
A Survey of
Simulation Tools for

Requirements Engineering

Final report of the work group “Simulationswerkzeuge für das Requirements Engineering”.
The work group was part of the Special Interest Group on Requirements Engineering

(FG 2.1.6) of the German Informatics society (GI).

Reto Schmid, Johannes Ryser, Stefan Berner, Martin Glinz
Department of Information Technology, University of Zurich

{rschmid, ryser, berner, glinz}@ifi.unizh.ch

Ralf Reutemann
Daimler-Chrysler Aerospace AG
reutemann.ralf@dornier.dasa.de

Erwin Fahr
Berufsakademie Ravensburg

fahr@ba-ravensburg.de

Abstract
Validation of requirements specifications is undoubtly an integral and indispensable
part of requirements engineering. Validation is the process of checking whether
requirements specifications meet the intentions and expectations of the stakeholders.
One approach to support the process of validation is based on simulation/execution and
animation of system (behaviour) models that are derived from initial requirements
specifications. However, the benefit of executable models is determined by the
capabilities of the corresponding simulation tools. This paper presents a survey on
simulation and animation capabilities of ten modern software/system engineering tools.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 2 of 46

Table of Contents

1 . INTRODUCTION . 3

1.1 MOTIVATION.. 3
1.2 PROCESS OVERVIEW OF THE SURVEY.. 3
1.3 STRUCTURE OF THE DOCUMENT.. 4
1.4 ACKNOWLEDGEMENTS ... 4
1.5 DISCLAIMER ... 4

2 . SIMULATION/ANIMATION - WHY AND WHAT FOR?. 4

2.1 DEFINITIONS... 4
2.2 BENEFITS OF SIMULATION/ANIMATION... 5
2.3 DRAWBACKS OF SIMULATION/ANIMATION.. 6
2.4 TOOL CAPABILITIES.. 6

3 . METHODOLOGY OF THE SURVEY . 1 1

3.1 SCOPE OF THE SURVEY...11
3.2 PROCESS OF THE SURVEY..12
3.3 PRIMARY INSTRUMENTS OF THE SURVEY..13

4 . THE SURVEYED TOOLS. 1 4

4.1 CIP TOOL 3.0..15
4.2 CORESIM 2.1 ..16
4.3 OBJECTGEODE 4 ...17
4.4 OBJECTIME DEVELOPER 5.0..18
4.5 PACE 3.1...19
4.6 QUICKCRC 1.2..20
4.7 RDD-100 / DVF 4.1...21
4.8 RHAPSODY FOR C++ 2.1..22
4.9 SDT / ORCA 3.3...23
4.10 STATEMATE MAGNUM 1.3...24
4.11 COMPARISON OF THE TOOLS..25

5 . THE TOOLS NOT SURVEYED. 2 8

5.1 TOOLS WITHOUT INTERACTIVE SIMULATION/ANIMATION CAPABILITIES ..28
5.2 TOOLS WITHOUT RE/SE MODELLING LANGUAGE SUPPORT...29
5.3 LACK OF INFORMATION ABOUT TOOLS ..29
5.4 LACK OF TIME FOR FURTHER INVESTIGATION OF TOOLS ..30

6 . CONCLUSIONS . 3 1

7 . REFERENCES . 3 2

7.1 LITERATURE..32
7.2 TOOLS..33

8 . GLOSSARY . 3 9

APPENDIX A: PRELIMINARY QUESTIONNAIRE. 4 0

APPENDIX B: DETAILED QUESTIONNAIRE. 4 2

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 3 of 46

A Survey of
Simulation Tools for Requirements Engineering

1. Introduction

1.1 Motivation
Nowadays the role and importance of requirements engineering (RE) is widely undisputed. The later
errors and misunderstandings are uncovered in a system development project, the more costs arise for
fixing them [Boehm 81]. Thus, getting the requirements right the first time is a vital, although
difficult, endeavour. Different terminologies and understandings of stakeholders and requirements
engineers make good communication and therefore good RE specifications a hard task.
Incompleteness, ambiguity, inconsistencies, and vagueness, to name just a few, are common
problems encountered when eliciting and specifying requirements.

Due to this, validation of the requirements specification is an integral and indispensable part of RE.
Validation is the process of checking, together with the stakeholders, whether the requirements
specification meets the stakeholders' intentions and expectations [McDermid 94]. One approach to
support the process of validation is based on simulation (execution) and animation (visualisation),
provided that the requirements specification will be transformed into (semi-) formal models that can be
executed. However, the benefit of executable models is determined by the corresponding simulation
tools. Which tools exist and which simulation and animation capabilities do they provide? This
document presents a survey of simulation and animation capabilities of 10 software/system
engineering tools, evaluated from an RE point of view.

1.2 Process overview of the survey
In February 1997, we formed a work group, which was part of the Special Interest Group on
Requirements Engineering (FG 2.1.6) of the German Informatics society (GI). The work group
initially consisted of 3 members from industry and 5 members from academia. Our goal was to
evaluate and compare simulation and animation capabilities of selected, modern RE/SE tools. For the
sake of feasibility, we decided first to do a broad search of RE/SE tools with simulation/animation
capabilities and then to conduct the survey on a few selected tools.

From February 1997 until May 1997, we worked on a preliminary questionnaire, which served as a
basis for deciding whether a tool was a candidate for this survey or not. Until June 1998, we have
been looking for commercial and research tools that fitted the scope of this survey (see chapter 3.1).
The Internet, literature and hints from organisations like INCOSE were our main information sources.
In parallel, we started gathering information about the tools we found so far, guided by the
preliminary questionnaire. During the regular work group meetings, we decided which tools were
candidates for the survey. From August 1997 until December 1997, we prepared a detailed
questionnaire for evaluating the selected candidates. When a candidate had been chosen for further
evaluation, we tried to obtain more information, based on the detailed questionnaire, and a demo
version. Starting in November 1997, we specified a reference model of a fictive ticketing system.
This model was to serve as a common basis for evaluating the tools. But implementing/ modelling this
reference model in the various tools proved to be too time consuming. So we dropped this idea in
May 1998. Instead, we decided to work with the tutorial models that are usually delivered together
with the tools.

In June 1998, we stopped the (active) search for more tool candidates. By then, we had created a list
of 54 tools, of which 16 were candidates for further evaluation according to our survey scope (see
chapter 3.1). In order to have a reasonable amount of work, we selected 10 out of the 16 candidates
for detailed evaluation, aiming at high diversity of modelling notations, geographical origin and
distinguishing capabilities. Until January 2000, we conducted the evaluation of these 10 tools, based
on demo versions whenever possible (see results in chapter 4). Overlapping with the evaluation, we
began in June 1999 to write down the results of the survey in a technical report. We finished the
survey in January 2000 and the technical report in May 2000.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 4 of 46

1.3 Structure of the document
In chapter 2, we define the basic terminology used throughout this document, followed by a
discussion of benefits and drawbacks of using simulation/animation for validating requirements. We
define the tool capabilities according to which we evaluated the simulation tools.

In chapter 3, we outline the methodology we followed in the survey. We define the scope of the
survey (criteria for tool candidates). Furthermore, we describe the survey process and the
questionnaires we used for conducting the survey.

In chapter 4, we present the surveyed tools and briefly describe them. A comparison of the evaluated
simulation and animation capabilities of each tool follows.

Chapter 5 lists the tools that we didn’t evaluate. Finally, in chapter 6, we discuss the results and
present the conclusions drawn from the survey's findings.

1.4 Acknowledgements
We would like to thank G. John, S. Galli and M. Arnold, who had to leave our work group before
the survey ended, for their contributions.

Furthermore, we would like to thank Berner&Mattner Software Produkte GmbH (local distributor of
I-Logix products), CIP SYSTEM AG, Excel Software, IBE Software und Simulation Engineering,
Telelogic SA and Vitech Corporation, who provided demo versions of their products for us. Special
thanks goes to CIP SYSTEM AG and Telelogic SA, who additionally gave us on-site tool
demonstrations.

1.5 Disclaimer
We conducted this survey to our best knowledge and conscience. But the enormous number of tools
that are related to requirements/software engineering makes it almost impossible to examine them all in
depth. Additionally, simulation and animation capabilities strongly depend on each tool’s modelling
languages, which further complicates any comparison.

Due to the factthat this survey took almost 3 years, and due to the varying difficulty in obtaining the
desired information, the survey results might be partially inaccurate today. The 'last update'
information in the description of every tool indicates the accuracy of the information given.

2. Simulation/animation - why and what for?
For the sake of clarity, this chapter first lists definitions of the basic terminology used throughout this
document. A discussion of benefits and drawbacks of simulation/animation in the context of
validating requirements follows. Finally, we describe the tool capabilities, according to which we
evaluated the simulation tools.

2.1 Definitions
System model - Formal or semiformal model of a computer-based system. Principally, a system

model is an abstract, idealised and constructive solution of the problem that the system shall
solve. In this document, we do not consider any declarative approaches of specifying computer-
based-systems.

Model-based RE/SE - RE/SE methodology that is based on refining and validating an initial
requirements specification by means of developing executable system models.

Modelling language - Language that is used to formulate system models. In the context of this survey,
modelling languages are assumed to be at least semi-formal.

Notation - Graphical and/or textual representation of a modelling language.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 5 of 46

Simulation - In the context of RE/SE, simulation is defined as execution of a system model. The
modelling language used to express the system model must rely on defined execution semantics.
Based on the semantics, a simulator tool can execute the model, either by direct interpretation or
by code generation.

Animation - We define animation as the visualisation of the behaviour of the system model. Animation
is often based on the (graphical) language/notation, in which the system model is expressed, e.g.
by highlighting the current model element under execution. For better convenience, certain tools
allow additionally the use of an application-specific graphical user interfaces (GUI).

Prototyping – Classical prototyping is based on partial implementations of the intended future system
[Budde et al. 92], derived from the initial requirements specification. Depending on scope and
feasibility several different prototypes might be needed. The implementation often includes an
application-specific GUI as primary way of interacting with the prototype. As with simulation,
prototyping can also be model-based. In this case, execution is achieved by generating
instrumented code.

Validation - The process of evaluating software during, or at the end of, the development process to
determine whether it satisfies the specified requirements [IEEE 90]. The process of questioning
whether the right product is being built.

 Verification - (1) The process of evaluating software to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase; (2) formal proof of
correctness [IEEE 90]. The process of questioning whether the product is being built correctly.

 Architectural and detail level - Some modelling languages focus on the architecture (composition) of a
system, whereas execution “details” like object methods have to be formulated in a different
(usually standard programming) language. In this case, the architectural level corresponds to the
modelling language, whereas the detail or code level encompasses the model details formulated in
a programming language. See ROOM [Selic et al. 92] as an example which incorporates such a
modelling concept.

2.2 Benefits of simulation/animation
Validation of a concrete object - As with prototyping, simulation has the major benefit of validating a

concrete and executable object (the system model), which can improve the quality of a
requirements specification. You are not only bound to inspections and reviews of textual
requirements specifications.

No need to write code - In contrast to classical prototyping, principally no code must be (manually)
written in order to run simulations of system models. Depending on the simulation tool used, a
model may require code fragments in order to implement specific execution details.

No need to create application-specific GUIs - Most simulation tools directly animate the graphical
notation of the supported modelling language(s). As long as all parties working with
simulation/animation are familiar with the animated modelling languages, there is no (immediate)
need for creating application-specific GUIs in order to interact with the executed models.

White-box visualisation - Animation of modelling languages also provides a means of visualising the
internal mechanisms (behaviour) of the system model. That way, one has the possibility of
validating the internal mechanisms of a system model by inspection. In contrast, classical
prototyping usually relies only on application-specific GUIs for interacting with the prototype
(black-box view).

Better understanding of the system - Simulation/Animation helps to better understand the (desired)
behaviour of the future system. Quite often the stakeholders are not sure about what they exactly
want or how to voice their ideas and desires. Additionally, a well-understood system allows to
predict development costs more accurately.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 6 of 46

2.3 Drawbacks of simulation/animation
No way to validate discrete systems exhaustively - Simulation/animation shares the major limitations

and drawbacks of testing. Complex systems with a large number of states (“combinatorial
explosion”) can neither be tested nor simulated exhaustively in general. Furthermore, repeating
validation activities after every change made (regression testing) - a good engineering practice -
adds even more work.

(Standard) Model animation is not always stakeholder-friendly - The standard way of model
animation is based on highlighting the current state of the model, which in turn is represented by
the notations of the supported modelling languages. Non-technical stakeholders, who are no
familiar with RE/SE languages, might experience difficulties in reading and interpreting such
animations.

Low abstraction level - Simulation and prototyping often require additional implementation details of
the future system in order to be executable at all. This leads to the problem of over-specification
(too much solution/implementation-oriented).

Semantically correct and formal models required - As long as the RE process is in progress, the
requirements engineers have to deal with incomplete and informally stated requirements.
Nevertheless, in that case requirements engineers are forced to define a semantically correct and
formal system model in order to run simulations.

Need to model the system’s environment - Embedded systems form a part of larger systems and
involve complex interaction with their environment. A reasonable simulation of an embedded
system also requires to model and simulate the system’s context.

Non-functional requirements not fully supported - Simulation focuses on the behavioural aspects of a
system. However, non-functional requirements, such as reliability, cannot be simulated
adequately from requirements.

2.4 Tool capabilities
This chapter presents the tool capabilities that we have taken into account for conducting this survey.
The tool descriptions and comparison in chapter 4 are based upon these capabilities.

2.4 .1 Execution
There are two basic ways of executing a model:

Interpreter based- The simulator directly interprets the system model. There is no need for an external
compiler, but interpretation is more likely to be slower than its compiled counterpart.
Nevertheless, this is of no major concern for a lot of (RE) problem domains. Interpretation
doesn’t directly support an automatic shift to subsequent development phases by simply
generating the code from the system model.

Code generation - The tool set translates the model into a conventional programming language like
Java or C++, then calls an external compiler to produce the executable. The code is instrumented
in order to interact with the simulator during the simulation run. This way, simulation runs are
still controlled and manipulated via the simulator tool. The use of an external compiler can be well
encapsulated within the simulator tool, so the tool user won’t notice any relevant difference to
direct interpretation. Code generation does not guarantee that the generated code can be
seamlessly reused in the following design and implementation phases, since the code might have
a complex and unreadable structure. Generated code often has to be used as is.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 7 of 46

Some problem domains (e.g. embedded systems) require cross-platform development already during
the RE phases:

Cross-platform execution - Interpreted system models run on platforms supported by the simulator
tool itself or by a virtual machine. In contrast, generated code often can be compiled for quite a
big number of platforms, due to the high availability of cross-compilers.

2.4 .2 Interactive control of simulation
We have evaluated the following forms of user interaction with a simulation tool:

Step forward - In order to control the simulation progress interactively, the tool should provide
controls similar to those known from video cassette recorders (VCR): go single step, go until
idle, go until next event, go infinite, pause, reset, etc.

Backward steps (undo function) - Sometimes, a tool user even needs go back one step, go back to
time T, or the like.

Generate events - The simulation tool should provide some appropriate means to generate events
(stimuli) that originate from the system environment. This could be accomplished by selecting the
desired language elements (e.g. a state transition) and invoking the corresponding command via
buttons or menus (e.g. fire the transition). The simulation tool could also display a list of
currently accepted stimuli, from where the tool user selects the one to be executed next.

Modify model state - Some tools allow to directly modify the current state of the system model, e.g.
by assigning new values to variables.

2.4 .3 Automated control of simulation
Besides working interactively with a simulation tool, a tool user often needs an automated control of
simulation run. E.g., automated control simplifies regression testing to a great extent. We have taken
the following two forms of automated control into account:

User-defined scripts - A simulation tool should be able, according to our opinion, to run user-defined
(test) scripts in order to control simulation runs. TTCN (ITU Z.120) and MSC are examples of
languages that are suited for writing simulation scripts.

Replay of previous runs - Furthermore, a simulation tool should support the replay of previously
recorded simulation runs. E.g., MSCs can serve as a format for storing simulation runs.

Parametrisable stimuli generators are a further way of automatically controlling simulation runs [Bloss
et al. 92]. But we expect such generators to be highly problem domain depended. Therefore, none of
the tools, we surveyed, provided any stimuli generator.

2.4 .4 Animation
Simulation is closely related to animation, the visualisation of the behaviour of the system model. We
have evaluated the simulation tools according to the following capabilities:

Graphical notation(s) - Depending on the modelling languages supported, the simulation tool either
animates the graphical or the textual notation(s). Languages like Statecharts, DFD, SDL, Petri
Nets, etc. provide a natural and intuitive way of animation, by highlighting the current focus (i.e.
the currently executed model element). The expressiveness of an animation therefore depends
largely on the modelling languages supported by a tool.

Customisable Graphical User Interface (GUI) - When working with stakeholders who are not familiar
with RE/SE specification languages, the requirements engineer needs to specify application-
specific and tailored views (GUIs). Such GUIs simplify the interaction between stakeholders and
system models. If the simulation tool directly supports the definition and application of such
GUIs, we name it “customisable GUI”.

External GUI - If the simulation tool does not provide customisable GUIs, you could alternatively
implement the GUI with a separate development system, hence we call it external GUI.
Typically, tools that are based on code generation support external GUIs, since the GUI code can
be linked to the generated code of the system model.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 8 of 46

Animated real-time - The simulator can animate the system model by constant speed, taking timing
constraints into account only for correctly scheduling events/stimuli (simulated real-time).
Alternatively, the animation can also be based on real-time constraints, resulting in an animated
“real-time”. In both situations the animation speed should be configurable.

Animation of code fragments - Apart from the architectural level, some tools additionally require that
execution “details” (e.g. actions of a state transition) are formulated in a standard programming
language. This gives rise to the question, whether or not a simulation tool animates such code
fragments too.

Generally the simulator user should be able to select the views of interest, e.g. selecting some of the
model components. Support for navigating and browsing through a model is also needed. Being able
to put the focus of interest only on selected parts of the model is very important, in order not to drown
in a sea of details. See for example approaches like “fish eye views” [Berner et al. 98].

2.4 .5 Recording simulations
Animations of system models typically visualise the current state of the models. Tool users often need
condensed information recorded over a defined period of time during a simulation run.

Traces/logs - The simulator logs all or a defined subset of the events that occur during a simulation
run. E.g., the communication among several components of a system model may be recorded as
a MSC.

Statistics - subsumes any kind of statistical information about elements of the system model. Average
duration of states, average response times and maximum input queue length are examples of such
statistics. Statistical data can be graphically displayed e.g. as histogram, pie chart or bar chart.

Time lines - denote the visualisation of the state of a system model by plotting a 2D graph. The
horizontal X-axis corresponds to the time, whereas the vertical Y-axis is a nominal scale of the
states which may be observed during recording. Time lines are similar to oscilloscopes.

2.4 .6 Validation
Validation can hardly be (fully) automated. But a tool set should at least support the management and
conduction of validation activities. We have chosen the following two capabilities for evaluating the
simulation tools:

Model coverage views - The tool computes and visualises the coverage of a system model during a
single simulation run.

Validation management - We subsume any kind of validation support (e.g. model coverage) that
reaches beyond one single simulation run under the term validation management.

2.4 .7 Verification
Besides any validation capability, the enclosing RE/SE tool set (containing the simulator) should also
support verification techniques. We have evaluated the following verification capabilities:

Syntax - The tool checks, whether the system model conforms to the syntactical rules of the supported
modelling languages.

Statically checked properties - denotes any kind of (semantical) checksthat are performed before
executing a system model. The tool user may even program further static checks or customise
existing ones. Deadlocks, state reachability and theorem proving are examples of such a kind of
verification.

Dynamically checked properties - denotes any kind of (semantical) checks that are performed during
execution of a system model. The tool user may even program further dynamical checks or
customise existing ones. Checking whether the system model respects the life cycle constraints of
some object, may serve as an example.

Invariants - During simulation runs, a tool checks after each atomic execution step, whether the
simulated system model does not violate user-defined invariants.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 9 of 46

Compare scenario against model - A tool compares a recorded or manually written scenario (e.g. a
MSC) against a system model.

State space exploration techniques - State space explorations are automatic simulation runs that do not
require any intermediate interaction with the tool user. Such automatic explorations can be used to
check dynamical properties of a system model. State space exploration techniques especially help
to find run-time errors like buffer overflowsthat may be hard to detect with regular (i.e. user-
controlled) simulation runs. We distingiush the following two forms of state space exploration
techniques:

Random exploration - This state space exploration technique proceeds by selecting the system
states randomly.

Limited depth exploration - This state space exploration technique proceeds by systematically
selecting all consecutive system states up to a specified maximal depth.

2.4 .8 Modelling languages
Table 1 shows characteristics and a categorisation of the modelling/specification languages that are
used by the tools covered in this survey (see chapter 4.11.2). The categorisation (behaviour,
communication/interaction, structure, others) of the languages is roughly based on [Wieringa 98]. We
considered the following 4 groups of language characteristics:

Notation type - The notation of a modelling language can be graphical (with textual labels and
annotations) or textual. Some languages, e.g. SDL, support even both notation types.

Abstractions - The most basic abstractions used in RE/SE are aggregation (hierarchical decomposition
relation), inheritance (generalisation - specialisation relation) and delegation (client - server
relation). Delegation specifies which services are requested by one system component from some
other system component. Exemplary languages (e.g. MSC) rather define one specific scenario of
a system, than specifying its complete behaviour.

Formality of semantics - Modelling languages have formally or semi-formally defined (execution)
semantics. We consider languages to have formally defined semantics, if rigorous mathematical
specifications of the language semantics do exist. Semi-formal languages typically have a
formally defined syntax and grammar, whereas the semantics are defined in prose. Since
execution of informal (i.e. natural) languages is still an extremely difficult (research) topic, they
are rarely used for simulation. Therefore, we do not consider informal languages in this
document.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 10 of 46

Formality of semantics
Abstractions

Notation type

 g
ra

ph
ic

al

 te
xt

ua
l

 a
gg

re
ga

tio
n

 in
he

rit
an

ce

 d
el

eg
at

io
n

ex
em

pl
ar

y

 fo
rm

al

 s
em

i-f
or

m
al

Modelling Languages
Behaviour

FSM X - - - - - X -
Statechart X - X - (X) - X -
Classical Petri Net X - - - - - X -
Coloured Petri Net X - - - - - X -
Hierarchical Petri Net X - X - (X) - X -
Pr/T Net X - - - - - X -
SDL Process diagram X - - (X) (X) - - X
Activity / control flow diagram X - - - (X) - - X

Communication/Interaction
DFD X - X - (X) - - X
SDL Block diagram X - X (X) (X) - - X
UML use case diagram X - (X) - X - - X
UML interaction diagram /
MSC 96

X - - - X X - X

Context / interface diagram X - - - X - - X
Structure

Class diagram X - X X - - - X
Object diagram X - X - - X - X
CRC card - X - X X - - X

Others
Code fragments - X (X) (X) (X) - (X) (X)
Flow chart X - X - (X) - - X

 Table 1 : Characteristics and Categories of Modelling Languages

The following symbols are used in Table 1:

X : The modelling language L has characteristic C.
(X) : The modelling language L has characteristic C in a restricted form.
- : The characteristic C does not apply to the modelling language L.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 11 of 46

3. Methodology of the survey
In this chapter, we describe the methodology of our survey. In section 3.1, we present the scope of
the survey by defining the capabilities a tool had to match in order to be chosen as a candidate. We
also define the kinds of tools that we considered to be out of the survey scope. In section 3.2, we
describe the process we followed during the survey. Finally, section 3.3 introduces our primary
instruments, i.e. the two questionnaires used for gathering and structuring the information about the
tools.

The aim of this survey was to find simulation toolsthat are suited for RE/SE, and to evaluate their
simulation and animation capabilities. For the sake of feasibility we decided first to do a broad search
of RE/SE tools with simulation/animation capabilities, then to conduct a survey on a few selected
tools.

3.1 Scope of the survey

3.1 .1 Tools to be considered for the survey
The number of tools to be evaluated must be of reasonable size. This section lists the criteria a tool
had to match in order to be considered for the survey.
• Any tool that can be used for RE purposes in a broad sense was to be considered.
• According to the aim of this survey, each selected tool must provide some form of interactive

simulation (execution) and animation (visualisation) of a system model.
• Related to simulation, but still substantially different, is prototyping. Since both techniques can be

used for modelling and validating requirements, we had to decide to which extent to include
prototyping tools in this survey. Model-based prototyping is quite similar to simulation. In this
sense, as long as a prototyping tool is model-based and equipped with (hidden) code generation
and animation capabilities, we considered it as a potential candidate for the survey.

3.1 .2 Tools not to be considered for the survey
Any tool that belonged to one of the following categories was not considered:
• User interface prototypers
• Workflow / business process reengineering (BPR) tools
• General purpose (discrete event) simulation tools
• 4th Generation Language (4GL) CASE tools
• Reengineering tools
• Graphical programming tools

3.1 .3 Functionalities not to be considered
Many of the tools we encountered during the broad search cover an impressive range of
functionalities, which we decided to be outside of the survey scope. The following functionalities,
although very important for real RE endeavours, were not taken into account for the survey:
• project management
• multi-user management
• quality assurance
• configuration/change management
• version control
• requirements identification
• requirements traceability

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 12 of 46

3.2 Process of the survey
Our work group conducted the survey according to the project schedule described in the following
sections.

3.2 .1 Founding a work group (Phase 0)
During phase 0, we formed a work group that conducted this survey. The work group was part of the
Special Interest Group on Requirements Engineering (FG 2.1.6) of the German Informatics society
(GI). As a first step, we defined the survey goals and its scope. The initial members were asked to
acquire new members. A group size of 6 to 8 members was found to suit ideally the needs of this
survey. At the end of phase 0, the work group consisted of 3 members from industry and 5 members
from academia. All members are professionals in information science and have a special interest in
RE.

Phase 0 started in January 1997 and lasted until February 1997.

3.2 .2 Searching for tools (Phase I)
In the next phase we collected candidate tools. This phase was characterised by the following
activities:

• We defined the categories of tools to be considered and those not to be considered.
• We gathered information about potential tool candidates:

• by searching the internet
• by asking organisations (e.g. INCOSE) about existing tools
• by obtaining and studying technical papers about the tools

• We met as a work group on a regular basis in order to decide upon candidate tools, to check the
status of the work and assign (new) tasks and responsibilities as necessary.

• We prepared a preliminary questionnaire that guided us in structuring information about the tools
we considered for our survey. The questionnaire also served us to decide and chose tools as
candidates for further evaluation.

• We prepared a detailed questionnaire for structuring information about the tools we evaluated in
more detail.

• We specified a reference model which was to serve as a common basis for evaluating the tools.
The reference model specified a fictive ticketing system. But implementing/modelling this
reference model in the various tools proved to be too time consuming. So we dropped this idea in
May 1998. Instead, we decided to work with the tutorial models that are typically delivered along
with the tools. Since we didn’t make use of our reference model, we decided not to describe it
further in this document.

Phase 1 lasted from February 1997 until the end of 1998. But since the work of phase 1 partially
overlapped with the subsequent phase 2, no strict border can be drawn. We ended phase 1 with a list
of 54 tools, 16 of which met the criteria as presented in section 3.1. These 16 tools were chosen as
candidates for the survey.

3.2 .3 Evaluating the selected tools (Phase II)
Based on the information gathered, we started to evaluate 10 of the 16 candidates in more depth
during phase 2, mainly guided by the detailed questionnaire (see appendix B). We aimed at a high
diversity of modelling notations (UML, SDL, extended FSM, Statechart, data flow, Petri Nets and
CRC), geographical origin (USA, Canada, GB, Germany, France, Sweden and Switzerland),
popularity and distinguishing capabilities as criteria for selecting 10 tools out of the 16 candidates. For
most of the selected candidates we could obtain a demo version to get some hands-on experience. The
work group meetings were continued in order to check the status of the work and to discuss
intermediate results.

Phase 2 started in June 1998 and ended in January 2000, when the closing work steps began.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 13 of 46

3.2 .4 Documenting the survey (Phase III)
Finally, having evaluated the selected tools, we wrote this technical report that summarises all
information gathered, the experiences made and the results achieved by our work group. We
concluded our work in May 2000.

3.3 Primary instruments of the survey
In order to co-ordinate and structure the information that we collected, we prepared two
questionnaires. The preliminary questionnaire served to identify potential candidates from the list of
tools found during this survey. The detailed questionnaire contains all information needed for the
evaluation and comparison of the selected candidates.

3.3 .1 Preliminary questionnaire
The preliminary questionnaire was used whenever we discovered new tools. The questionnaire
focuses on the most important aspects of a tool, e.g. its simulation features. Guided by the
preliminary questionnaire, we decided whether to continue with further evaluation of some tool or to
place it on the “negative list”. The preliminary questionnaire is reprinted in appendix A.

3.3 .2 Detailed questionnaire
Based on the preliminary questionnaire, we developed an extended version. This detailed
questionnaire was used for structuring and storing information gathered about the tools that were
evaluated in more detail. The detailed questionnaire is reprinted in appendix B.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 14 of 46

4. The surveyed tools
Out of the 54 tools initially considered, we selected the following 10 tools for a detailed evaluation
and comparison:

• CIP Tool 3.0

• COREsim 2.1

• ObjectGEODE 4

• ObjecTime Developer 5.0

• PACE 3.1

• QuickCRC 1.2

• RDD-100 / DVF 4.1

• Rhapsody for C++ 2.1

• SDT / ORCA 3.3

• Statemate MAGNUM 1.3

All 10 tools are equipped with simulators according to section 3.1. We had 6 other tools on our
candidate list (see 5.4) that satisfy the survey scope as described in section 3.1, but for the sake of a
reasonable amount of work we focused on those 10 tools that are presented in this section.

In sections 4.1 to 4.10, each of the 10 selected tools is shortly described. The description of the tools
is followed by a comparison in section 4.11. Please see chapter 7 for references and sources of
materials. The tool capabilities that we refer to in the following descriptions have been defined in
chapter 2.4.

We assumethat the reader is familiar with nowadays languages used for requirements and software
engineering, languages like Specification and Design Language (SDL), Unified Modeling Language
(UML), Statecharts, Finite State Machine (FSM), Class Responsibility and Collaboration cards (CRC
cards), Petri Nets and Data Flow Diagram (DFD).

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 15 of 46

4.1 CIP Tool 3.0

Vendor:

CIP SYSTEM AG, Switzerland

Tool set:

CIP Tool 3.0 is a commercial standalone product.

Supported Languages:

• Communication Net; a kind of data flow diagram between clusters of synchronous processes
• Interaction Net; a kind of dataflow diagram within a cluster
• Cascades; tree-like graphs depicting the control flow between processes of one cluster
• State-Transition-Diagram (for process modes); an FSM
• Master-Slave Graph; directed graph-like control flow between process modes
• C code for (Boolean) transition guards

Simulation/Animation Capabilities:

Execution: Instrumented C code has to be generated before the simulation/animation can take place.
Control: CIP Tool provides the basic controls: single step and reset. During a simulation run you

can generate/inject stimuli. When working with textual animation, you can optionally load and
execute a simulation log. Such simulation logs can also be manually written.

Animation: Textual as well as graphical animation is provided. The textual animation (a kind of
debugger) is mainly intended for cross-platform debugging. During simulation runs the current
states are highlighted.

Recording: Simulation runs can be recorded as a text file, listing the events (messages) and the time
of their occurrence.

Verification: Verification of the model’s correctness (syntax and semantics) is provided.

Distinguishing Features:

• Modelling of multiplicity (of object instances)
• Interaction Graph; abstract behaviour visualisation
• The tool originates from a research project. Its modelling languages are based on very solid

formal basis, but do not conform to any widely known standards.

Information Sources:

• demonstration of the tool
• demo version
• web pages
• last updated 3.12.1999

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 16 of 46

4.2 COREsim 2.1

Vendor:

Vitech Corporation, USA

Tool set:

COREsim 2.1 is part of the commercial CORE 2.1 tool set.

Supported Languages:

• Element Relationship Attribute (ERA); Entity-Relationship-Model of requirements
• Function Flow Block Diagram (FFBD); a kind of data flow diagram
• Enhanced FFBD (EFFBD); annotated Function Flow Block Diagram
• Interface chart (N2); a kind of context diagram

Simulation/Animation Capabilities:

Execution: The system model is directly interpreted.
Control: COREsim provides the basic controls: run, single step, pause and reset. During a

simulation run one can edit the system model, but you can’t change the model state. Events are
automatically selected (no human interaction necessary), .i.e. that any process (function block)
may run provided that the required resources (another model element type) are available.

Animation: During simulation, FFBD/EFFBD diagrams highlight the current function/activity
under execution. Additionally a timeline for various model elements can be displayed.

Recording: Simulation transcripts (logs) can be enabled and saved anytime. Transcripts are simple
text files listing all events and the time of their occurrence.

Validation: Model coverage can be (manually) deduced from timelines.
Verification: Verification of the model’s correctness (syntax and semantics) is provided.

Distinguishing Features:

• Extensive, all-purpose system engineering tool set
• Complex and adaptable database schema.
• The database encompasses requirements management and system modelling in parallel
• Extensive scripting language for reporting

Information Sources:

• demo version
• manuals (paper)
• web pages
• last update 20.12.1999

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 17 of 46

4.3 ObjectGEODE 4

Vendor:

VERILOG S.A., France

Tool set:

ObjectGEODE 4 is a commercial standalone product.

Supported Languages:

• SDL
• MSC
• UML 1.x

Simulation/Animation Capabilities:

Execution: ObjectGEODE supports both direct interpretation of models and code generation.
Control: ObjectGEODE provides the typical controls: various forms of (single) step, run, pause

and reset. Additionally, backward stepping is supported. During simulations one can inject
messages (stimuli). MSCs, either manually written or recorded from previous simulations, can
be used for driving simulation runs.

Animation: Animation is based on highlighting the current state in the various SDL diagrams.
Recording: Simulation runs can be recorded as MSCs.
Validation: For each single simulation run a coverage view can be displayed.
Verification: Verification of the model’s correctness (syntax and semantics) is provided. Besides,

ObjectGEODE provides automatic state space (random, exhaustive/limited depth) exploration.
Invariants can be formulated and attached to models, which are checked during simulation runs.
Observers can be programmed and set-up for checking dynamic model properties during
simulation runs. MSCs can be checked against the model.

Distinguishing Features:

• Wide range of verification techniques (state space exploration, invariants, observers).

Information Sources:

• web pages
• last update 30.10.1999

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 18 of 46

4.4 ObjecTime Developer 5.0

Vendor:

ObjecTime, Canada

Tool set:

ObjecTime Developer 5.0 is a commercial standalone product.

Supported Languages:

• Real -Time Object Oriented Modelling (ROOM) (architectural level); Statechart-like language
• UML 1.x
• C++ (code level)

Simulation/Animation Capabilities:

Execution: The Developer simulator (Simulation RTS) is interpreter-based. Optional modules allow
code generation for C++ for various platforms. Generated code can be linked with MicroRTS in
order to connect a model on a different (target) platform to Developer.

Control: Developer provides the typical simulation controls: go step, go event, go until idle, go
continuously. During a simulation run one can manipulate the system model: inject
events/messages and modify model attributes.

Animation: During simulation runs the current state is highlighted in the ROOM-models.
Recording: You can invoke a simulation event tracethat can be converted into a MSC.
Verification: Verification of the model’s correctness (syntax and semantics) is provided.

Distinguishing Features:

• Controlling and debugging the model on a remote target platform (MicroRTS).
• Converting event traces into MSCs.

Information Sources:

• web pages
• literature [Selic et al. 92]
• last update 30.10.1999

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 19 of 46

4.5 PACE 3.1

Vendor:

IBE Software und Simulation Engineering, Germany

Tool set:

PACE 3.1 is a commercial standalone product.

Supported Languages:

• Hierarchical Petri Net (architectural level)
• Smalltalk (code level)

Simulation/Animation Capabilities:

Execution: The Petri Net models are directly interpreted by PACE. Optionally PACE can generate
specialised and proprietary N-code for a separately available Petri Net Machine (PNM), a kind
of virtual machine for PACE Petri Nets. This virtual machine is available for various platforms.

Control: PACE provides the typical simulation controls: various forms of (single) step, run until
event X occurs, run until idle and reset. Additionally one can step backwards. During a
simulation run you can manipulate the system model by injecting or deleting tokens, setting
variable values and modifying the model. The model itself can also be edited when a simulation
run is paused.

Animation: The flow of tokens is displayed. The window that contains the current token is
automatically brought to the front. The animation can be individually enabled for each window
that displays a part of the system model. The speed of token animation can be defined within
given limits. The simulated “real-time” is taken into account for scheduling of the events, but
not for animation. Simple customised GUIs can be built from a limited set of GUI elements.

Recording: One can save the current model state any time and reload it later. Ready-to-use means
for collecting and displaying statistical data (histograms) is provided.

Verification: Verification of the model’s correctness (syntax and semantics) is provided.
Additionally, PACE checks for unused model elements.

Distinguishing Features:

• Ready-to-use GUI elements for interacting with the system model as well as for displaying
statistical data.

• Since the various model elements (places, transitions, tokens) can be “inscribed” with Smalltalk
code the PACE Petri Nets can be programmed towards different net types like
Predicate/Transition (Pr/T) -Nets or Coloured Petri Nets (CPN).

Information Sources:

• demo version
• manuals (online and paper)
• last update 18.06.1999

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 20 of 46

4.6 QuickCRC 1.2

Vendor:

Excel Software, USA

Tool set:

QuickCRC is a commercial standalone product.

Supported Languages:

• Class, Responsibility and Collaboration (CRC) cards
• Scenario card; sequence of client object - sever object - responsibility or sub-scenario calls
• Class inheritance graph

Simulation/Animation Capabilities:

Execution: QuickCRC is interpreter-based.
Control: The simulator provides the basic controls: single step forward, single step backward,

reset, go to end, step over, back to caller.
Animation: The simulation corresponds to a textually displayed scenario walkthrough. The

walkthrough is displayed in a single window containing the following elements:
• list containing scenario and its sub-scenarios (indenting shows the call hierarchy)
• description of the current active scenario
• textual formulation of the current step in a format like “Client object X uses Responsibility /

Scenario Z of Server Object Y”.

Distinguishing Features:

• QuickCRC is a tool setthat supports the Responsibility Driven Design (RDD) development
method [Wirfs-Brock et al. 90].

Information sources:

• demo version
• web pages
• last update : 26.09.1999

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 21 of 46

4.7 RDD-100 / DVF 4.1

Vendor:

Ascent Logic Corporation, USA

Tool set:

RDD-100 / DVF 4.1 is part of the commercial RDD-100 tool set.
RDD-100 has been replaced by RDD.COM in the mean time.

Supported Languages:

• Stimulus Response diagram; mixture between FSM and SDL process diagram
• Behaviour graph
• Interconnection
• Operational scenario

Simulation/Animation Capabilities:

Execution: RDD-100 / DVF is interpreter-based.
Control: DVF provides the typical simulation controls: go step, go continuously, pause, restart.

During a simulation run one can manipulate the system model by injecting events/messages and
modifying model attributes.

Animation: During a simulation run, various views are animated: behaviour diagrams (highlighting
the current state), time-lines, resource graphs (resource availability), and queue (usage)
monitors.

Recording: Simulation runs can be recorded as event traces (transcripts).
Verification: Verification of the model’s correctness (syntax and semantics) is provided.

Distinguishing Features:

• Extensive, all-purpose system engineering tool set

Information Sources:

• web pages
• marketing brochures
• last update 21.10.99

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 22 of 46

4.8 Rhapsody for C++ 2.1

Vendor:

I-Logix Inc., USA

Tool set:

Rhapsody for C++ 2.1 is a commercial standalone product.

Supported Languages:

Rhapsody is UML 1.2 based
• Object model diagram (i.e. class/object diagram)
• Statechart
• Sequence diagram
• Use case diagram
• C++ code fragment

Simulation/Animation Capabilities:

Execution: Prior to simulation the system model must be translated to code (C / C++) and then
compiled by an extra compiler (like VC++ from Microsoft). The code is instrumented to either
interact with the graphical simulator of Rhapsody or with Tracer (a kind of text-based
debugger).

Control: Rhapsody provides the typical simulation controls: go step, go event, go until idle, go
continuously. During a simulation run you can manipulate the system model: inject events and
modify model attributes.

Animation: During simulation, Statecharts, sequence diagrams, model browser, thread view, event
queue and call stack are animated. The simulated “real-time” is taken into account for scheduling
events and optionally also for animation. Code fragments are animated as a single, atomic
action. The Tracer provides a textual simulator/animator.

Recording: Simulation runs can be recorded as sequence diagrams.
Verification: Verification of the model’s correctness (syntax and semantics) is provided.

Additionally, Rhapsody offers various checks like detecting unused model elements. Sequence
diagrams (recorded or manually written) can be compared two by two.

Distinguishing Features:

• Round trip engineering
• Interoperability with version control tools
• Interoperability with requirements management tools
• Comparison of sequence diagrams

Information Sources:

• demo version
• manuals (online)
• web pages
• marketing brochures
• last update 22.10.1999

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 23 of 46

4.9 SDT / ORCA 3.3

Vendor:

Telelogic SA, Sweden

Tool set:

SDT / ORCA is part of the commercial Telelogic Tau 3.3 tool set.

Supported Languages:

• SDL ’92 and SDL ’96
• MSC ’96
• HMSC; hierarchical variant of MSCs, which are composed from HMSCs and MSCs
• Class diagram (UML)
• Statechart (UML)
• ASN.1
• Proprietary notation for abstract data type definition; alternative to ASN.1

Simulation/Animation Capabilities:

Execution: Prior to simulation the system model must be translated to code (C / C++) and then
compiled by an extra compiler (like VC++ from Microsoft). The code is instrumented to interact
with the SDT Simulator.

Control: SDL provides the typical simulator controls: start, restart, execute next transition(s),
execute next statement(s), go until time == T, go until some event occurs, go until idle, etc.
Additionally you can step backwards. During a simulation run you can manipulate the system
model via monitor: injecting signals, setting variable values, creating or terminating processes,
setting or resetting timers, setting the state of a process and more.

Animation: The animation is based on highlighting the current SDL statement, highlighting the
current state of a Statechart and tracing the signals exchanged between model components as an
MSC. The simulated “real-time” is taken into account for scheduling the events, but not for
animation. The animation proceeds as fast as possible.

Recording: Simulation runs can be recorded as MSCs and can be replayed afterwards.
Validation: The model coverage during simulation is measured.
Verification: Verification of the model’s correctness (syntax and semantics) is provided. Besides,

SDL/ORCA checks also for unused model elements. Additionally, you can check MSCs against
the modelled behaviour.

Distinguishing Features:

• Validator that conducts state space exploration (manual, random walk, limited depth)
• Verify MSCs against the system model (SDL)
• Model coverage view
• An API is provided so that external applications can interact with the simulated system model.

Information Sources:

• demonstration of the tool
• demo version
• manuals (paper)
• web pages
• last update 16.04.1999

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 24 of 46

4.10 Statemate MAGNUM 1.3

Vendor:

I-Logix Inc., USA

Tool set:

Statemate MAGNUM 1.3 is a commercial standalone product.

Supported Languages:

• Module chart
• Activity chart
• Statechart

Simulation/Animation Capabilities:

Execution: The simulator (Trailblazer) is interpreter-based. Optional modules allow code generation
for various languages.

Control: The simulator provides the typical simulation controls: go single step, go event (next
stable state), go extended (next stable superstate), go advance (simulation time + T), go repeat.
During a simulation run you can manipulate the system model: injecting events/messages and
modifying model attributes. A script language (SCL) allows to automate simulations runs.

Animation: During simulation views of activity charts and Statecharts are animated. The simulation
is animated in “real-time”.

Recording: Simulation runs can be recorded as event traces.
Validation: During simulation a (test) coverage is measured and can be viewed afterwards.
Verification: Verification of the model’s correctness (syntax and semantics) is provided.

Distinguishing Features:

• limited, built-in version control
• simulation control language (SCL)
• requirements tracing
• coverage measure
• interface to Requirements Management Systems
• reporting on simulation runs
• API for model access
• API for custom code generation
• API for requirements tracing

Information Sources:

• access to a full installation at ETHZ (Swiss Federal Institute of Technology Zurich),
Switzerland

• manuals (online)
• web pages
• last update 15.10.1999

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 25 of 46

4.11 Comparison of the tools

4.11 .1 Definition of the symbols used
The following symbols are used in the tables of section 4.11.2 and 4.11.3. The symbols form a
nominal scale.

X : Tool T fully supports capability C/language L.
X+ : Tool T fully supports and extends capability C/language L.
(X) : Tool T supports capability C/language L in restricted form.
- : Tool T does not (explicitly) support capability C/languageL.
n/a : Comparison between tool T and capability C/language L is not applicable.

4.11 .2 Supported languages
Based on section 2.4.8, Table 2 shows which tool supports which languages/notations.

C
IP

 T
oo

l 3
.0

C
O

R
E

si
m

 2
.1

O
bj

ec
T

im
e

D
ev

el
op

er
 5

.0

O
bj

ec
tG

E
O

D
E

 4

P
A

C
E

 3
.1

Q
ui

ck
C

R
C

 1
.2

R
D

D
-1

00
 /

D
V

F
 4

.1

R
ha

ps
od

y
fo

r
C

++
 2

.1

S
D

T
 /

O
R

C
A

 3
.3

S
ta

te
m

at
e

M
A

G
N

U
M

 1
.3

Behavioural
FSM X+ - - - - - (X) - - -
Statechart - - X+ X - - - X X X
classical Petri Net - - - - X - - - - -
Coloured Petri Net - - - - (X) - - - - -
hierarchical Petri Net - - - - X - - - - -
Pr/T Net - - - - (X) - - - - -
SDL Process diagram - - - X - - (X) - X -
Activity / control flow diagram X - - - - - - - - -

Communication / Interaction
DFD (X) (X) (X) - - - (X) - - X+
SDL Block diagram - - - X - - - - X -
UML use case diagram - - - - - - - X - -
UML interaction diag./
MSC ’96

- - X X - - (X) X X+ -

Context / interface diagram - X - - - - - - - -
Structural

class diagram - - - X - (X) - X X -
object diagram - - - - - - - (X) -
CRC card - - - - - X - - - -

Others
Mandatory code fragments - - X - - - - X - -
Optional code fragments (X) - - - X - - X - -
Flow chart - (X) - - - - (X) - - -

Table 2 : Languages Supported by the Surveyed Tools

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 26 of 46

4.11 .3 Simulation/animation capabilities
Tables 3 and 4 summarise the capabilities of the surveyed tools, based on the brief descriptions of the
tools in sections 4.1 to 4.10. A discussion of the capabilities can be found in section 2.4. Please see
section 4.11.1 for a definition of the symbols used in the table.

C
IP

 T
oo

l 3
.0

C
O

R
E

si
m

 2
.1

O
bj

ec
T

im
e

D
ev

el
op

er
 5

.0

O
bj

ec
tG

E
O

D
E

 4

P
A

C
E

 3
.1

Q
ui

ck
C

R
C

 1
.2

R
D

D
-1

00
 /

D
V

F
 4

.1

R
ha

ps
od

y
fo

r
C

++
 2

.1

S
D

T
 /

O
R

C
A

 3
.3

S
ta

te
m

at
e

M
A

G
N

U
M

 1
.3

Execution
Interpreter based - X X X X X X - - X
Code generation X - X X - - - X X X
Cross-platform
execution

X - X X X - - X X X

Interactive Control of Simulation
Step forward (X) X X X X (X) X X X X
Step backwards
(undo function)

- - - X X X - - - (X)

Generate events X - X X X - X X X X
Modify model state - - X X X n/a X - X (X)

Automated Control of Simulation
(User-defined) Scripts (X) - - - - - - X - X
Replay of prev. runs (X) - - X - n/a - - X X

Animation
Graphical notation(s) X X X X X - X X X X
Customisable GUI - - - - (X) - - - - X
External GUI X - X X X - - X X X
Anim. real-time - n/a - - - X - X
Anim. of code
fragments

n/a n/a - n/a - n/a n/a - n/a n/a

Recording simulations
Traces/Logs (X) (X) X X - - (X) X X (X)
Statistics - - - - X - - - - X
Time lines - X - - - - X - - -

Validation
Model coverage
views
(per single sim. run)

- (X) - X - - - - X X

Validation
management

- - - - - - - - - -

Table 3: Simulation/animation capabilities (1)

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 27 of 46

C
IP

 T
oo

l 3
.0

C
O

R
E

si
m

 2
.1

O
bj

ec
T

im
e

D
ev

el
op

er
 5

.0

O
bj

ec
tG

E
O

D
E

 4

P
A

C
E

 3
.1

Q
ui

ck
C

R
C

 1
.2

R
D

D
-1

00
 /

D
V

F
 4

.1

R
ha

ps
od

y
fo

r
C

++
 2

.1

S
D

T
 /

O
R

C
A

 3
.3

S
ta

te
m

at
e

M
A

G
N

U
M

 1
.3

Verification
Syntax X X X X X n/a X X X X
Statically checked
properties

X X X X X n/a X X X X

… programmable - - - - - - - - - -
Dynamically checked
properties

- - - X - n/a X - X X

… programmable - - - X - - - - - -
Invariants - - - X - - - - - -
Compare
“MSC” against model

- - X X - - - (X) X -

Random exploration - - - X - - - - X -
Limited depth
exploration

- - - X - - - - X -

Table 4: Simulation/animation capabilities (2)

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 28 of 46

5. The tools not surveyed
This chapter lists all the tools that we initially had taken into account, but that did not met the criteria
that define the scope of the survey (as defined in section 3.1), or that were not further evaluated for
some other reason (e.g. limited resources). The tools not surveyed are grouped into the following
categories, according to the reason of exclusion:

• Tools without interactive simulation and animation

• Tools without RE/SE modelling language support

• Lack of information about tools

• Lack of time for further investigation of tools

• Discontinued tools

5.1 Tools without interactive simulation/animation capabilities
Table 5 – Table 7 list the tools that were not equipped with a “RE-suitable” and interactive
simulator/animator, as defined in section 3.1, up to the point of time, when we stopped further
elicitation of information.

Category: Requirements Acquisition, -Analysis, -Management / CAE

Tool name Date of decision /
Last update

Cradle SEE 03.06.1997
DOORS 25.03.1997
PC Pack 04.11.1997
ProductTrack 27.08.1997
RA 20.04.1998
RATS tool 23.03.1998
RDT 03.06.1997
Requisite Baseline
RequisitePro

03.06.1997

RTM 03.06.1997
SLATE Architect 03.06.1997
TMA toolset 04.11.1997
Tracer 04.11.1997
Vital Link 25.03.1997
XTie-RT 03.06.1997

Table 5: Tools without Interactive Simulation/Animation Capabilities (1)

Category: Workflow / Business Process (Re-)Engineering

Tool name Date of decision /
Last update

Arena Standard Edition etc. 25.03.1997
IvyFrame 19.03.1999

Table 6: Tools without Interactive Simulation/Animation Capabilities (2)

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 29 of 46

Category: CASE

Tool name Date of decision /
Last update

BetterState Lite 07.09.1998
Innovator 27.08.1997
LOCANA 27.08.1997
METIS 97 04.11.1997
Objects9000 24.03.1998
ObjectTeam 18.12.1998
Melba 96 / X Melba 03.06.1997
ROSE 03.06.1997
StP / UML 18.06.1999
TeamWork 04.11.1997
ticketOstar 26.05.1998
Win A&D, Mac A&D 06.03.1998

Table 7: Tools without Interactive Simulation/Animation Capabilities (3)

Comments:
• BetterState Lite provides merely back animation, but no simulator according to section 3.1.

BetterState Lite is based on a Statechart-like language for modelling software systems. It generates
code (C++, VHDL, Perl, …) from the models, which can be compiled and executed. The code is
instrumented in order to record state transitions in a file or database. This recording can be used
later to back-animate the model, after running the generated code. But there is no interactive
simulator.

• Some tools of Table 7 are nevertheless suited for rapid prototyping.

5.2 Tools without RE/SE modelling language support
The tools listed in Table 8 are mainly general purpose simulation tools that support other modelling
languages (e.g. equation systems) than typically used in RE/SE. In the context of RE, these modelling
languages are hardly an appropriate substitute for executable specifications or prototyping. That’s
why the tools of this category were excluded from the survey.

Tool name Date of decision /
Last update

ISLE 03.06.1997
MicroSaint 25.03.1997
MODSIM III 03.06.1997
SimulationExpert 27.08.1997
SIMPRO 27.08.1997

Table 8: Tools without RE/SE Modelling Language Support

Comments:
• More tools of this kind can be found at “http://ws3.atv.tuwien.ac.at/comparisions/”.

5.3 Lack of information about tools
Concerning the tools listed in Table 9, it was extremely difficult to obtain detailed information within a
reasonable time frame. Most of them stemmed from research projects that already had been
discontinued when we started our survey. We decided to exclude these tools, since a (more or less)
fair comparison was not possible.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 30 of 46

Tool name Date of decision /
Last update

CAT 19.10.1999
EGS 2 19.03.1999
MacroTec 07.09.1998
REVS 07.09.1998
RSML Simulator 06.03.1998
SITE 19.03.1999

Table 9: Tools we had to exclude, because we could not obtain enough information.

Comments:
• Surprisingly the RSML Simulator had to be excluded from this survey. RSML Simulator, as its

name indicates, actually provides a simulator / animator. Since RSML is a Statechart-based
modelling language, animation of a model comes quite naturally. Nevertheless, our requests for
detailed information or a demo version of RSML Simulator were not answered, so we decided to
exclude this tool.

• Furthermore, RSML Simulator was supposed to be discontinued and replaced by SpecTRM-RC.

5.4 Lack of time for further investigation of tools
Due to the large number of candidate tools but limited resources, we decided to exclude tools where
information gathering took too much effort (see Table 10).

Tool name Date of decision /
Last update

ASADAL / SIM 19.03.1999
AutoFocus 19.03.1999
Design / CPN 19.03.1999
Possum 09.07.1999
VeriSpec 09.07.1999

Table 10: Tools we had to exclude for lack of time to investigate on them in more detail.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 31 of 46

6. Conclusions
We have presented a survey of ten requirements engineering tools with capabilities for simulation and
animation of models. Each tool has been evaluated with respect to seven aspects: execution,
interactive and automated control of simulation, animation, recording, validation, and verification.
The main results have been presented in Table 3 and Table 4 on pages 26 and 27.

In general, we observed that the simulation capabilities are very similar among the evaluated tools.
The very details of the simulation/animation capabilities of any tool strongly depend on the supported
modelling languages. We observed the most striking differences in the area of support of validation
and verification.

Below, we present some findings based on the survey results and the experience we made during the
survey.

General observations/experiences - Since we started with a broad search of simulation and/or
RE tools, we initially considered many tools that were not directly suited for REthat were not
model-based or that did not feature simulation/animation capabilities. The remaining candidates
were either CASE or system engineering tools, mostly stemming from embedded systems'
development.

It was partially cumbersome and tedious to obtain information (brochures, white papers, manuals
or demo versions) about the tools. We experienced a high diversity of customer-friendliness and
responsiveness when contacting the corresponding tool vendors or distributors.

In general, the surveyed tools (demo versions, to be precise) were found to be quite intuitive to
use.

 Execution capabilities - Code generation usually implies that various platforms are supported,
due to the high availability of corresponding cross-compilers. On the other hand, interpretation is
limited to the platformsthat are supported directly by the simulation tool. PACE is the only
interpreter-based tool of the survey that offers a virtual machine in order to execute Petri Nets on
a remote platform.

ObjecTime Developer, ObjectGEODE and Statemate MAGNUM (3 of 10 tools) provide direct
interpretation as well as code generation.

 Interactive/automated control capabilities - Forward stepping (of various kinds) is
supported by all of the 10 surveyed tools. CIP Tool and QuickCRC provide just one sort of
(single) step, while the other tools provide various kinds of forward stepping. In contrast,
backward stepping is not so widespread (4 of 10 tools). Statemate MAGNUM allows to go back
one step.

Most tools support the injection of events/messages. The only kind of events supported by
QuickCRC is triggering scenarios. COREsim runs the simulations automatically, guided by
computation of resource allocation (not by user-controlled events).

Automated control of simulation runs is generally not supported. Just CIP Tool and Statemate
MAGNUM are able to (re-) run both user-defined and recorded scripts.

 Animation capabilities - All tools, except QuickCRC, support modelling languages with
graphical notations that are animated.

Besides animating the graphical notations supported, PACE and Statemate MAGNUM (2 of 10
tools) additionally support customisable GUIs. In contrast to Statemate MAGNUM, PACE
offers only few GUI elements that allow to directly modify the state of the system model. All the
toolsthat are based on code generation (6 of 10 tools) allow to link separately programmed GUI
code to the generated code.

Animation in real-time is only supported by 2 of 10 tools: Rhapsody and Statemate MAGNUM.

None of the three tools that require to formulate execution details in a different (standard)
programming language is able to animate such code fragments.

Recording capabilities - Simulation traces/logs are supported by 8 of 10 tools. Four of them
record simulation runs in a format (e.g. MSC) that a tool user easily can read or even modify.

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 32 of 46

Only PACE and Statemate MAGNUM support computation and representation of statistics about
the system model.

Time lines are supported by two of 10 tools: COREsim and RDD-100 /DVF, the two system
engineering tools in the survey.

Validation capabilities - ObjectGEODE, SDT/ORCA and Statemate MAGNUM support model
coverage per simulation run. But no tool offers any kind of validation management/support that
reaches beyond this.

Verification - All tools, except QuickCRC (due to the supported CRC modelling language), do
syntactic and semantic checks prior to simulation runs. None of the surveyed tools provides user-
definable (i.e. programmable) semantical checks.

Checking of dynamic properties (i.e. semantic checks at simulation time) are supported by
ObjectGEODE, SDT/ORCA and Statemate MAGNUM. ObjectGEODE even supports
programmable checking of dynamic properties.

Just one of 10 tools (ObjectGEODE) supports invariants.

ObjecTime Developer, ObjectGEODE and SDT/ORCA allow to compare an MSC against a
system model. Rhapsody allows to compare two MSCs.

Random and limited-depth state space exploration are supported by ObjectGEODE and
SDT/ORCA, the two SDL-based tool of the survey.

In general, ObjectGEODE and SDT/ORCA encompass the broadest range of verification
functions among the surveyed tools.

In general, we observed that the simulation capabilities are very similar among the evaluated tools.
The very details of the simulation/animation capabilities of any tool strongly depend on the supported
modelling languages. We observed the most striking differences in the area of support of validation
and verification.

7. References

7.1 Literature
[Berner et al. 98]

Berner, Stefan; Joos, Stefan; Glinz, Martin. “A Visualization Concept for Hierarchical Object Models”.
Proceedings of the 13th IEEE International Automated Software Engineering Conference (ASE 1998),
Honolulu, Hawaii. Washington, etc.: IEEE Computer Society, Oct. 1998, pp. 225-228.

[Bloss et al. 92]
Bloss, Felix; Willutzki, Paul; Adiprasito, Bartano; Paulini, Michael. “Automatische Modellgenerierung zur
Simulation der Kommunikationsumgebung im Kraftfahrzeug”. it + ti – Informationstechnik und Technische
Informatik, Oldenburg Verlag, Vol. 41, No. 3, 1999, pp. 29-35.

[Boehm 81]
Boehm, Barry W. “Software Engineering Economics”. Prentice-Hall, 1981, ISBN 0-13-822122-7.

[Budde et al. 92]
Budde, R.; Kautz, K.; Kuhlenkamp, K.; Züllighoven, H. “Prototyping: An Appraoch to Evolutionary System
Development”. Springer Verlag, 1992, ISBN 3-540-54352-X.

 [Hazel et al. 97]
Hazel, Daniel; Strooper, Paul; Traynor, Owen. “Possum: An Animator for the SUM Specification
Language”. Proceedings Asia-Pacific Software Engineering Conference and International Computer
Science Conference, IEEE Computer Society, Dec. 1997, pp. 42-51.

[IEEE 90]

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 33 of 46

The Institute of Electronical and Electronics Engineers. “Standard Glossary of Software Engineering
Terminology”. IEEE Std 60.12-1990, IEEE Computer Society Press, 1990.

[Leveson et al. 96]
Leveson, Nancy G.; Heimdahl, Mats Per Erik; Hildreth, Holly; Reese, Jon Damon. “Requirements
Specification for Process-Control Systems”. IEEE Transactions on Software Engineering, Vol. 20, No. 9,
Sep. 1994, pp. 684-707.

[McDermid 94]
McDermid, John A. “Software Engineer’s Reference Book”. Butterworth-Heinemann Ltd., 1994,
ISBN 0-7506-0813-7

[Kang et al. 98]
Kang, Kyo C.; Lee, Kwan W.; Lee, Ji Y., Kim Gerald J. “ASADAL/SIM: An Incremental Multi-level Simulation
and Analysis Tool for Real-time Software Specifications”. Software – Practice and Experience, Springer-
Verlag, Vol. 28, No. 4, Apr. 1998, pp. 445-462.

[Gaskell et al. 94]
Gaskell, Craig; Phillips, Roger. “Executable Specifications and CASE”. Software Engineering Journal, Jul.
1994, pp. 174-182.

[Reubenstein et al. 91]
Reubenstein, Howard B.; Waters, Richard C. “The Requirements Apprentice: Automated Assistance for
Requirements Acquisition”. IEEE Transactions on Software Engineering, Vol. 17, No. 3, Mar. 1991.

 [Selic et al. 92]
Selic, Bran; Gullekson, Garth; Ward, Paul T. “Real-Time Object-Oriented Modelling”. John Wiley & Sons,
Inc., 1994, ISBN 0-471-59917-4.

[Wieringa 98]
Wieringa, Roel. “A Survey of Structured and Object-Oriented Software Specification Methods and
Techniques”. ACM Computing Surveys, Vol. 30, No. 4, Dec. 1998, pp. 459-527.

[Wirfs-Brock et al. 90]
Wirfs-Brock, Rebecca; Wilkerson, Brian; Wiener, Lauren. “Designing Object-Oriented Software”. Prentice
Hall International Inc., 1990, ISBN 0-13-202664-3.

7.2 Tools
This paragraph lists references for all the tools mentioned in this document, in alphabetical order.

Arena Standard Edition, etc.
Systems Modeling Corporation
Sewickley, Pennsylvania, USA
http://www.sm.com/

ASADAL / PROTO, ASADAL / SIM
Pohang University of Science and Technology
Korea
[Kang et al. 98]
ASADAL = “A System Analysis and Design Aid tooL”

AutoFocus
Chair of Prof. Manfred Broy
Department of Computer Science
Technical University of Munich (TUM)
München, Germany
http://autofocus.informatik.tu-muenchen.de/

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 34 of 46

BetterState Lite
Integrated Systems, Inc. (ISI)
Sunnyvale, California, USA
http://www.isi.com/

CAT
CAT is part of the CoRE tool set
British Aerospace
GB
CAT = “CoRE Animation Tool”
CoRE = “Controlled Requirements Expression”

CIP Tool®
CIP SYSTEM AG
Zuerich, Switzerland
http://www.ciptool.ch/
CIP = “Communicating Interacting Processes”

COREsim
COREsim is part of the CORE tool set
Vitech Corporation
Vienna, Virginia, USA
http://www.vtcorp.com/

Cradle SEE
Structured Software Systems Limited (3SL)
Olney, Maryland, USA
http://www.threesl.com/
SEE = “System Engineering Environment”

Design/CPN
University of Aarhus
Aarhus, Denmark
http://www.daimi.au.dk/designCPN/
CPN = “Coloured Petri Net”

DOORS®
Quality Systems & Software Limited
Mt. Arlington, New Jersey, USA
http://www.qssinc.com/
DOORS = “Dynamic Object-Oriented Requirement Specification”

EGS 2
University of Hull
UK
[Gaskell et al. 94]
EGS = “Executable Graphical Specification”

ISLE
Research in Artificial Intelligence and Software Engineering (RAISE Lab)
Brigham Young University
Utah, USA
http://slice.nosc.mil/coaster/isle/doc/ISLE94/ISLE/ISLE.html
ISLE = “Integrated Simulation Language Environment”

Innovator
MID GmbH
Hamburg, Germany
http://www.mid.de/

IvyFrame
IvyTeam
Zug, Switzerland
http://www.ivyteam.com/

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 35 of 46

LOCANA
Rapid Prototyping Laboratory (RPL)
Software Engineering Group
University of Sunderland
Sunderland, UK
http://osiris.sunderland.ac.uk/rpl/
http://osiris.sund.ac.uk/
LOCANA = “Loosely Orthogonal Class-Activity Notation for Analysis”

MacroTec
Software Engineering Group (GELO)
University of Montreal
Montreal, Canada
http://www.iro.umontreal.ca/labs/gelo/

Melba 96 / X Melba
Center for Advanced Technology in Telecommunications (CATT)
Royal Melbourne Institute of Technology (RMIT)
Melbourne (Victoria), Australia
http://www.catt.rmit.edu.au/catt/

METIS 97
METIS Solutions / NCR Norway AS
Horten, Norway
http://www.metis.no/

MicroSaint
MICRO ANALYSIS & DESIGN, Inc. (MA&D)
Boulder, Colorado, USA
http://www.maad.com/

MODSIM III®
CACI International, Inc.
Arlington, Virginia, USA
http://www.caciasl.com/modsim.html/
MODSIM = “Modular Simulation language”

ObjectGEODE™
VERILOG S.A.
Toulouse, France
http://www.csverilog.com/

ObjecTime Developer
ObjecTime Limited
Kanata, Canada
http://www.objectime.com/
[Selic et al. 92]

Objects9000
Roesch Consulting GmbH
Kaarst, Germany
http://www.roesch.com/

ObjectTeam
(meanwhile called ”COOL: Jex”)
Sterling Software, Inc. (formerly Cayenne Software, Inc.)
Plano, Texas, USA
http://www.sterling.com/

PACE
IBE Software und Simulation Engineering
Glonn, Germany
http://ourworld.compuserve.com/homepages/ibepace/

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 36 of 46

PC Pack
Integral Solutions Limited (ISL)
USA
http://www.isl.co.uk/pc_pack.html

Possum
Software Verification Centre
Department of Computer Science and Electrical Engineering
University of Brisbane
Brisbane, Australia
http://www.svrc.it.uq.edu.au/Pages/Animation.html
[Hazel et al. 97]

ProductTrack
Teknowledge Corp.
Palo Alto, California, USA
http://www.teknowledge.com/

QuickCRC™
Excel Software
Marshalltown, Iowa, USA
http://www.excelsoftware.com/
CRC = “Class Responsibility Card”

RA
[Reubenstein et al. 91]
RA = “Requirements Apprentice”

RATS tool
A.Eberlein, F. Halsall
Department of Electrical & Electronic Engineering
University of Wales
Swansea, UK
http://kona.swan.ac.uk/~eeeberle/
RATS = “Requirements Assistant for Telecommunication Services”

RDD-100 / DVF
Ascent Logic Corporation
San Jose, California, USA
http://www.alc.com/
RDD = “Requirements Driven Development”
DVF = “Dynamic Verification Facility”

RDT®
GEC Marconi Systems Pty (Australia)
…
http://www.gec-marconi.com/
RDT = “Requirements Database Tool”

RequisitePro®
Rational Software Corp.
Cupertino, California, USA
http://www.rational.com/

REVS
McAllford
REVS = “Requirements Engineering Validation System”

Rhapsody
I-Logix, Inc.
Andover, Massachusetts, USA
http://www.ilogix.com/

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 37 of 46

ROSE®
Rational Software Corp.
Cupertino, California, USA
http://www.rational.com/

RSML Simulator
University of Washington
USA
http://www.cs.washington.edu/research/projects/safety/www/papers/kurtquals/node1.html
[Leveson et al. 94]
RSML = “Requirements State Machine Language”

RTM®
Integrated Chipware, Inc. (formerly Marconi Systems Technology, Inc.)
Reston, Virginia, USA
http://www.chipware.com/
RTM=“Requirements & Traceability Management”

SDT / ORCA
SDT and ORCA are part of Telelogic Tau
Telelogic SA
Sweden
http://www.telelogic.se/
SDT = “SDL Design Tool”
ORCA = “Object oriented Requirements Capture and Analysis”

SIMPRO
Department of Physics and Astronomy
University of Hawaii
Honolulu, Hawaii, USA
http://www.phys.hawaii.edu/

SimulationExpert®
Visual Logic
USA
http://www.visual-logic.com/

SITE
Systems Analysis
Humboldt University of Berlin
Berlin, Germany
http://www.informatik.hu-berlin.de/Institut/struktur/systemanalyse/SITE/SDL-tools.html
SITE = “SDL Integrated Tool Environment”

SLATE Architect
TD Technologies Inc.
USA
http://www.tdtech.com/
SLATE = “System Level Automation Tool for Enterprises”

Statemate MAGNUM
I-Logix, Inc.
Andover, Massachusetts, USA
http://www.ilogix.com/

StP / UML
AONIX
USA
http://www.aonix.com/
StP = “Software through Pictures”
UML = “Unified Modelling Language”

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 38 of 46

TeamWork
(meanwhile called “COOL: Teamwork”)
Sterling Software, Inc. (formerly Cayenne Software, Inc.)
Plano, Texas, USA
http://www.sterling.com/

ticketOstar
Christian Clercin
Groupe ARIAL
Ecole Nationale d'Informatique
Universite de Fianarantsoa
Madagaskar
http://www.refer.mg/madag_ct/edu/fianar/eni/ticketos.htm

TMA toolset
System Engineering & Assessments SEA Ltd.
USA
http://www.naval-technology.com/contractors/project/sea/index.html

Tracer
ISDE Limted
USA
http://www.isde.com/tracer/index.html

VeriSpec
CACI Advanced Simulation Lab
CACI Products Company
Arlington, Virginia, USA
http://www.caciasil.com/

Vital Link
Compliance Automation, Inc.
USA
http://tlmworks.com/cai

Win A&D, Mac A&D
Excel Software
Marshalltown, Iowa, USA
http://www.excelsoftware.com/

XTie-RT®
Teledyne Brown Engineering
Huntsville, Alabama, USA
http://www.tbe.com/

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 39 of 46

8. Glossary

2D 2-dimensional

4GL 4th Generation Language

ASN.1 Abstract Syntax Notation 1

BPR Business Process Reengineering

CAE Computer-Aided Engineering

CASE Computer-Aided Software Engineering

CPN Coloured Petri Nets

CRC Class Responsibility Collaboration

DFD Data Flow Diagram

ERM Entity Relationship Model

FSM Finite State Machine

GI German Information society

GUI Graphical User Interface

IEEE Institute of Electronical and Electronics Engineers

INCOSE International Council on Software Engineering

ITU International Telecommunication Union

MSC Message Sequence Charts

OML Object Modeling Language

OOA Object-Oriented Analysis

OOD Object-Oriented Design

Pr/T Nets Predicate/Transition Nets

RE Requirements Engineering

SA / RT Structured Analysis / Real-Time

SA / SD Structured Analysis / Structured Design

SDL Specification and Design Language

SE System Engineering/Software Engineering

TTCN Tree and Tabular Combined Notation

UML Unified Modeling Language

VCR Video cassette recorder

VHDL Verilog Hardware Description Language

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 40 of 46

Appendix A: Preliminary questionnaire

This appendix presents the preliminary questionnaire that we used for structuring the information
about the tools we found during the broad search. This questionnaire served as a basis for deciding
whether to include a tool into the survey or not.

Author - Name of the author, evaluating the tool
"Company" Name - ...
"Company" Location - ...
Product Name - ...
Product Release - ...

Product Status

- research prototype
- commercial, new product
- commercial, established single product
- commercial, established product family

Product Prices - …

Supported Platforms

- Unix: ...
- Windows 95
- Windows NT
- MacIntosh
- OS/2

Tool class

- CASE
- Discrete Event Simulation
- Requirements Management
- RE Tool

Supported Methods

- Booch (OOD)
- Rumbaugh (OMT) - Jacobson (OOSE)
- Coad / Yourdon (OOA)
- Jackson (JSD)
- others: ...
- proprietary: ...

Supported Languages

- SDL (Specification and Design Language, ITU Z.100)
- MSC (Message Sequence Charts, ITU Z.120)
- ASN.1 (Abstract Syntax Notation 1)
- UML (Unified Modelling Language)
- ERM (Entity Relationship Model)
- DFD (Data Flow Diagram)
- others: ...
- proprietary: ...

Basic Paradigms

- Petri Nets
- Statecharts
- OO-Model
- SA / SD
- others: ...
- proprietary: ...

Structure Model

- Statecharts
- OO-Model
- SA / SD
- others: ...
- proprietary: ...

Behaviour Model

- State Charts
- (extended) FSM
- Petri Nets
- MiniSpecs
- others: ...
- proprietary: ...

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 41 of 46

Data Model

- ERM
- OO-Model
- Data Dictionary
- ASN.1
- others: ...
- proprietary: ...

Timing Model
- synchronous (broadcast-message)
- asynchronous
- mixed

Simulator / Animator

- yes, integrated simulator / animator
- yes, separate simulator / animator
- code generator + specialised debugger
- code generator
- no

Typical Usage

- Telecommunication
- Automation
- Financial software
- others: ...

Comment - any comment
Last Update - any date

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 42 of 46

Appendix B: Detailed questionnaire

This appendix contains the detailed questionnaire that we used for structuring the information we
gathered about the tools that matched the project's scope. This questionnaire served as a basis for the
evaluation and comparison of the selected tools.
The questionnaire is divided into several sections. Each section has a title and a table, containing the
information about the tool. Each table has three columns. The first column “Attribute” defines the kind
of information. The second column “Info” contains a short code (see legend at the end of the
questionnaire) denoting the source(s) of the information, plus a reference number. The third column
“Domain” contains the actual information. Each field of this column contains a marker, denoting if the
information is an enumeration (“[enumeration type]”, i.e. only one of the predefined answers must be
selected) or a set type (“[set type]”, i.e. any combination of the predefined answers is allowed), and a
predefined list of expected answers. Some of the questionnaire attributes are marked to require a
detailed description, not just keywords.

All the used referential materials like web pages, brochures, manuals, contact persons,
demonstrations and so on, had to be numbered, had to be filled into the column “Info” and had to be
listed at the end of the questionnaire, so the traceability of the information to its sources could be
guaranteed.

Tool identification

Attribute Info Domain
Author ... - name of the author, who collected the tool information
Vendor (name) ... - …
Vendor (location) ... - …
Product name / release ... - …
Last update ... - … last update of the questionnaire

Modelling Basics

Attribute Info Domain

Supported languages /
notations

...

[set type]
[… add detailed description !]
- OML (Object Modelling Language)
- SA (Structured Analysis)
- SA / RT (Structured Analysis / Real Time)
- SDL (Specification and Design Language)
- Petri Nets
- UML (Unified Modelling Language)
- Z
- other: ...
- proprietary: ...

Basic paradigms of simulation
(execution)

...

[set type]
[… add detailed description !]
- automaton (FSM, Statecharts)
- DFD
- MSC, Object Message Diagram
- Petri Nets
- other: ...

Formality degree of the models ...

[enumeration type]
[… add detailed description !]
- informal, textual
- semiformal
- strictly formal

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 43 of 46

Specification / definition of the
execution semantics
(including detail semantics)

...

[enumeration type]
- implicitly defined by the simulator
- explicitly defined, with direct references to corresponding literature
- explicitly defined in the manuals

Access to meta model ...
[enumeration type]
- yes, ...
- no

Supported abstraction
mechanisms

...

[set type]
[… add detailed description !]
- aggregation
- delegation
- inheritance
- other: ...

structure / architecture model ...

[enumeration type]
[… add detailed description !]
- aggregation / hierarchy
...

timing model of messages ...

[set type]
[… add detailed description !]
- synchronous (broadcast messages)
- asynchronous
- both

Timing model of / access to
data blocks

...

[enumeration type]
[… add detailed description !]
- with locking mechanisms ("atomic" access)
- without locking mechanisms

Simulator- / animator features

Attribute Info Domain

Code generation - 1. ...

[enumeration type]
- yes, optional
- yes, needed for simulation
- no

Code generation - 2. ...
[set type]
- generates complete code ; and that for languages ...
- generates code frame ; and that for languages ...

Recording / tracing and
playback of simulation runs

...
[enumeration type]
- yes
- no

Simulation of the system
environment / actors

...

[enumeration type]
- none
- same possibilities as for the model
- stochastic modelling (casualty, unpredictability)
- other: ...

Supported analyses ...

[set type]
- traces / logs
- coverage
- other: ...

Verifications ...
[enumeration type]
- yes, ...
- no

Test case derivation (for
system testing)

...
[enumeration type]
- yes, ...
- no

Execution of incomplete
models

...
[enumeration type]
- yes, an that ...
- no

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 44 of 46

Control of the simulation runs ...

[set type]
- all paths
- single path
- interactive
- to the first unexecutable statement
- controlled by test suite
- other: ...

Simulated time ...

[enumeration type]
- continuous simulated "real time" (acceleration / deceleration ??); i.e.
for execution and animation
- simulated "real time" for execution, but not for animation
- global simulation time no supported

Debugging features ...

[set type]
- breakpoints
- watch points / inspectors
- others:...

Applications

Attribute Info Domain

Simulation purpose ...

[set type]
- feasibility study
- communication means (RE-Engineer <--> RE-Engineer)
- communication means (RE-Engineer <---> customer / user)
- validation of functionality (correctness, completeness, ...)
- performance analysis: general timing behaviour
- performance analysis: throughput
- performance analysis: usage

Typical application area ...

[set type]
- IS applications
- real time systems / embedded systems
- processes (e.g. Workflow Systems)
- system internal services / middleware

Marketing / Distribution

Attribute Info Domain

Status - 1. ...

[enumeration type]
- commercial
- research
- proprietary (internally developed and used)

Status - 2. ...

[enumeration type]
- prototype
- announced for ...
- newly available
- established (available)

Status - 3. ...
[enumeration type]
- single product (software)
- family of fitting products

Supported platforms ...

[set type]
- Unix: Solaris, HP-UX, AIX, ULTRIX, Linux ...
- Windows 95
- Windows NT
- MacOS
- OS/2

Pricing (list prices) ...

[set type]
- Demo version: ...
- Educational version: ...
- Commercial version: ...

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 45 of 46

Official product strategy ...

[enumeration type]
- discontinue
- keep it as it is
- extend
- merge with product ...

Add-On's

Attribute Info Domain

Exports of models ...
[enumeration type]
- yes, and that...
- no

Imports of models ...
[enumeration type]
- yes, and that...
- no

Interoperability ...

[enumeration type]
- integrated with products ...
(i.e. based on a common repository / DB)
- not integrated

Version control of models or
model components

...

[enumeration type]
- integrated, bundled
- additional product of same supplier
- additional product of other supplier
- not supported

Multi-user access, access
management

...
[enumeration type]
- yes, configurable ...
- no

Available libraries,
components, frameworks, ...

...
[enumeration type]
- yes, and that ...
- no

Experiences with the tool (demo version)

Attribute Info Domain

Comprehensibility of model
representation

...

[enumeration type]
- too much per view, and that ...
- satisfactory
- too less per view, and that ...

Userfriendlyness: ease of
learning

...

[enumeration type]
- simple, intuitive (manuals are rarely needed)
- medium (can be mastered with manuals), and that ...
- difficult (training and support needed), and that ...

Userfriendlyness: ease of use ...

[enumeration type]
- simple, intuitive (manuals are rarely needed)
- medium (can be mastered with manuals), and that ...
- difficult (training and online support needed), and that ...

Stability ...

[enumeration type]
- no problems
- casual crashes / bugs, and that ...
- several crashes / bugs, and that ...

Performance ...
[enumeration type]
- allows to work quickly
- repeatedly waiting periods up to ...

Documentation ...

[set type]
- satisfactory, because ...
- not enough information, and that...
- information was difficult to find, and that ...
- ...

A Survey of Simulation Tools for Requirements Engineering

Technical Report 2000.06 25.08.2000 Page 46 of 46

Support: technical questions ...
[enumeration type]
- satisfactory, because ...
- unsatisfactory, because ...

Support: training ...

[enumeration type]
- satisfactory, because ... (competence, course schedules, course
materials, ...)
- insufficient, because ...

Legend of information sources:

(used in the columns "Info")

web = web pages
mkt = marketing materials (brochures)
man = manuals
con = contact to other users of corresponding tool
rep = experience report provided by other users of corresponding tool
dem = live demonstration by vendor / distributor
ref = tested with own reference model (ticketing system)
ral = tested with alternative reference model (...)
dir = directly experienced with the tool (not needing some reference model at all)
lit = literature (papers, books, …)

