level of abstraction. (2) We use a view con-
cept that is based on aspects, not on various diagram types.
The base view consists of the objects and their hierarchical
structure only. The base view is combined with one or
more aspect views, depending on what the user wishes to
see. These two concepts – hierarchy and combination of
views – constitute the essence of organizing an ADORA
model.

Depending on the capabilities of a tool, combined views
either are fixed and have to be explicitly drawn by the user
or (better) they are generated from a repository by the tool.

Adaptable Degree of Formality
An industrial-scale modeling language should allow its
users to adapt the degree of formalism in a specification to
the difficulty and the risk of the problem at hand. There-
fore, they need a language with a broad spectrum of for-
mality in its constructs, ranging from natural language to
completely formal elements.

In ADORA, we satisfy this requirement by giving the mod-
eler a choice between informal, textual specifications and
formal specifications (or a mixture of both). For example,
an object may be specified with an informal text only. Al-
ternatively, it can be formally decomposed into compo-
nents. These in turn can be specified formally or infor-
mally. As another example, state transitions can be speci-
fied in a formal notation or informally with text or with a
combination of both.

HeatingControlSystem

MasterModule

controlBoiler
(1,1)

BoilerControl
Panel...

OperateHeatingSystem...

BoilerOperator

object object set scenario element of the
environment

relationship
state abstract relationship

interaction

(1,n)

HeatingOff

HeatingOn LocalControl
Disabled

readTemp (1,1)

controlValve
(1,3)

communicates

display

RoomTemp
Sensor: external

RoomControl

RoomModule
RoomTempControl
Panel...

RadiatorValve

BoilerControl...

setReadTemp

LocalControlEnabled Local
Control
Off

Local
Control
On

User

ManageLocal
RoomTemperature...

Settings Controller
setDefault

setRoom

setLocal
Control

note RoomControl uses local
control parameters if local control
is enabled and on. Else, default
values (set by MasterModule) are
used.

Figure 2. An ADORA view of the heating system: base view combined with structural view and context view

– 4 –

The syntax of the ADORA language provides a consistent
framework for the use of constructs with different degrees
of formality.

Contextual visualization
The current specification tools lack capabilities for an ade-
quate visualization of hierarchical decomposition. They
typically provide explosive zoom only. In ADORA, we are
using a novel visualization concept for composition ab-
stractions which is based on the notion of fisheye views.
This technique supports the abstraction mechanisms of the
language directly by corresponding visualization mecha-
nisms in the tool.

3 AN OVERVIEW OF THE A DORA LANGUAGE
An ADORA model consists of a basic hierarchical object
structure (the base view, as we call it) and a set of aspect
views that are combined with the base view. In this section
we describe these views and their interaction.

3.1 Basic Hierarchical Object Structure
The object hierarchy forms the basic structure of an
ADORA model.

Objects and object sets. As already mentioned above, we
distinguish between objects and object sets. An ADORA
object is an abstract representation for a single instance in
the system being modeled. For example, in our heating
control system, there is a single boiler control panel, so we
model this entity as an object. Abstract means that the
object is a placeholder for a concrete object instance. While
every object instance must have an object identifier and
concrete values for its attributes, an ADORA object has
neither of these. An ADORA object set is an abstract repre-
sentation of a set of object instances. The number of in-
stances allowed can be constrained with a cardinality. For
example, in an order processing system we would model
suppliers, parts, orders, etc. as object sets. In the heating
control system, we have a control panel in every room and
we control at least one room. Thus we model this panel as
an object set with cardinality (1,n); see Fig. 2.

Structure of an ADORA object. An object or object set
has a twofold inner structure: it consists of a set of proper-
ties and (optionally) a set of parts.

The properties are attributes (both public and private ones),
directed relationships to other objects/object sets, opera-
tions and so called standardized properties. The latter are
user-definable structures for stating goals, constraints, con-
figuration information, notes, etc.; see below.

The parts can be objects, object sets, states and scenarios.
Every part again can consist of parts: objects and object
sets can be decomposed recursively as defined above,
states can be refined into statecharts, scenarios into sce-
nariocharts (as we call them, see below). Thus, we get a
hierarchical whole-part structure that allows modeling a
hierarchical decomposition of a system. The decomposition
is strict: an element neither can contain itself nor can it be a
part of more than one composite.

Graphic representation. In order to exploit the power of
hierarchical decomposition, we allow the modelers to rep-
resent an ADORA model on any level of abstraction, from a
very high-level view of the complete system down to very
detailed views of its parts. We achieve this property by
representing ADORA objects, object sets, scenarios and
states by nested boxes (see Fig. 1 and 2). The modeler can
freely choose between drawing few diagrams with deep
nesting and more diagrams with little nesting. In order to
distinguish expanded and non-expanded elements in a
diagram, we append three dots to the name of every ele-
ment having parts that are not or only partially drawn on
that diagram.

Types. Frequently, different objects have the same inner
structure, but are embedded in different parts of a system.
In the heating system for example, the boiler control panel
and the room control panels both might have a display with
the same properties. In these situations, it would be cum-
bersome to define the properties individually for every
object. Instead, ADORA offers a type construct. An
ADORA type defines
• the attributes and operations of all objects/object sets

of this type
• a structural interface, that means, information required

from or provided to the environment of any object/ob-
ject set of this type. This facility can be used to express
contracts.

A type neither defines the relationships to other objects/ob-
ject sets nor the embedding of the objects of that type.
Types can be organized in a subtype hierarchy.

An object can have a type name appended to its name (for
example, RoomDisplay: Display in Fig. 1). In this case, the
object is of that type and the type is separately defined in
textual form. Otherwise, there is no other object of the
same type in the model and the type information is in-
cluded in the definition of the object. Fig. 6 shows an ex-
ample of such an object definition.

propertydef goal numbered Hyperstring constraints unique;
propertydef created Date;
propertydef note Hyperstring;

object HeatingControlSystem...
goal 1 "Provide a comfortable control for the heating of a building with several
room s."
created 1999-11-04
note "Constraints have yet to be discussed and added."
end HeatingControlSystem.

Figure 3. Definition and use of standardized properties

Standardized properties. In order to adapt ADORA in a
flexible, yet controlled way to the needs of different pro-
jects, application domains or persons, we provide so called
standardized properties. An ADORA standardized property
is a typed construct consisting of a header and a body. Fig.
3 shows the type definitions for the properties goal, created
and note and the application of these properties in the
specification of the object HeatingControlSystem. As name
and structure of the properties are user-definable, we get
the required flexibility. On the other hand, typing ensures
that a tool nevertheless can check the properties and sup-
port searching, hyperlinking and cross-referencing.

– 5 –

3.2 The Structural View
The structural view combines the base view with directed
relationships between objects. Whenever an object A refer-
ences an information in another object B (and B is not a
part of A or vice-versa) then there must be a relationship
from A to B. Referencing an information means that A
• accesses a public attribute of B,
• invokes an operation of B,
• sends an event to B or receives one from B.

Every relationship has a name and a cardinality (in the
direction of the relationship). Bi-directional relationships
are modeled by two names and cardinalities. Relationships
are graphically represented by lines between the linked
objects/object sets. An arrow preceding the name indicates
the direction of the relationship (Fig. 2).

blabla (1,n)

oops (1,1)

blabla (1,n)

X

X...

Y

Y

X...

X... Y...

highbla
A

C
B

BA

Y...A

Figure 4. Four static views of the same model on different
levels of abstraction

Static relationships must reflect the hierarchical structure
of the model. Let objects A and B be linked by a
relationship. If A is contained in another object X and B in
an object Y, then the relationship A->B implies abstract
relationships X->Y, A->Y and X->B. Whenever we draw a
diagram that hides A, B or both, the next higher abstract
relationship must be drawn. Abstract relationships are
drawn as thick lines. They can, but need not be named. In
case of partially expanded objects, we sometimes have to
draw both a concrete and a corresponding abstract
relationship. In this case, we indicate the correspondence
by a dashed hairline (Fig. 4). In the view shown in Fig. 2,
we have some examples. All relationships from
BoilerControl to other objects are abstract ones because their
origins within BoilerControl are hidden in this view. The
relationships readTemp from Controller to RoomTempSensor
and controlValve from Controller to RadiatorValve are

elementary relationships. Hence they are drawn with thin
lines. If we had chosen a view that hides the contents of
RoomControl, we had drawn two abstract relationships from
RoomControl to RoomTempSensor and to RadiatorValve,
respectively.

3.3 The Behavioral View
Combining objects and states. For modeling behavior,
ADORA combines the object hierarchy with a statechart-
like state machine hierarchy [10][11]. Every object repre-
sents an abstract state that can be refined by the objects
and/or the states that an object contains. This is completely
analogous to the refinement hierarchy in statecharts [12]
and can be given analogous semantics for state transitions.
We distinguish pure states (represented graphically by
rounded rectangles) and objects with state (see Fig. 5).
Pure states are either elementary or are refined by a pure
statechart. Objects with state additionally have properties
and/or parts other than states.

We do not explicitly separate parallel states/state machines
as it is done in statecharts. Instead, objects and states that
are part of the same object and have no state transitions be-
tween each other are considered to be parallel states. Ob-
jects that neither are the destination of a state transition nor
are designated as initial abstract states are considered to
have no explicitly modeled state.

By embedding the behavior model into the object decom-
position hierarchy, we can easily model behavior on all
levels of abstraction. On a high level, objects and states
may represent abstract concepts like operational modes
(off, startup, operating...). On the level of elementary ob-
jects, states and transitions model object life cycles.

State transitions. Triggering events and triggered actions
or events either can be written in the traditional way as an
adornment of the state transition arrows in the diagrams, or
they can be expressed with transition tables [16]. For large
systems with complex transition conditions the latter nota-
tion is more or less mandatory in order to keep the model
readable. Depending on the degree of required precision,
state transition expressions can be formulated textually,

RoomModule

(1,n)

HeatingOff

HeatingOn
LocalControl
Disabled

RoomTempControl
Panel...

RoomTemp
Sensor: external

RoomControl LocalControlEnabled

ManageLocal
RoomTemperature...

receive on
over setRoom

"enable" "disable"

Init, Monitoring Modifying

Modifying

Monitoring

Init

Y

 State Transition Tables for Controller

Y

ControllerSettings

Reading

Local
Control
Off

Local
Control
On

IN LocalControlEnabled.LocalControlOn

ActualTemp > Settings.CurrentTemp(now)

ActualTemp < Settings.CurrentTemp(now)

ActualTemp > Settings.DefaultTemp(now)

ActualTemp < Settings.DefaultTemp(now)

IN LocalControlEnabled

send open over controlValve

send close over controlValve

180 s IN Modifying

MonitoringModifying

10 s IN Reading

self.ReadSensorValue

ReadingReading

Y

N

Y

•

•

N

•

•

N

Y

•Y

Y

N

Y

•

•

N

•

•

N

Y

•Y

note RoomControl uses local control
parameters if local control is enabled
and on. Else, default values (set by
MasterModule) are used.

note setRoom and controlValve are
relationships (see Fig. 2) that act as
channels for receiving/sending events.

receive off over
setRoom / send shut
over controlValve

Figure 5. A partial ADORA model of the heating control system; base view and behavior view

– 6 –

formally, or with a combination of both. Fig. 5 shows the
graphic representation of a behavior view with some of the
variants described above. When the system is started, then
for all members of the object set RoomModule the initial
state HeatingOff is entered . The transition to the object
HeatingOn is specified formally. It is taken when the event
on is received over the relationship setRoom (cf. Fig. 2). If
this transition is taken, the state LocalControlDisabled and the
object RoomControl are entered concurrently. Within Room-
Control, the object Controller is entered and within Controller
the parallel states Init and Reading. This is equivalent to the
rules that we have for statecharts. The state transitions
between LocalControlDisabled and LocalControlEnabled are
specified informally with a text only. The transitions within
Controller are specified in tabular form.

Timing and event propagation. In ADORA we use the
quasi-synchronous timing and event propagation semantics
defined in [11], where state transitions take time, but the
time interval is infinitesimally short and no external event
can occur prior to the end of the interval. This is similar to
the usual synchronous timing semantics, but avoids
counter-intuitive behavior in some cases.

In contrast to usual statecharts and other than in [11] we do
not broadcast events in ADORA. Instead, events have to be
explicitly sent and received. We do so in order to avoid
global propagation of local events.

3.4 The Functional View
In the functional view we define the properties of an object
or object set (attributes, operations...) that have not already
been defined by the object's type. When there is only one
object of a certain type, the complete type information is
embedded in the object definition. The functional view is
not combined with other views; it is always represented
separately in textual form.

object Settings
part of RoomControl
provides Actual Temp;

"Operations to inspect / manipulate control intervals (consisting of
start time and desired temperature), both default and user-defined"

requires //nothing
type
TempIntervals is list of TempInterval;
TempInterval is structure of (start: Time, temp: Temperature)

attribute //public attributes
ActualTemp: Temperature

var //private attributes
DefaultIntervals: TempIntervals; //default temperature settings
UserSetIntervals: TempIntervals //user-defined temperature settings

syncoperation CurrentTemp (t: Time): Temperature
pre 1 ≤ t ≤ 24*60 //minutes
post with usi = UserSetIntervals;

CurrentTemp = usi[i].temp and usi[i].start ≤ t and
not exists j • (usi[i].start < usi[j].start ≤ t)

end CurrentTemp;
syncoperation DefaultTemp (t:Time): Temperature
"Same as CurrentTemp , but returns current default value"

end DefaultTemp;
operation RevertToDefault
post UserSetIntervals' = DefaultIntervals

end RevertToDefault;
" Settings must also provide operations for setting and deleting intervals and for
browsing the currently defined intervals."
end Settings.

Figure 6. Functional view of the object Settings (cf. Fig. 5)

Fig. 6 shows a small example. A syncoperation is assumed
to execute synchronously, i.e. its execution takes no time.
This is advantageous when using such an operation in a
state transition. “Normal” operations are assumed to
execute asynchronously and take time. As the example
shows, definitions can vary in their degree of formality.
The operations CurrentTemp and RevertToDefault are
specified formally. DefaultTemp is specified semiformally,
having a formal signature but informally described
semantics. An informal text points to operations that are
not (yet) defined at all. The formal elements of the notation
are inspired by existing notations, in particular the
language ASTRAL [7].

3.5 The User View
In the last few years, the importance of modeling systems
from a user's viewpoint, using scenarios or use cases, was
recognized (for example, see [5][11][13] and many others).
In ADORA, we take the idea of hierarchically structured
scenarios from [11] a step further and integrate the scenar-
ios into the overall hierarchical structure of the system.

In our terminology, a scenario is an ordered set of interac-
tions between partners, usually between a system and a set
of actors external to the system. It may comprise a concrete
sequence of interaction steps (instance scenario) or a set of
possible interaction steps (type scenario). Hence, a use case
is a type scenario in our terminology.

We view scenarios and objects to be complementary in a
specification. The scenarios specify the stimuli that actors
send to the system and the reactions of the system to these
stimuli. However, when these reactions depend on the
history of previous stimuli and reactions, that means on
stored information, a precise specification of reactions with
scenarios alone becomes infeasible. The objects specify the
structure, functions and behavior that are needed to specify
the reactions in the scenarios properly.

In the base view of an ADORA model, scenarios are repre-
sented with ovals. In the user view, we combine the base
view with grey lines that link the scenario with all objects
that it interacts with (Fig. 7). For example, the scenario
ManageLocalRoomTemperature specifying the interaction
between the actor User and the system is localized within
the object LocalControlEnabled. Internally, the scenario in-
teracts with RoomTempControlPanel and with an object in
HeatingOn which is hidden in this view.

HeatingControlSystem

BoilerOperator

BoilerControl
Panel...

RoomModule...

(1,n)

MasterModule...

HeatingOn...

LocalControlEnabled...

RoomTempControl
Panel...

RadiatorValve User

OperateHeatingSystem... ManageLocal
RoomTemperature...

Figure 7. A user view of the heating control system

– 7 –

An individual scenario can be specified textually or with a
statechart. In both cases, ADORA requires scenarios to
have exactly one starting and one exit point. Thus, complex
scenarios can be easily built from elementary ones, using
the well-known sequence, alternative, iteration and con-
currency constructors. In [11] we have demonstrated state-
chart-based integration of scenarios using these construc-
tors. However, when integrating many scenarios, the
resulting statechart becomes difficult to read. We therefore
use Jackson style diagrams (with a straightforward exten-
sion to include concurrency) for visualizing scenario com-
position. We call these diagrams scenariocharts (Fig. 8).

ManageLocal
RoomTemperature

TurnLocal
ControlOn

Set
Temperature

Inspect
Temperature

TurnLocal
ControlOff

Manage
Temperature

UseLocal
Control

Local
Control

Concurrency

Iteration

Alternative

Sequence

Figure 8. A scenariochart modeling the structure of the
ManageLocalRoomTemperature scenario

Any scenario represented in the base view can either be
elementary (and be modeled with text or with a statechart)
or it can be decomposed with a scenariochart.

Thus, we have a hierarchical decomposition in the user
view, too. The object hierarchy of the base view allocates
high-level scenarios (like ManageLocalRoomTemperature in
our heating system) to that part of the system where they
take effect. The scenario hierarchy decomposes high-level
scenarios into more elementary ones. As a large system has
a large number of scenarios (we mean type scenarios/use
cases here, not instance scenarios), this facility is very
important for grouping and structuring the scenarios.

3.6 The Context View
The context view shows all actors and objects in the envi-
ronment of the modeled system and their relationships with
the system. Depending on the degree of abstraction se-
lected for the system, we get a context diagram (Fig. 9) or
the external context for a more detailed view of the system
(Fig. 2).

In addition to external elements that are not a part of the
system being specified, an ADORA model can also contain
so called external objects. We use these to model preex-
isting components that are part of the system, but not part
of the specification (because they already exist). External
objects are treated as black boxes having a name only. In
the notation, such objects are marked with the keyword
external (for example, the object RoomTempSensor in Fig.
2). In any specification where COTS components will be

part of the system or where existing components will be
reused, modeling the embedding of these components into
the system requires external objects.

HeatingControlSystem

RoomModule...MasterModule...

Boiler

Operator

RadiatorValve

User

(1,n)

Figure 9. A context diagram of the heating control system

3.7 Modeling Constraints and Qualities
Constraints and quality requirements are typically ex-
pressed with text, even in specifications that employ
graphical models for functional specifications. In tradi-
tional specifications and with UML-style graphic models
we have the problem of interrelating functional and non-
functional specifications and of expressing the non-func-
tional specifications on the right level of abstraction.

In ADORA, we use two ADORA-specific features to solve
this problem. (1) The decomposition hierarchy in ADORA
models is used to put every non-functional requirement
into its right place. It is positioned in the hierarchy ac-
cording to the scope of the requirement. The requirements
themselves are expressed as ADORA standardized proper-
ties. Every kind of non-functional requirement can be ex-
pressed by its own property kind, for example performance
constraint, accuracy constraint, quality...).

3.8 Consistency Checking and Model Verification
Having an integrated model allows us to define stringent
rules for consistency between views, for example “When
an object A references information in another object B in
any view and B is not a part of A or vice-versa, then there
must be a relationship from A to B in the static view.” A
language for the formulation of consistency constraints and
a compiler that translates these constraints into Java have
been developed [20]. By executing this code in the ADORA
tool, the tool is enabled to check or enforce these con-
straints. The capabilities for formal analysis and verifica-
tion of an ADORA model depend on the chosen degree of
formality. In the behavior view, for example, a sufficiently
formal specification of state transitions allows to apply all
analyses that are available for hierarchical state machines.

4 CONTEXTUAL VISUALIZATION – THE ADORA
TOOL

The ADORA tool provides capabilities for editing, storing,
visualizing and checking ADORA models. For the visua-
lization of the object hierarchy, we do not simply use ex-
plosive zooming, but have developed a novel concept that
is based on fisheye views. As this is the most interesting
aspect of the ADORA tool, we restrict the presentation of
the tool in this paper to the topic of model visualization.

– 8 –

4.1 General Considerations
A good visualization concept is critical both for under-
standability and ease-of-use of graphical models. A good
concept should: (1) support orientation in the model by
visualizing as much local detail as needed without losing
the global context of the focused elements, (2) minimize
the cognitive overhead for navigation, (3) increase expres-
siveness by including the semantics of the model in the
visualization, and (4) foster its understandability by sup-
porting the abstraction mechanisms of the model.

Current tools operating on hierarchical model structures
normally visualize a single element with its direct succes-
sors in a single view. A few tools visualize all nodes in one
view. Some tools provide scaling, map windows or over-
view windows to manage the complexity of big models,
but most tools provide just explosive zooming. With explo-
sive zooming, the global context gets lost, while the
zoomed node explodes entirely in the existing or a new
window. As a consequence, these tools either offer views
showing global context without local detail or local detail
without global context. Global context and local detail in
one view are realized in very few tools; full flexibility in
scaling and zooming is not offered at all. Compared with
the essential modeling tasks, the cognitive overhead in-
creases too much when models become larger [1].

Fisheye zooming produces a local detail view while pre-
serving the global context in the same view [9][19]. The
idea is to show local detail – the objects of interest to the
user – in full, while displaying successively less detail for
information being further away from this focus.

4.2 View Generation for ADORA Models
The principal idea of our approach towards visualization is
to apply the notion of fisheye views to the visualization of
ADORA models [1]. We define fisheye views with multiple
foci for navigating in hierarchically clustered networks of
objects. View generation is model-driven. It follows the
decomposition structure and thus the abstractions of the
model rather than being ‘just’ a flat geometric projection.
The concept integrates local detail and global context in a
single view. Such views ease orientation and navigation in
the model and minimize the cognitive overhead.

As this concept allows less interesting elements to be visu-
alized on an abstract level together with the details of ele-
ments of special interest, we have strong capabilities for
supporting the inherent abstraction mechanisms in the
object model that is being visualized and thus foster the
expressiveness and understandability of the model.

A distinct feature of our fisheye zooming algorithm is that
it works on any given layout, adjusting it incrementally and
preserving it as far as possible. So a user may re-arrange a
layout without losing these rearrangements when zooming.

4.3 Navigation in ADORA Models
We distinguish between two types of navigation, a physical
and a logical one. Physical navigation is necessary when
the actual visualized model exceeds the size of the
available display. The typical solution is scaling, scrolling

or a combination of both. Physical navigation is well
known, as it is the normal way of navigation in flat models.

The really interesting kind of navigation in ADORA is
logical navigation through the hierarchy. Logical naviga-
tion in a hierarchical structure means finding the actual
position of a local element in the global context of the
hierarchy, or changing the foci of visualized elements. To
handle this kind of navigation adequately, we zoom in or
out. Zooming-in means that more details of a deeper hier-
archical level is visualized. Zooming-out means that a
more abstract view of the selected elements is produced.

Figures 9 and 2 give a brief impression of our visualization
concept. Fig. 9 shows the heating control system on a very
high level of abstraction. The following steps lead to the
view given in Fig. 2: (1) zooming-in on MasterModule, (2)
zooming-in on RoomModule, (3) zooming in on HeatingOn,
(4) zooming-in on LocalControlEnabled, (5) zooming in on
RoomControl.2 A more detailed example is presented in [1].

5 USING ADORA IN THE SOFTWARE DEVELOP-
MENT PROCESS

ADORA is an open approach that does not require a speci-
fic development process. It works with any process that
• focuses on object-oriented models for requirements

specification and software architecture
• emphasizes the creation of a coherent, consistent

model (instead of a loosely coupled set of diagrams).

ADORA supports a broad spectrum of modeling methods,
for example, pure object modeling, behavior-focused mod-
eling and scenario-focused modeling.

Equally important, ADORA is flexible what the formality
of models is concerned. Depending on the required preci-
sion and unambiguity for modeling the problem at hand,
the formality of an ADORA model can vary from mostly
informal, textual specifications having the decomposition
structure and standardized properties as its only formal
elements up to a completely formal specification. In par-
ticular, the object hierarchy provides a framework that
allows objects specified with different degrees of formality
to coexist in the same model in a well-structured way.

6 VALIDATION OF A DORA

In our opinion, there are two fundamental qualities that a
specification language should have:
• the language must be easy to comprehend (a specifica-

tion has more readers than writers)
• the users must like it.

6.1 Goals of the Validation
Therefore, we experimentally validated the ADORA lan-
guage with respect to these two qualities. We set up an
experiment with the following goals.

2 Due to limited space, Fig. 2 has been drawn manually. When cons-

tructed with our zooming algorithm, the drawing would be considera-
bly larger. However, it would be identical both in topology and content
with Fig. 2.

– 9 –

(i) Determine the comprehensibility of an ADORA speci-
fication both on its own and in comparison with an
equivalent specification written in UML – today's
standard modeling language – from the viewpoint of a
reader of the specification.

(ii) Determine the acceptance of the fundamental concepts
of A DORA (using abstract objects, hierarchical
decomposition, integrated model...) both on its own
and in comparison with UML from the viewpoint of a
reader/writer of models.

6.2 Setup of the Experiment
In order to measure these goals, we set up the following
experiment [3]. We wrote a partial specification of a dis-
tributed ticketing system both in ADORA and in UML. The
system consists of geographically distributed vending sta-
tions where users can buy tickets for events (concerts,
musicals...) that are being offered on several event servers.
Vending stations and event servers shall be connected by
an existing network that needs not to be specified.

Then we prepared a questionnaire consisting of two parts.
In the first part, the “objective” one, we aimed at measur-
ing the comprehensibility of an ADORA model. We created
30 questions about the contents of the specification, for
example “Can a user at a point of sale terminal purchase an
arbitrary number of tickets for an event in a single transac-
tion?” 25 questions were yes/no questions; the rest were
open questions. For every question, we additionally asked
• whether the answering person was sure or unsure

about her or his answer,
• how difficult it was to answer the question.

In the second part, the “subjective” one, we tested the
acceptance of ADORA vs. UML. We asked 14 questions
about the personal opinion of the answering person con-
cerning distinctive features of both ADORA and UML, for
example “Does it make sense to use an integrated model
(like ADORA) for describing all aspects of a system”?

We ran the experiment with fifteen graduate and PhD stu-
dents in Computer Science who were not members of our
research group. The participants were first given an intro-
duction both to ADORA and to UML. Then we divided the
participants into two groups. The members of group A
answered the objective part of the questionnaire first for
the ADORA specification and then for the UML specifica-
tion; group B members did it vice-versa. Finally, both
groups answered the subjective part of the questionnaire. In
order to avoid answers being biased towards ADORA, we
ensured the anonymity of the filled questionnaires.

Two participants did not finish the experiment; another
person's answers could not be scored because his answers
revealed insufficient base knowledge of object technology.
So we finally had twelve complete sets of answers.

6.3 Some Results
Due to space limitations, we only can present some key
results here. The complete results are given in [3]. As the
differences between groups A and B are marginal, we con-
solidate the results for both groups in the results given
below.

Fig. 10 shows the overall results of the first part of the
questionnaire. For each model, we had a total of 360
answers (30 questions times 12 participants). For every
answer, we determined whether the answer was objectively
right or wrong. The answers were further subdivided into
those where the answering person was sure about her or his
answer and those where she or he was not. The subdivision
of the columns indicates how difficult it was to answer the
questions in the participants’ opinion. (For example, about
79% of the questions about the ADORA model were an-
swered correctly and the participants were sure about their
answer. For about half of these answers, the participants
judged the answer to be easy to give.)

0

10

20

30

40

50

60

70

80

right
(sure)

right
(unsure)

wrong
(unsure)

wrong
(sure)

easy

moderate

difficult

impossible

%

0

10

20

30

40

50

60

70

80

right
(sure)

right
(unsure)

wrong
(unsure)

wrong
(sure)

easy

moderate

difficult

impossible

%

ADORA UML

Figure 10. Comprehensibility of models. Right and wrong
answers to the questions in the objective part of the ques-
tionnaire for ADORA vs. UML models. The graphics also
shows how certain the participants were about their an-
swers and how they rated the difficulty of answering.

Despite the fact that the number of participants was fairly
small, these results strongly support the comprehensibility
hypothesis and also show a clear trend that an ADORA
specification is easier to comprehend than an UML specifi-
cation. Table 1 summarizes the results of the subjective
part of the questionnaire. Again, the results strongly sup-
port our hypothesis that users like the fundamental con-
cepts of ADORA and that they prefer them to those of
UML.

Table 1. Acceptance of distinct features; ADORA vs. UML3

Statement strongly
agree

mostly
agree

mostly
disagree

strongly
disagree

The specification gives the reader a precise idea
about the system components and relationships

ADORA
UML

23%
8%

62%
46%

8%
31%

8%
15%

The structure of the system can be determined
easily

ADORA
UML

54%
8%

31%
38%

8%
23%

8%
31%

The specification is an appropriate basis for design
and implementation

ADORA
UML

25%
0%

75%
50%

0%
33%

0%
17%

Using an integrated model (ADORA) makes sense
Using a set of loosely coupled diagrams (UML) makes sense

42%
8%

25%
17%

33%
67%

0%
8%

Hierarchical decomposition eases description of large systems
ADORA eases focusing on parts without losing context
 Decomposition in ADORA eases finding information
Integrating information from different diagrams is easy in UML

15%
38%
46%
15%

69%
46%
38%
15%

15%
15%
15%
46%

0%
0%
0%

23%
Specifying objects with their roles and context is adequate
Describing classes is sufficient

31%
0%

54%
15%

15%
62%

0%
23%

Even if we subtract some potential bias (maybe some of the
participating students did not want to hurt us), we can
conclude from this experiment that the ADORA language is
a step into the right direction.

3 The percentages have been rounded properly, therefore the sums in the

rows sometimes yield 99% or 101%.

– 10 –

7 Yet another language? ADORA vs. UML
The goal of the ADORA project is not to bless mankind
with another fancy modeling language. When UML be-
came a standard, we of course investigated the option of
making ADORA a variant of UML. The reason why we
didn't is because ADORA and UML differ too much in their
basic concepts (Table 2).

The most fundamental difference is the concept of an inte-
grated, hierarchically decomposable model in ADORA vs. a
flat, mostly non-decomposable collection of models in
UML. Hierarchical structures like those shown in Fig. 1
could of course be drawn with UML package diagrams.
However, as soon as we want to add properties, relation-
ships or state transitions, the UML package notation fails,
because UML packages are mere containers and only de-
pendency links are allowed between packages.

Table 2. Comparison of basic concepts of ADORA vs. UML
ADORA UML

Specification is based on a model of
abstract objects, types are supplemen-
tary

Specification is based on a class
model, object models are partial and
supplementary

Specifies all aspects in one integrated
model; separation of concerns
achieved by decomposition and views

Uses different models for each aspect.
Separates concerns by having a
loosely coupled collection of models

Hierarchical decomposition of objects is
the principal means for structuring and
comprehending a specification

Class and object models are flat. Only
packages can be decomposed hierar-
chically

Scenarios are tightly integrated into the
specification; they can be structured
and decomposed systematically

Use cases (=type scenarios) are
loosely integrated with class and object
models. Structuring capabilities are
weak, decomposition is not possible.

Precise rules for consistency between
aspect views

Nearly no consistency rules between
aspect models

Conceptual visualization eases orienta-
tion and navigation in the specification
and improves comprehenisiblity

UML tools provide traditional scrolling
and explosive zooming only

One could argue that the UML extension mechanisms, in
particular stereotypes, could be used to embed ADORA-like
concepts in UML. Principally, this is true, because
stereotypes in UML are powerful enough do define a com-
pletely different modeling language on top of UML [2].
However, such a redefinition of UML through stereotypes
would be an abuse of the stereotype concept: it would in
fact define a new language which – from a language user's
viewpoint – would no longer behave like UML. Moreover,
redefining stereotypes are quite difficult to support by tools
and current UML tools do not support them.

A real integration of ADORA-like concepts into UML
would require major changes in the UML metamodel. For
example, the language elements Object and Classifier Role
would have to be replaced by a uniform notion of a
decomposable abstract object. According to its fundamen-
tal nature, this new language element would have to be
made part of the UML core. The co-existence of object and
package decompositions would be a source of problems
and would require additional modifications in the meta-
model.

For these reasons we pursue ADORA as an approach of its
own, separately from UML. If the further development and

application of ADORA provides strong evidence that cer-
tain concepts of ADORA are really better than those of
UML (e.g. with respect to comprehensibility), we will
eventually feed these results into the evolution process of
UML.

8 CONCLUSIONS
Summary. We have presented ADORA, an approach to
object-oriented modeling that is based on object modeling
and hierarchical decomposition, using an integrated model.
The ADORA language is intended to be used for require-
ments specifications and high-level, logical views of soft-
ware architectures.

Code generation. ADORA is not a visual programming
language. Therefore, we have not done any work towards
code generation up to now. However, in principal the gen-
eration of prototypes from an ADORA model is possible.
ADORA has both the structure and the language elements
that are required for this task.

State of work. We have finished a first definition of the
ADORA language in early 1999 [15]. In the meantime we
have evolved some language concepts and have conducted
an experimental validation. The ADORA tool is still in the
proof-of-concept phase. We have a prototype demonstrat-
ing that the zooming algorithm, which is the basis of our
visualization concept, works.

Future plans. The work on ADORA goes on. In the next
years, we will develop a real tool prototype, exploit
ADORA's potential for simulating and animating models
and investigate the use of ADORA for partial and incre-
mentally evolving specifications. Parallel to that, we want
to apply ADORA in projects and evolve the language
according to the experience gained.

REFERENCES

1. Berner, S., Joos, S., Glinz, M. Arnold, M. (1998). A Visuali-
zation Concept for Hierarchical Object Models. Proceedings
13th IEEE International Conference on Automated Software
Engineering (ASE-98). 225-228.

2. Berner, S., Glinz, M., Joos, S. (1999). A Classification of
Stereotypes for Object-Oriented Modeling Languages. Pro-
ceedings 2nd International Conference on the Unified Mod-
eling Language, Fort Collins. Berlin, etc. Springer. 249-264.

3. Berner, S., Schett, N., Xia, Y., Glinz, M. (1999). An Experi-
mental Validation of the ADORA Language. Technical Report
1999.07, University of Zurich.
http://www.ifi.unizh.ch/groups/req/ftp/papers/ADORA_validation.pdf

4. Booch, G. (1994). Object-Oriented Analysis and Design with
Applications, 2nd ed. Redwood City, Ca.: Benjamin/Cumm-
ings.

5. Carroll, J.M. (ed.)(1995). Scenario-Based Design. New York:
John Wiley & Sons.

6. Coad, P., Yourdon E. (1991). Object-Oriented Analysis.
Englewood Cliffs, N. J.: Prentice Hall.

7. Coen-Porisini, A., Ghezzi, C., Kemmerer, R.A. (1997).
Specification of Realtime Systems Using ASTRAL. IEEE
Transactions on Software Engineering 23, 9 (Sept. 1997).
704-736.

– 11 –

8. Firesmith, D., Henderson-Sellers, B. H., Graham, I., Page-
Jones, M. (1998). Open Modeling Language (OML) – Refer-
ence Manual. SIGS reference library series. Cambridge, etc.:
Cambridge University Press.

9. Furnas, G. W. (1986). Generalized fisheye views. Proc. ACM
CHI 86 Conference on Human Factors in Computing
Systems. Boston, Mass. 16-23.

10. Glinz, M. (1993). Hierarchische Verhaltensbeschreibung in
objektorientierten Systemmodellen – eine Grundlage für
modellbasiertes Prototyping. [Hierarchical Description of
Behavior in Object-Oriented System Models – A Foundation
for Model-Based Prototyping (in German)] In Züllighoven,
H. et al. (eds.): Requirements Engineering '93: Prototyping.
Stuttgart: Teubner. 175-192.

11. Glinz, M. (1995). An Integrated Formal Model of Scenarios
Based on Statecharts. In Schäfer, W. and Botella, P. (eds.):
Software Engineering – ESEC ’95. Lecture Notes in Com-
puter Science 989, Berlin, etc.: Springer. 254-271.

12. Harel, D. (1987). Statecharts: A Visual Formalism for Com-
plex Systems. Sci. Computer Program. 8 (1987). 231-274.

13. Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G.
(1992). Object-Oriented Software Engineering – A Use Case
Driven Approach. Reading, Mass., etc.: Addison-Wesley.

15. Joos, S., Berner, S., Arnold, M., Glinz, M. (1997). Hierar-
chische Zerlegung in objektorientierten Spezifikations-
modellen [Hierarchical Decomposition in Object-Oriented
Specification Models (in German)]. Softwaretechnik-Trends,
17, 1 (Feb. 1997), 29-37.

15. Joos, S. (1999). ADORA-L – Eine Modellierungssprache zur
Spezifikation von Software-Anforderungen [ADORA-L – A
modeling language for specifying software requirements. In
German]. PhD Thesis, University of Zurich.

16. Leveson, N.G., Heimdahl, M.P.E., Reese, J.D. (1999). De-
signing Specification Languages for Process Control Sys-
tems: Lessons Learned and Steps to the Future. In Nierstrasz,
O. and Lemoine, M. (eds.): Software Engineering –
ESEC/FSE'99. Lecture Notes in Computer Science 1687,
Berlin, etc.: Springer. 127-145.

17. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Loren-
sen, W. (1991). Object-Oriented Modeling and Design.
Englewood Cliffs, N. J.: Prentice Hall.

18. Rumbaugh, J., Jacobson, I., Booch, G. (1999). The Unified
Modeling Language Reference Manual. Reading, Mass., etc.:
Addison-Wesley.

19. Schaffer, D., et al. (1996). Navigating Hierarchically Clus-
tered Networks through Fisheye and Full-Zoom Methods.
ACM Transactions on CHI 3, 2; (Jun. 1996). 162-188.

20. Schett, N. (1998). Konzeption und Realisierung einer Nota-
tion zur Formulierung von Integritätsbedingungen für
ADORA.Modelle. [A notation for integrity constraints in
ADORA models – Concept and implementation (in German)].
Diploma Thesis, Univ. of Zurich.

21. Selic, B., Gullekson, G., Ward, P. T. (1994). Real-Time
Object-Oriented Modeling. New York: John Wiley & Sons.

22. Wirfs-Brock, R., Wilkerson, B., Wiener, L. (1993). Designing
Object-Oriented Software. Englewood Cliffs, N. J.: Prentice
Hall.

