SAMOS In Hindsight:
Experiences in Building an Active

Object-Oriented DBMS

Klaus R. Dittrich, Hans Fritschi, Stella Gatziu, Andreas Geppert, Anca Vaduva
Technical Report 2000.05

Database Technology Research Group
Department of Information Technology, University of Zurich
Email: {dittrich, fritsch, gatziu, geppert, vaduva}@ifi.unizh.ch

Abstract

Active object-oriented database management systems incorporate object-oriented
database technology and active mechanisms such as event-condition-action rules
(ECA-rules). SAMOS has been among the first representatives of this class of
systems. During the development of SAMOS, numerous then open research
guestions have been addressed. In this paper, we present a “historical” perspective
of the SAMOS project and report on lessons and experiences we gained in the
project. We identify requirements, present the solutions we devised, and report on
experiences we draw from this project. In particular, we describe the rule model of
SAMOS, which represents a smooth integration of ECA-rules into an object-
oriented data model. We also discuss the implementation and architecture of the
SAMOS prototype on top of a passive object-oriented database system.
Furthermore, we report on performance and usability issues. In order to analyze
performance, we have developed a benchmark; we discuss the experiences (and
improvements) we made by running the benchmark on SAMOS and by comparing
the results to those obtained for other systems. Usability issues have been
investigated with respect to tool support for designing SAMOS applications and
analyzing rule systems. Finally, we discuss experiences in implementing SAMOS
and the conclusions we have drawn for the implementation of other types of event-
based persistent systems as well as a development method for active systems in
general.

Keywords: Active Database Systems, Object-Oriented Database Systems,
ECA-rules

Table of Contents

[0 Yo 8o 1T] o JC I

2 Design and Implementation of SAMOS (1990-1994)ciiiiiiieeieeeeieeeeeeee 4
2.1 ECA-RUIES IN SAMOS .. .ot e et e et e e e e et e e et e e e reeaaaees 5

2.1.1 Primitive and COMPOSILE BEVENTScooiiiiiiiiieiiee e e e 6
2.1.2 MONItONNG INTEIVAIS ...ccei it a e e e e e 6.......
P2 ARG T 0 o Lo [1T0) g E3E=Y o [0 I AX w1110 1 A
2.1.4 Event Parameters and RESIICHONSciuuuiiiii et e et e e e s e e e s 7
A = (=Yo1 U1 0] 4 1N 1Y, (o Yo =] < I
2.3 EXAMPIE e 8......
2.4 The SAMOS PrOtOtYPE. ..cceeiiiiiiitiiite ettt e et e e e st e e e e e e r e e e e e e e e nneees 9
2.4.1 Defining and Storing RUles and EVENES...........c.ooiiciiiiiiieiiie e 10
2.4.2 RUIE PrOCESSING .uuvttiiiiiieiee e e e e i eis ettt e e e e e e s s s s st eeeeeaeeesssasssnnnaeseeeeeeaeeesss s 12......
2.4.2.1 SAMOS TranNSACHONS ...vvuuuieeieeeieieieeiietee e e e e e eeee e e e e e e e eeeeeesba e eeeeeeeeeresssannan 12.......
A N A Y- o1l B 1= (= Tox 1[0] o (R 14
2.4.2.3 Rule Scheduling and EXECULIONcuuiiiiiiiiiiie ettt 14
2.5 Discussion and EVAlUALION...........uoiiiiiii et 15
2.5.1 FUNCHONAIILY ...t e e e e e e e e e s e e e e e e e e s e e e wennnan 15..
2.5.2 IMPIEMENTALION ...t e e e e e e e e e e e — 16.....

3 USING SAMOS (1994-1998) ...t eeeeeee et en et en e e 17
3.1 Performance Evaluation of ADBMS...........cocooiiiiiiii e 18
T U [T ST OF= 1YY TP 20.......
3.3 THE SAMOS TOOIS .ottt et e et et et e e e e et e e e e e e e e e e eenreenreenraenreens 21

IR 70 R =101 o 1T g T=T 0o | =R
B.3.L.L BIOWSEN ...ttt e e et e e e e e e et et e e e e e e e e e e e e e e bbb eeeeeeeeee e et e b aaan e s cm—
B TR I 2 =T 170 7 @o 011 o 11 1= SRS UR
3.3.1.3 Termination Analyzer
3.3.2 RUNUME TOOIS ittt e e e e e e et e e e e e e s aa e e e et e e esba s e s sans s s s
3.3.2.1 TeStiNg COMPONEINT......ooiiiiiiiiiiie ettt e ettt e e e et e e e e e enteeeeaeeesnaeeeeaeeansbeeee e smeeem 24.....
3.3.2.2 EXplanation COMPONENT..........uuiiiiiiiiiiee ettt e et a e e e e e e nebe e e e e snnim 25........
T B 11T o1 § 113 (] o 26......
Construction of Active Systems Revisited (1998-)......ccceviiiiiiiiiiiiiiiieeeeeee 26
(@01 (o3 11 17T] o 1A 8......... 2
LS (=] (=1 1[0 8., 2

-20f31-

1 Introduction

Active database management systems (ADBMS) [1, 16, 19, 24, 56, 58, 59, 75] are able to react in a
predefined way to specific, predefined situations occurring in the database or its environment. The
execution of appropriate reactions is automated and therefore does not require explicit requests is-
sued by users or applications. Situations are usually specified as event/condition pairs, and togeth-
er with actions, they form so-called event-condition-action rules (ECA-rules). The meaning of an
ECA-rule is

< when the event occurs, and
« if the condition holds
< then execute the action.

The rule model of an ADBMS defines how ECA-rules can be specified and what their semantics is.
Rule models differ with respect to the supported event types (e.g., update of a data item in the da-
tabase, or temporal events) as well as condition and action definition (e.g., predicates or queries for
conditions). The execution model of an ADBMS defines the semantics of rule execution, e.g., with
respect to the point in time when rule execution starts, scheduling of multiple rules, etc.

Active database research has initially focussed on the integration of active behavior into rela-
tional DBMSs (Starburst [74], Ariel [48], POSTGRES [65]). A second generation of projects (in-
cluding Ode [38], Sentinel [17] and SAMOS, later followed by REACH [6, 7], ACOOD [4], NAOS
[22], TriGS [50], Chimera [15], and [51]) investigated object-oriented ADBMS.

Reactive behavior as offered by ADBMS can be beneficially used by numerous application ar-
eas, such as financial applications [20], network management [3], workflow management [42],
medical applications [5], integrity constraints [12, 40], maintenance of materialized views [13],
and coordination of heterogeneous, distributed systems [14].

In this paper, we present an overview of the object-oriented ADBMS SAMOS which we have
developed since 1990. We describe the rule and execution model of SAMOS as well as its imple-
mentation on top of a passive DBMS. A first complete prototype has been finished in 1994 and
demonstrated [35] in 1995; since 1996, SAMOS has been publicly available [34]. We report on les-
sons learned and experiences gained during SAMOS’ design and implementation. In particular, we
discuss opportunities and limitations of the layered approach used to build SAMOS on top of a pas-
sive DBMS.

Following the development of SAMOS, we have investigated usability issues in various re-
spects, such as functional evaluation based on use cases, performance evaluation, and the develop-
ment of required tools. This work taught us further lessons of how to provide and implement
ADBMS-functionality. In particular, the most important experience has been that active mecha-

nisms need to be offered in a very flexible way and that they need to be customizable to the appli-

-30f31-

cation area at hand. Based on these findings, we started to investigate flexible and systematic
approaches to the implementation of active systems in general.

The remainder of this paper is organized as follows. In Section 2, we introduce the rule and ex-
ecution models of SAMOS and describe the design and implementation of the SAMOS prototype.
Section 3 discusses three aspects of usability, namely sample application areas, performance eval-
uation, and tool support for ADBMS-applications. Section 4 briefly introduces the ongoing re-

search in construction techniques for active systems. Section 5 concludes the paper.

2 Design and Implementation of SAMOS (1990-1994)

When the SAMOS project started in 1990, the notion of trigger had been around for some time.
However, among the prominent DBMS products only RDB and Sybase supported such a concept.
Research had been done in the context of relational database systems [e.g., 48, 66, 74] and the
Hipac project [23]. With the notable exception of Hipac, the expressiveness of the rule models has
been rather restricted. Thus, when SAMOS started, one of the major research questions was how
to make rule and execution models more powerful. For instance, which further types of events (be-
yond simple database update events) would be needed by ADBMS-applications? How could com-
plex situations (consisting of more than one constituent event) be modeled? How could they be
efficiently detected?

In 1990, object-oriented database systems were the emerging database technology—a manifes-
to incorporating the ideas of several researchers representative for the field had been published
shortly before [2], and products were just entering the market [e.g., 25, 52]. Thus, the second re-
search question has been how to integrate active mechanisms into an object-oriented data model—
how would a rule model in an object-oriented context look like? For instance, how to relate ECA-
rules and class definitions: should rules always be a part of the class definition, or can ECA-rules
be independent from classes? Should ECA-rules be subject to class inheritance?

Finally, how could an object-oriented, active DBMS be implemented? How can new components
(such as event detectors) be added to a passive DBMS? Apparently (internal) components of a
DBMS need to be adapted (such as the transaction manager, the object manager, etc.). Does this
imply that a from-scratch implementation is necessary, or can a passive system be extended to-
wards an active one?

We addressed these questions as follows:

= A powerful event definition language. Together with the languages proposed in the Sentinel
[17] and in the Ode project [38] the SAMOS language was among the first expressive event
definition languages. Our event language concentrates on the definition of complex events
and offers a small number of event constructors that allow expressive event definitions in

combination with the concept of monitoring intervals [26, 32].

-40f31-

= Detection of complex events. In contrast to several other techniques for detection of complex
events [7, 18, 39], the event detector of SAMOS is based on Petri Nets. Generally, Petri Nets
allow both powerful and succinct descriptions of many complex systems. It turned out that

they are suitable for the modeling and the detection of complex event definitions [33].

= Integration of active and object-oriented features in one system. SAMOS investigates the co-
existence of active and object-oriented features in one system. In this context, we have ad-
dressed issues concerning the nature of events specified on database operations and the

association between rules and classes [30].

= Architecture and implementation. We ruled out a from-scratch implementation, because
based on our previous experience, from-scratch-implementations imply a high overhead
(which is hard to bear in a research environment), in particular when only a small fraction of
the system components is of a major research interest. When the project started, we also
considered to use extensible database management systems. However, the data model and
query language of Exodus (called Extra/Excess) [8] have no longer been available back then,
and systems such as Open OODB [73] and Shore [11] have not yet been available when the
SAMOS implementation started. We therefore decided to follow a layered approach, where
we tried to add active functionality on top of a passive system. By doing this, our research in-
terest was in finding out whether a fully-functional active DBMS could be built in this way,

what the limitations are, and what kind of performance can be achieved in this approach.

2.1 ECA-Rules in SAMOS

In this section we introduce the major features of the SAMOS rule language [32]. A rule in SAMOS
has the following form:

DEFINE RULE rule_name

ON event_clause

IF condition

DO action

COUPLING MODE (coupling, coupling)
PRIORITIES (BEFORE | AFTER) rule_name

A rule definition specifies an event description (also called event typel), a condition, an action and
execution constraints (priorities and coupling modes). The event and action parts are mandatory
while the definition of a condition is optional. In case no condition is explicitly specified, it is as-
sumed to be always true. Events, conditions and actions can be named and defined separately (out-
side rule definitions). In this way, it is possible to reuse event types, conditions and actions across

rule definitions.

1. Note that in SAMOS we distinguish between event types and event occurrences.

-50f31-

2.1.1 Primitive and Composite Events
Events can be either primitive or composite. Primitive events in SAMOS are

= time events (which occur at a specific point in time, periodically, or relative to some other

event),
= message sending events (which occur at the beginning or the end of a method execution),
= value events (which occur before or after the modification of an object’s value),

= transaction events (which occur before or after a transaction operation), and

abstract events (which have to be signalled explicitly by the application or the user).

Composite events are constructed out of primitive or other composite events (called component

events). The event constructors supported by SAMOS are
= sequence (E1; E2): all component events occur in the prescribed order.
= conjunction (E1, E2): all component events occur in any order.
= disjunction (E1] E2): one of the component events occurs.

= negation (NOT E): the component event has not occurred during an interval defined with the

negation event (see below).

= reduction: multiple occurrences of the component event are collapsed into a single occur-

rence.

The reduction constructors allow the repeated occurrence of an event E to be signalled only once.
In case of the closure constructors *E and last E , the event E is signalled only after its first re-
spectively last occurrence. The TIMES-constructor TIMES(n, E) is another kind of reduction con-
structor; it is signalled after each nth occurrence. Instead of a fixed number, it is also possible to
specify ranges (such as n1-n2 , or >n, where n, nl1, and n2 are natural numbers).

The consumption mode underlying event composition is chronicle. This means that whenever

multiple eligible component event occurrences exist, the oldest one is chosen.

2.1.2 Monitoring Intervals

As mentioned above, it is sometimes required that a (primitive or composite) event E is signalled
only if it has (not) occurred during a specific time interval | . Therefore, we have introduced in SA-
MOS monitoring intervals for those time intervals during which the event has to occur in order to
be considered relevant. Monitoring intervals are mandatory for the definition of negation and re-
duction events because it is necessary to restrict the monitoring time of the occurrence of an event.

Various options exist for the definition of start and end points of intervals:

= both can be defined as absolute points in time,

-60f31-

= the start point can be defined as an implicit point in time, i.e., as an event occurrence, and
the end point can be defined as an implicit, absolute or relative (referring to the start) point
in time,

= they can be specified as an interval of absolute points in time that reappears periodically,

e.g., EVERY WEEK [MO,18:00-FR,24:00],

= they can be computed from other time intervals using the operators overlap and extend de-

fined for monitoring intervals.

2.1.3 Conditions and Actions

A condition clause in SAMOS is an expression in the query language of the underlying object-ori-
ented database system. The meaning of the condition clause is that if the query produces any data
(a non-empty set of database objects), then the condition is satisfied. The main reason for express-
ing a condition as a query instead of a predicate is that the non-empty answer is thus available to
the action which may exploit it appropriately.

An action can be any executable program written in the data manipulation language of the un-
derlying database system. It may send messages to objects for the execution of methods or even
abort the execution of the (user-defined) transaction in which the corresponding event occurred.
Aborting a transaction is required, e.g., in cases where the rule expresses an integrity constraint
that is not satisfied. The fact that the action can manipulate other objects might cause the occur-

rence of other events and lead to nested rule execution.

2.1.4 Event Parameters and Restrictions

For powerful rule execution, information on event occurrences must be passed between the constit-
uents of a rule. In SAMOS, this is accomplished through event parameters. The set of event param-
eters is event type-specific and fixed (except for abstract events). Each event (except a time event)
carries so-called environment parameters, such as the occurrence time or the identifier of the
transaction that triggered an event (the triggering transaction). Method events have the object
identifier of the object executing the method as a parameter. Using event parameters, rule execu-
tion can refer to the actual database state, i.e., to the state when the condition is evaluated or the
action is executed.

Event parameters for composite events depend on those of the component events and the com-
posite event constructor. For example, a sequence or a conjunction takes the union of the parame-
ters of their components as parameters. Events defined using the *-operator take the parameters
of the first occurring event. Composite events defined as TIMES(n,E) take the union of the param-
eters of the n occurring events as parameters. Composite events defined as TIMES([>n],E) IN
[s-e] or TIMES([n1-n2], E) take as parameters the union of the parameters of the component

events and the number of these events.

-70f31-

Event restrictions can be specified to further restrict composite events to actually interesting
ones. They are conditions to be met by the event parameters of component events. For example, the
same transaction restriction attached to a composite event requires that all component events
must be triggered by the same transaction. For message sending events, it can be specified that
they have to occur for the same receiver object (same object) in order to be eligible constituents of a
composite event. Furthermore, the same user restriction requires that the component events have

occurred in transactions issued by the same user.

2.2 Execution Model

Events occur within a transaction (except time events, which occur outside transactions), called
the triggering transaction. Triggered rules are also executed within transactions, called triggered
transactions. Coupling modes define when triggered transactions are started with respect to the
triggering transaction, and which kind of dependencies among triggered and triggering transac-
tions exist, if any. SAMOS allows two coupling modes per rule to be specified: the event/condition
coupling mode specifies when the condition is evaluated with respect to the event detection, and
the condition/action coupling mode defines when the action is executed with respect to the condi-
tion evaluation. For both of them, SAMOS offers the following choices: immediate (in a subtransac-
tion executed directly after the event has been detected), deferred (in a subtransaction executed
at the end of the triggering transaction) and decoupled (in a separate, independent transaction).
These coupling modes have been adopted from the HiPAC project [23].

Since multiple rules may be defined for the same event and with the same coupling mode, pri-
orities are required to specify the order to be imposed on the execution of these rules. SAMOS sup-
ports relative priorities: for each rule, it can be specified if it should be executed before or after
specific other rules associated to the same event. Priorities thus form a partial order on rules.
Rules that are not (transitively) ordered by priorities are executed in an arbitrary (system-deter-

mined) order.

2.3 Example

We now give a short example for the administration of a schools and students. Students have to
take intermediate exams; if they repeatedly fail these exams, they are not allowed to continue

their studies.

-80f31-

DEFINE EVENT RELEGATION =
(Student.registerExam; TIMES(Student.failedExam, 2): same object): same object

DEFINE RULE RELEGATE

ON RELEGATION
DO oid->notify (“We regret to inform you that you will be relegated since you definitely

failed the intermediate exam”);
oid->relegate
COUPLING [immediate, deferred]

Example 1. Example SAMOS Rule

2.4 The SAMOS Prototype
In the prototype implementation of SAMOS, all components implementing the active behavior are
built “on top” of the passive object-oriented database system ObjectStore [55], which is left unmod-
ified and is treated as a black box for SAMOS. This is the major feature of layered architectures in
contrast to integrated architectures, where the kernel DBMS can be internally modified.

The SAMOS prototype consists of three building blocks (Figure 1):

= the object-oriented DBMS ObjectStore,
= a layer on top of ObjectStore implementing the active functionality which consists of a num-

ber of components like a rule manager, a detector for composite events and a rule execution

component, and
Application Developer

TOOLS Environment

‘Editor #ermination Analyzer‘ ‘ Browser ‘ ‘Explanation Component
SAMOS Kernel
‘ Rule Manager
N SAMOS- 3 Rule Execution
‘ Composite Event Detector ‘ Transactions [Component

ObjectStore

{ Data/Rulebase }

—» event signalling

-] event/rule objects retrieval and storage
— rule execution

Figure 1. An Overview of the SAMOS Architecture

-90f31-

= a set of tools such as a rule compiler, a rule analyzer, a rule editor and a rule explanation

component which are discussed in Section 3.3.

Below we describe the design and implementation of the middle layer, which is implemented by a

collection of C++-classes.

2.4.1 Defining and Storing Rules and Events

Event and rule definitions are managed by the rule manager (see Figure 2 for the most important
parts of the rule manager’s interface). SAMOS users define or modify ECA-rules by using the SA-
MOS rule definition language. All rule definitions are in a first step syntactically and semantically
analyzed and in a second step persistently stored. In a third step, for each defined event the appro-
priate event detector is initialized.

After a rule definition has been successfully checked, its internal representation is stored in
the rulebase. The rule compiler uses the interface offered by the rule manager (as a set of methods)
to store this information.

SAMOS uses the means of the underlying DBMS to provide persistence of the rulebase. A part
of the rule schema is illustrated in Figure 3 (for space reasons, we omit subclasses of
composite_event and time_event in this figure). Rule definitions are stored as instances of
class rule , so-called rule objects. All the event types are objects of class event (so-called event ob-
jects). Each event object maintains a list of references to objects of class rule ; these rules have to
be executed when this event has occurred. Other systems (e.g., ADAM [56], Ode [38]) associate
rules with the objects or classes on whose operations events are defined. However, this approach is
feasible only for some primitive event types (e.g., method events), because only then such a rule as-
sociation exists. Our approach is more general since it can be used for all sorts of events, primitive
and composite ones. Each event object also has a list of references to other event objects represent-
ing composite events. The meaning of such a reference is that the origin of the reference can partic-
ipate as a component event in the target event. Subclasses of event are defined for the various
kinds of event descriptions (e.g., method events, complex events, and so forth).

Event descriptions are persistently stored in a so-called event extent. In ObjectStore terminol-
ogy, an extent is a collection of currently existing, persistent instances of a specific class. In order
to accelerate access to event objects, system-provided means like indexing over the event extent
and clustering the event objects in specific segments are applied.

Conditions and actions basically consist of rule schema information (e.g. action name, textual
representation of the respective operations to be performed etc.) and the code fragments to be car-
ried out upon rule execution. It is not a viable option to include the source code of conditions and
actions into a module statically linked to SAMOS, because this would require recompilation of the
entire SAMOS system whenever new rules are defined. In order to separate the SAMOS kernel

from these code fragments, each condition/action is represented as a C++-function which can be

-100f 31 -

class CRuleManager {

public:

TStatus ColdStart(char DBName[], int replace, os_int32 mode = 0664);
TStatus HotStart(char DBName[]);

rule* ExistsRule(char RuleName[]);
void GetListOfRules(os_set* RuleSet);

event* ExistsEvent(char* ID);
composite_event* GetComplEvent(char* ID);
void GetRulesForEvent(event* evt, os_set* Rules);

TStatus DefineRule(char RuleName[], event* Ev, condition* Cond, action* Act,
couplingMode eccMode, couplingMode cacMode, int prio = 10);

TStatus DefCondition(char name[], char query_stmt[]);

TStatus DefAction(char ActName[], char dml_stmt[]);

TStatus DefAbstrEvent(char EventName[]);
TStatus DefTransEvent(char EventName[], char TransName[], TTransMode Modus);
TStatus DefMethEvent(char EventName[], char className[], char MethName[],
char HeaderFileName[], char ImplFileName[], eventBeforeAfter BeforeAfter);
TStatus DefAbsTimeEv(char EventName[], time_t occp);
... Il similar methods for other types of time events
TStatus DefConj(event* evl, event* ev2, char conj[], TSameClause option);
TStatus DefDisj(event* evl, event* ev2, char disj[]);
TStatus DefSeq(event* evl, event* ev2, char seq[], TSameClause option);
TStatus DefStarOp(event* ey, char StarOp[], TSameClause option);
TStatus DefHistOp(event* ey, char HistOp[], int times, TSameClause option);
TStatus DefSimplelnterval(event* start, event* end, event* ev, char interval_IDJ]);
TStatus Defcompositelnterval(TInterval mode, event* s1, event* el,
event* s2, event* e2, event* ey,
char interval_ID[]);
TStatus DefSimpleNegat(event* start, event* end, event* ev, char not_ev[]);
TStatus DefcompositeNegat(TInterval mode, event* s1, event* s2,
event* el, event* e2, event* ev, char not_ev[]);

TStatus DeleteRule(rule*& RuleToDelete);

TStatus DeleteEvent(event*& EvToDelete);

TStatus DeleteCondition(condition*& CondToDelete);
TStatus DeleteAction(action*& ActToDelete);

};/ICRuleManager

loaded dynamically during rule execution. As part of its state, each condition/action-object main-

tains the information necessary to determine the appropriate function. More details can be found

Figure 2. Interface of the Rule Manager

in [43].

In a further step of rule compilation, actions to enable proper event detection at runtime must

be executed. This is done in a way specific to the various kinds of events:

in case of method events, the operation raiseEvent(event-name) is added at the beginning

and/or at the end (before each return statement) of the method body. This has to be done

manually. The file which contains the method body then has to be recompiled.

in case of time events, operating system utilities (crontab and atq) are used to signal occur-

rences of time events. The necessary entries are generated automatically based on the event

specification, and are inserted into operating system tables by the compiler.

-110f 31 -

rule
name : string event
cMode : couplingMode :
aMode : couplingMode name : string
priority : int %
composite_event primitive_event
condition action
name : string name : string
text : string text : string
condFunction | actionFunctior
abstract_event| | time_event method_event TR EYERD
className : string tx_name : string
methodName : string tx_op : TTransOp

beforeAfter : eventBeforeAfte

=

Figure 3. The SAMOS Rule Schema
= in SAMOS, we use Colored Petri Nets [33] for the detection of composite events. We have de-

fined Petri Net types for all event constructors. Based on these types, SAMOS builds the Pet-
ri Net instance for each composite event description whenever a new composite event is
defined. All these Petri Net instances together form the event detector for composite events.
No specific steps are necessary at rule definition time to enable the correct signalling of trans-

action events.

2.4.2 Rule Processing

Rule processing is subdivided into two phases:
< event detection and signaling.
= rule scheduling and execution.

In the following we discuss specific aspects of the implementation of rule processing on top of Ob-
jectStore. Since event detection and rule processing need appropriate support from transaction

management, we shortly discuss SAMOS transactions first.

2421 SAMOS Transactions
SAMOS uses ObjectStore’s model of closed nested transactions [54], which allows conditions and
actions to be executed as subtransactions. Transaction management must be extended for three

reasons:

= transaction events must be signalled,

-12 of 31 -

= rules must be executed before commit processing takes place in case of the deferred cou-
pling mode,
= the height of transaction trees needs to be restricted to control rule execution.

In ObjectStore, each transaction is represented as an instance of class os_transaction . Opera-
tions on transactions are implemented as methods of this class (e.g., 0s_transaction::begin
starts a new transaction). SAMOS defines a new class samTransaction (Figure 4), which “wraps”
ObjectStore’s transaction class and offers the additionally needed functionality. From a program-
mer’s point of view, this class defines methods to start, commit, and abort transactions. These
three methods implement the transaction functionality using ObjectStore’s transaction operations,
but also add code in order to implement event signalling and rule execution properly.

class samTransaction {

public:

0s_transaction *ostx; /I pointer to ObjectStore transaction

int user;

int level;

char * name;

os_list<ruleExec*> list_of rules; /I rules to be executed before commit.
samTransaction (int mode); /I the constructor, starts a samTransaction
static samTransaction begin; [/l starts a samTransaction

static commit(samTransaction * stx); /I commits a samTransaction

static abort(samTransaction * stx); /I abort a samTransaction

addRule(Rule * newRule, int condYetEval);
/I add newRule to transaction rule register
/I condYetEval specifies whether only action remains to
/I be executed

Figure 4. Definition of Class samTransaction

Transaction events (more precisely, those that actually occur in a composite event or are asso-
ciated to an ECA-rule) are signalled within the corresponding transaction operation. Each trans-
action maintains a list of rules with deferred coupling mode which it has to execute before it
commits. For each of these rules it is also recorded whether only the action is to be executed, or
whether the condition needs to be evaluated first.

Finally, the height of transaction trees might need to be restricted as a stopgap solution to the
rule execution termination problem. Since SAMOS provides nested rule execution, it may happen
that several rules mutually trigger each other and thus rule execution does not terminate. Since
conditions and actions are in turn executed within (sub)transactions, a transaction tree of indefi-
nite depth might result. Therefore, restricting the depth of transaction trees breaks cycles during
rule execution. Rule execution is thus guaranteed to terminate at least for those cycles that do not
contain rules with decoupled mode. The database administrator (DBA) can specify an upper limit
for the nesting depth of transactions. The start of a new transaction is only allowed if its level val-
ue in the transaction tree does not exceed this limit. Note that this is not the only way to ensure

termination of rule processing; static analysis may be used at buildtime (see Section 3.3.1.3).

-130f 31 -

2.4.2.2 Event Detection
Event detection and signalling start as soon as the rule manager receives the message raiseEvent
from a primitive event detector. The rule manager then retrieves the appropriate event object from
the database, and determines whether rules are associated to this primitive event. These rules are
then scheduled for execution.

In a second step, the rule manager checks whether the primitive event is used in an event com-
position. If so, the composite event detector is notified and the Petri Net component begins to play
the token game. Using Petri Nets, composite events are detected in a stepwise manner. Each time
a primitive event occurs, the detector checks if a step forward in detecting one or more composite
events can be made. If yes, it marks the corresponding positions. As a result, one or more compos-
ite events may be signalled. The token game continues until no more composite events can be de-
tected. For each detected composite event, it is also determined whether rules are defined for it. A
detailed description of the detection of composite events can be found in [33].

Implementing the composite event detector in an object-oriented environment (using Object-
Store) enables an object-oriented representation of the Petri Net components (transitions, places
and arcs are represented as objects). In addition, since event occurrences must be stored until they
are used in the signalling of all corresponding composite events, and event occurrences are repre-
sented in the Petri Net as tokens, the appropriate tokens are kept persistent as well. Therefore, to-

kens are also represented as (persistent) objects.

2.4.2.3 Rule Scheduling and Execution
This phase processes the rules associated to one of the events detected in the previous phase. Each

rule is scheduled according to its coupling mode:
= those with coupling mode immediate are executed instantly,

= those with coupling mode deferred are scheduled for execution before commit processing of

the triggering transaction takes place, and
= those with coupling mode decoupled are executed in separate transactions.
Multiple rules are scheduled according to the sequence of the events by which they are triggered.

In case multiple rules are triggered by the same event occurrence, these rules are scheduled ac-

cording to their priorities. If no priority is specified, SAMOS chooses a rule arbitrarily.

Immediate Conditions or Actions

Conditions with the coupling mode immediate are executed directly after the event has been de-
tected. For condition evaluation, a new subtransaction of the triggering transaction is started. If
the condition evaluation yields a non-empty result, the action execution is scheduled. If the condi-
tion/action coupling mode is also immediate , the action is executed directly after the condition

evaluation.

-14 of 31 -

Deferred Conditions or Actions
In case the coupling mode of a condition is deferred , the rule manager informs the (SAMOS-
)transaction that the condition evaluation is still pending. The condition will then be evaluated be-
fore the transaction commits. If it then returns a non-empty result and the condition/action cou-
pling mode is either immediate or deferred , the action will be executed immediately.

If only the condition/action coupling mode is deferred (while the condition coupling mode is
immediate), the rule manager will inform the triggering transaction to execute only the action be-

fore commit, because in this case the condition has already been evaluated.

Decoupled Conditions or Actions

Decoupled rules must be executed in newly started top-level transactions. In ObjectStore, it is not
possible to start new top-level transactions from within another running transaction. In order to
implement the decoupled mode, SAMOS uses a demon process that executes the decoupled rules
(see Figure 5). Whenever a condition or action is to be executed in decoupled mode, the kernel's
rule manager informs the demon to execute the condition/action. Processes use the inter-process

communication facilities of Unix to communicate with the demon.

communication channg

kernel process

Data/Rulebase
Figure 5. SAMOS Kernel and Demon Process Structure

During the action execution (regardless of coupling modes), further events may be signalled,
leading to nested rule execution. Depending on the coupling modes of the newly triggered rules,

nested rules are executed within the action execution.

2.5 Discussion and Evaluation

We conclude this section with a discussion and evaluation of SAMOS’ rule language and imple-

mentation.

2.5.1 Functionality

The rule language of SAMOS offers a rich set of event types and constructors. It therefore is a pow-
erful language which allows a broad range of real-world situations to be expressed. In our perspec-

tive, an advantage of the rule language is that expressive power does not compromise ease of use.

-150f 31 -

Instead, the set of event constructors is rather small. Furthermore, event constructors are orthog-
onal—only very few restrictions for the application of event constructors exist.

In addition, SAMOS offers three different coupling modes, which allow to express various in-
tended semantics of rule execution. Using these coupling modes, the point of time when rules are
executed as well as the relationship of triggered to triggering transactions (i.e., whether triggered
transactions are commit-dependent) can be specified. We will report on a more detailed functional

evaluation in Section 3.2.

2.5.2 Implementation
The evaluation of the implementation of the SAMOS prototype includes three different aspects:

= has it been possible to implement all the features prescribed by the rule and execution mod-

els?
=« how efforteous has the implementation been (i.e., what are the construction costs)?
= how efficient is the implemented prototype?

We discuss performance evaluation in the next chapter and elaborate on the first two aspects im-
mediately.

By applying the layered approach in SAMOS, the time needed to implement SAMOS was sig-
nificantly shorter when compared to an implementation from scratch. This is because the “passive”
part of SAMOS (persistence, queries, indexing, transaction management, etc.) could be reused and
required no implementation efforts on our side. The current implementation of the SAMOS proto-
type comprises approximately 20'000 lines of C++ code. Most of the code has been spent for com-
posite and time event detection. For event object and rule object management, the facilities offered
by ObjectStore have been exploited (object management, clustering, database management). For
retrieval of event and rule objects, ObjectStore features for querying and indexing are used. Ulti-
mately, only slight extensions for transaction management have been necessary. Therefore, the
construction cost of the SAMOS prototype has been very low.

Pursuing the layered approach on top of ObjectStore, it has been possible to implement most,
yet not all, of the rule and execution models’ features in the SAMOS prototype. In particular, value
events and class-internal rules have not been implemented. Implementing value events would
have required to override assignment operators in ObjectStore’s language. We would not only have
had to do this for a significant number of operators (because assignment operators are specific to
the type of the arguments), this technique would also have incurred tremendous performance deg-
radation, because any update would have been signalled. We therefore concluded not to implement
value events. In those cases where they would be needed, we recommend to encapsulate the up-
date within methods, and to define appropriate method events instead. In this way, no real loss of

functionality was experienced.

-160of 31 -

Value events are an excellent example of functionality whose implementation can only then be
reasonable done if either the platform already provides it (as do current relational DBMS), or if in-
ternals of the underlying DBMS such as the object manager can be modified. This possibility
would also have enabled us to add more functionality, or to implement some functions more effi-
ciently.

As a first example in this respect, if ObjectStore would allow to start new top-level transac-
tions in an asynchronous way, the demon process would no longer be required. In this case, the de-
coupled coupling mode could be implemented more easily and efficiently. This approach would be
more elegant and efficient since expensive inter-process communication with the demon would no
longer be used.

Second, SAMOS represents the Petri Net component as a complex database object structure,
thereby guaranteeing atomicity, durability, and isolation for transactions modifying the event his-
tory. However, multiple transactions raising component events of the same composite event de-
scription will block each other, or may even produce deadlocks. Improvements of this situation
require the ability to customize internal components of ObjectStore. The possibility to add a more
subtle concurrency control protocol for the Petri Net component (comparable to specialized concur-
rency control techniques for access paths) would not only help to prevent deadlocks, but would also
increase performance in the presence of concurrent triggering transactions.

Finally, the transaction concept of ObjectStore does not provide for parent/child and sibling
parallelism [49]. If the former were possible, a transaction could spawn a subtransaction while
proceeding with its own execution. Sibling parallelism allows subtransactions of the same parent
to execute in parallel. With parent/child parallelism, a triggering transaction could proceed while
its triggered transactions still execute. Likewise, internal tasks such as composite event detection
could be performed concurrently to the user transactions, as is done in REACH [7]. Otherwise, a
triggering transaction is blocked until the last triggered transaction has terminated. With sibling
parallelism, triggered transactions whose executions are not constrained through priorities could
be executed concurrently. Otherwise, they must be executed sequentially. Obviously, this restric-

tion increases blocking times of triggering transactions.

3 Using SAMOS (1994-1998)

After the SAMOS prototype was completed, our focus turned towards using and evaluating it.
Obviously, the first question users would ask is what the additional runtime costs of using an
active OODBMS are. Although it is clear that additional functionality very likely incurs some per-
formance degradation, no performance measurements have been available at the time. Moreover,
benchmarks for active DBMS did not exist. Therefore, we encountered the research question of

how to evaluate and measure the performance of (object-oriented) ADBMS.

-17 of 31 -

The second question is whether active mechanisms as proposed by SAMOS are useful at all.
Can applications benefit from active OODBMS in such a way that they can implement tasks that
were not doable before, or implement functions in a better or faster way than before? Thus, we
faced the challenge to evaluate the functionality of SAMOS from an application perspective.

Finally, SAMOS offered a powerful mechanism to define ECA-rules. How can users make effec-
tive use of this functionality? In other words, how could the design of rule systems be supported?
How could users be helped in understanding the meaning of ECA-rules (especially those that have
been defined by other users)? Moreover, how can users be assisted in making sure that the rules
they have defined exhibit the intended behavior? Finally, since actions of ECA-rules could easily
generate further events, it could easily happen that rule execution ran into a cycle. Therefore, ter-
mination analysis became an issue that had to be treated in the context of usability.

We have addressed these questions in SAMOS as follows:

= Performance issues of active object-oriented DBMS: We have developed the Beast benchmark

[41, 46] which helped evaluating the performance of SAMOS and other ADBMS.

= Usefulness: We evaluated SAMOS in various application scenarios, such as banking, consis-

tency constraints, and workflow management.

= Tools to support users during the implementation of ADBMS-applications: The SAMOS tools
[69, 70, 71] provide graphical interfaces supporting both, buildtime activities (performed
during rule specification) such as rule editing, browsing, rule termination analysis, and
runtime activities (performed at runtime, during the execution of an application) such as the

understanding of rule behavior.

3.1 Performance Evaluation of ADBMS
The Beast? benchmark has been designed to help analyze the performance of SAMOS. We sketch
the most important results here, for a detailed description, see [41].

Beast allows the performance of object-oriented ADBMS to be measured. It uses the schema
and databases of the 007-benchmark for object-oriented DBMS [10]. It concentrates on the active
functionality; for analyzing only passive functionality, 007 itself can be used. Beast has been used
extensively to measure (and improve!) the performance of SAMOS [41]. A comparison with the
performance of other ADBMS has also been pursued; results are reported in [46].

The tests proposed by Beast are subdivided into three classes:
= event detection tests,
< rule management tests, and

« rule execution tests.

2. BEnchmark for Active database SysTems

-18 0of 31 -

Event detection tests measure the performance of primitive and composite event detection. In
composite event detection tests, the common event constructors such as conjunction, sequence etc.
are used. Composite event detection tests also allow the performance of event restrictions (such as
same transaction) to be measured. Event detection tests are particularly useful to compare differ-
ent approaches to (composite) event detection.

Rule management tests have been devised to determine the overhead of rule and event object
retrieval. Such an analysis is important mainly if rules and event types are (internally) represent-
ed as database objects.

The last group of tests focuses on performance of the rule execution component.

All tests have been designed in a way that the rule processing phase to be tested is stressed in
the test (e.g., tests interested in event detection specify the simplest possible condition and action
parts). For each test, the corresponding event is generated, and the elapsed time the ADBMS
needs to process it (i.e., to detect possibly complex events, evaluate conditions, and execute actions)
is measured.

Beast also allows to determine the impact of the number of rules and event types on ADBMS-
performance. To that end, an arbitrary number of event types and rules can be created (in our
tests, we considered 0, 50, 250, and 500 events and rules in addition to those needed by Beast it-
self). Although these events and rules are not needed in any of the Beast tests, they still can de-
grade performance of rule management and composite event detection.

Running Beast on several versions of SAMOS helped us significantly to find bottlenecks and to
validate performance improvements. In an early version of SAMOS, the Petri Net implementation
has been identified as a bottleneck, because the Petri Net structure had not been represented as an
object graph, but as a set of independent objects. Therefore, numerous joins had to be executed in
order to reconstruct the Petri Net. In the subsequent version, pointers had been used for repre-
senting the Petri Net structures, resulting in significant performance gains. In this version, event
object storage and retrieval have been determined as major bottlenecks. The event extent (the set
of all existing event types) had neither been clustered nor indexed, so that the rule manager had to
scan the entire extent whenever an element of the extent was requested. After indexing and clus-
tering have been added, more performance gains have been achieved. In the most recent version,
we observed that event history management has an impact on performance. In particular, if the
same transaction restriction is specified for a composite event, component occurrences cannot be
used after their triggering transaction commits. If they are garbage collected, they will not be con-
sidered as candidate components during composite event detection, and therefore composite event
detection is faster.

Further performance-related experiences have been made by comparing SAMOS with other
systems (Acood [4], Naos [22], and Ode [38]). Here it turned out that the performance of primitive
event detection and rule execution in SAMOS is comparable (or even slightly better) with that of

the other systems. Composite event detection has been less efficient in SAMOS. This is because

-190f 31 -

SAMOS’ consumption mode is chronicle, which implies a higher overhead for storing and retriev-
ing event occurrences that sometime later might be used as elements of composite events. The oth-
er reason is that composite event detection itself based on Petri Nets, due to its complex structure
of fine-grained objects, seems to be less efficient than other approaches. We therefore considered
other approaches as well in subsequent implementations of other active systems (such as EVE [45],

see below).

3.2 Use Cases

We used (or considered to use) SAMOS in a variety of application scenarios. We will discuss three
of them.

In the first scenario, we evaluated the use of SAMOS for other database functions. In this case,
advanced database functionality is available to users, while active mechanisms themselves are
hidden from them. In particular, we considered consistency constraints in OODBMS as an applica-
tion [40]. It should be noted that (to date) OODBMS provide only rudimentary support for consis-
tency constraints. For constraint specification, we adapted Meyer's Programming by Contract [53].
Pre- and postconditions can be specified for methods and transactions. Invariants can be specified
for single classes or across classes (i.e., so-called inter-object constraints). The active mechanism of
SAMOS has been used to check and enforce these constraints. For the sake of brevity, we do not de-
scribe the detailed transformation process of constraints into ECA-rules. It should suffice to men-
tion that method and transaction events as well as composite (sequence) events could be
beneficially used. For invariants, we ideally would have used value events; since these are not
available, we had to use the aforementioned workaround. Since invariants can be violated within
transactions, but have to hold at commit time, we beneficially used the deferred coupling mode for
this kind of constraint.

In the second scenario, we evaluated the usage of SAMOS in “active applications”, i.e., those
that use ECA-rules for addressing domain-specific problems. In particular, together with a major
Swiss bank we considered ECA-rules in a banking environment [27], where ECA-rules can be used
to perform automated portfolio management. A comprehensive design of an active application has
been pursued for this application. We thereby found the rule language of SAMOS quite adequate.
Putting this application into operation would have required that the already existing data and ap-
plications were migrated on top of ObjectStore, which however was not a serious option for the
bank.

Finally, we considered the use of SAMOS as a platform for other software systems, namely
workflow management and process-oriented environments [42, 67]. The objective hereby was to
design a purely event-based system, so that a workflow/process is executed only by participants
generating and reacting to events. While composite events as provided by SAMOS were mostly ad-

equate, it turned out that SAMOS did not provide the right set of primitive events (e.g., for coordi-

-200f 31 -

nating processing entities in a workflow system) for this purpose. Furthermore, it was not clear
how to extend SAMOS to a distributed system, and we were concerned about the performance of
composite event detection. We therefore finally implemented a new (distributed) event engine, EVE
[45], which provided for composite events most of which were also available in SAMOS, but used a
different composite event detection technique. EVE is not designed as a full-fledged active data-
base management system, and so we were free to tailor its functionality and implementation to
distributed, event-driven systems.

The major conclusion we draw from (especially the last two of) the examples is that active
mechanisms in general and the rule model of SAMOS in particular are adequate for a broad range
of applications. The problems in using the prototype were mainly due to the fact that its function-
ality could not easily be extended and ported to another platform, and that the implementation
could not be adapted (e.g., replacement of event detection techniques). This lead us to reconsider-

ing the construction methods of active system in general, which will be discussed in Section 4.

3.3 The SAMOS Tools

A set of tools (illustrated in Figure 1) supports SAMOS users during the development and the

maintenance of applications. We distinguish between two kinds of tools:

= buildtime tools which support activities performed during rule specification such as rule ed-

iting, browsing, rule termination analysis,

= runtime tools which support activities performed at runtime (i.e., during the execution of an

application) such as the testing of rule behavior.

Buildtime tools communicate with the rule manager, while runtime tools exchange data with the
event detector and the rule execution component. Subsequent sections will discuss the various SA-

MOS tools and the interconnections between them.

3.3.1 Buildtime Tools

The browser and the editor are graphical interfaces to retrieve and insert rule definitions from the
rulebase in a user-friendly way. They have been implemented using the object-oriented application
framework ET++ [72]. The termination analyzer is responsible for detecting rules that may gener-
ate nontermination as a consequence of their interactions. The way buildtime tools are working is

illustrated in Figure 6.

3.3.1.1 Browser
The task of the browser is to support navigation through the rulebase. The required information is
provided by the rule manager which makes use of the retrieval facilities of the underlying DBMS

ObjectStore for querying the rulebase. The returned information includes:

« Jists of all event-, condition- action- and rule definitions,

-210f31-

Termination Analyzer - The Engine

A/E-relationship Relationship Cycle Nontermination
Component > Graph Builder > Component > Component

|

Termination Analyzer- o
. . -» Application
The Visualizer Developer

Browser «+————

Compiler
D ——
Relationship
ECA- Rules
Editor
S o B SAMOS kernel
‘ —» dataflow .
v‘%\;&o [] static tools

controlflow = Persistently saved
between tools — data

Figure 6. Buildtime Tools

= lists of definitions fulfilling certain criteria (e.g., list of composite events, list of time events,

and so on),

= dependencies between parts of rule definitions, including the list of rules an event may trig-

ger or the list of composite events in which an event is participating, etc.

The browser additionally provides users with information produced by the termination analyzer
(during syntactic analysis) such as the primitive events that must occur in order to trigger a cer-
tain rule and the primitive events that may be raised by action execution of a certain rule. This in-

formation is stored persistently to avoid the repeated reanalyzing of rule definitions.

3.3.1.2 Editor/Compiler

The editor offers a graphical interface for the definition, modification and deletion of rules and
their constituent parts. The developer may either specify parts of rules or reuse existing ones and
then choose between available operators in order to create (or change) a rule definition. The editor
translates the input in the rule language of SAMOS and invokes the rule compiler. The rule com-
piler is responsible for the syntactic and partly semantic analysis of rule definitions. The semantic
analysis of events is mainly performed for interval-based events. If an interval does not make
sense (e.g., the lower bound is larger than the upper bound), an error message is displayed. If syn-
tactic and semantic analysis have been successful, the compiler uses the interface offered by the

rule manager to create corresponding objects that are persistently stored in the rulebase.

-220f31-

3.3.1.3 Termination Analyzer
The termination analyzer is responsible for static rule analysis and assists users in checking the
termination of rules.

During static analysis the relationship graph of a set of rules R is built. This is a directed, la-
beled graph where nodes represent rules. Edges represent the action/event relationships (also
called A/E-relationships) between rules, i.e., the fact that an action of one rule lets the event (or
part of the event) of another one occur. An edge between two rules is called firm if the execution of
the source rule definitely causes the execution of the target rule. An edge is termed potential if the
execution of the source rule may cause the execution of the target, e.g., depending on whether only
some component events are triggered or not.

If the graph includes a cycle and all edges are firm, then R will never terminate. In this case,
the user has to modify the rule definitions in R and rule analysis must be done again from the be-
ginning. The case when at least one edge is potential indicates possible nonterminating rule se-
guences and requires further analysis to establish if the cycle is a real one. Finally, the rule sets for
which termination cannot be proven are changed and analysis has to be repeated.

The termination analyzer (also illustrated in Figure 6) consists of an engine and a visualizer.
The engine contains components that are responsible for the steps to be performed during termi-
nation analysis. The A/E-relationship component performs syntactic analysis in order to derive
the relationships between the rules, i.e., it checks actions to find out if they may signal primitive
events. The output of the A/E-relationship component is passed on to the relationship graph build-
er which constructs the relationship graph. Then, the cycle component detects all cycles in the
graph. Finally, the nontermination component filters the output of the cycle component: it elimi-
nates “false” cycles containing composite events by means of methods presented elsewhere [68, 69]
and returns the remaining rule sets that may probably cause nontermination.

This output of the engine is displayed to the rule developer by means of the visualizer. The vi-
sualizer supplies the graphical interface for illustrating relevant information like the relationship
graph and the cycles causing potential nontermination. It is implemented based on the interactive
graph visualization system daVinci [29] which provides a universal layout tool for directed graphs.

The engine is also responsible for the connection between the visualizer and other static com-
ponents of the environment, i.e., the browser and the editor. Nodes of the graph visualization may
be selected and the browser and/or editor opened for them. In this way, the specification of the cho-

sen rule may be examined or changed.

3.3.2 Runtime Tools

The SAMOS runtime tools, the testing and the explanation component, support checking of wheth-
er rule behavior corresponds to the intended functionality. Figure 7 illustrates the architecture

and connections between the various components of the runtime tools.

-230f31-

Application
Developer

'

Explanation Component - 2221 logfile

Rule Manager

Event Detector Rule Execution

Component
Q@
S
Static C, =
Database Analyzer Eué_s g
1 =
) @
| static s
information]
Simulator ‘\ |
Outside Event Database State |
Generator Generator Test Case Manager
Rule Seglﬁnce Random Test Case
Generator anager enerator

Testing Component

Static information provided
for preparing test cases

Figure 7. Runtime Tools

— Dataflow at runtime - >

3.3.2.1 Testing Component

The aim of rule testing is to check if rule behavior exhibits the desired functionality. The rule test-
ing process considers the execution of rule sequences based on test cases. For each test case, test
data (i.e., the input data that start the execution of the test case) have to be generated. In rule test-
ing we call these test data test situations. A situation s; consists of a pair (e ; , db;) reflecting that
the event e; occurred when the database state was db; . Success or failure of each test case is es-
tablished by comparing actual output results with expected results. Expected results are deduced
from an oracle (the user or the rule requirements), which is a means to unequivocally decide
whether the produced output is correct.

In SAMOS, we propose two methods for rule testing which are complementary to each other:
= asystematic method, the so-called rule sequence coverage method and
« a method based on random testing.

The testing component contains the infrastructure for effective and efficient testing such as

tools to evaluate test cases, to generate test situations (event and database state generations).

-24 of 31 -

One of the building blocks of the testing component is the test case manager which generates
and manages test cases during the testing process. It consists of two components, one for each test-
ing method: the rule sequence generator and the random test case generator. The rule sequence gen-
erator uses static information (e.g., the relationship graph produced by the termination analyzer®)
to generate relevant rule sequences which must be tested. The random test case generator gets in-
formation from the operational profile of the rules.

The rule sequence manager administrates the set of all test cases that have to be considered.
At the beginning of the test process, it builds the set of all test cases excluding irrelevant rule se-
guences (e.g., containing rules which can never trigger each other). During the testing process, the
rule sequence manager removes rule sequences that have been executed.

The simulator receives the output of the test case manager and is responsible for the genera-
tion of events and database states. Generated events are always primitive events modeling inter-
actions with the environment (e.g., user or device input). Therefore, the first task of the event
generator is the identification of event definitions which may produce relevant event occurrences.
Then, during the testing process the generator produces instances corresponding to each event def-
inition. An instance is characterized by a timestamp and a list of parameters which depend on the
event definition. Timestamps either already exist (for time events) or are generated for each event
definition using modeling heuristics (like the discrete-event technique [60]). All generated event
instances are collected into a calendar which is a chronological list of future event occurrences. In-
stead of waiting for events to be signalled in the environment, the simulator picks one element af-
ter the other from the calendar and processes it.

Concerning database state generation, the idea is to have for each rule sequence an initial da-
tabase state that allows, when the appropriate events occur, the execution of the whole rule se-
guence. This requires all conditions of the rule sequence to be fulfilled at the moment when their
corresponding rule is triggered. In this case, actions that may influence the evaluation of condi-

tions have to be considered as well.

3.3.2.2 Explanation Component

The explanation component provides support for understanding and debugging the database sys-
tem activity when using SAMOS. It is an autonomous component that may be transparently used
either during the execution of an application or when the simulator is in use. Its task is to visual-
ize rule behavior when rules are executed. Thus, the developer gets an idea about existing rule in-
teractions and the context in which rules are triggered and executed. In particular, the
explanation component graphically traces the signalling of events, shows which rules are conse-
quently triggered and which actions executed. The required information is available in a log file

that documents the output of the event detector, rule manager and execution component in a cer-

3. In this case rule testing corresponds to dynamic rule analysis

-250f31-

tain format and using a certain (primitive) language. The explanation component takes as input
the log file and “translates” its content from a textual into a graphical language offering elements
like boxes, links between them and colors which play an important role for explaining rule behav-
ior.

The connection between SAMOS and the visualization tool is provided by UNIX pipes which
allow the information written in the log file to be redirected as input to the explanation compo-
nent. The explanation component has been implemented on the basis of the application framework
ET++ [72].

3.4 Discussion
Experiences and lessons we extracted from the work on usability aspects of SAMOS can be sum-
marized as follows.

We observed that in general active mechanisms are useful for a variety of purposes, ranging
from DBMS-internal tasks such as constraint maintenance to event-driven systems such as work-
flow management (see also [61]%). Tool support to assist users in developing ADBMS-applications
(e.g., testing analysis) can be effectively provided. Note that tool support has been identified as one
major obstacle of succesful use of ADBMS [64].

Nevertheless, the successful usage of ADBMS is restricted by three drawbacks. First, active
mechanisms are of little use if they are not provided for the right passive platform, i.e., if they are
not available for the (passive) DBMS operated by users to store their data. Second, different appli-
cations (such as those considered in our case studies) pose varying requirements to the functional-
ity of ADBMS, and there is no general “one-size-fits-all” solution. Third, unless performance is
satisfying for all of the ADBMS-components, users will refrain from using them [c.f. 64]. These
three lessons lead us to reconsider construction techniques of ADBMS, to be discussed in the next

section.

4 Construction of Active Systems Revisited (1998-)

Although research in active DBMS somewhat has cooled down during the late 1990s, event-based
systems were becoming ubiquitous in this period. In addition to already mentioned application ar-
eas such as constraint maintenance and workflow management, new ones such as notification sys-
tems [62] (e.g., publish/subscribe), data warehouse refreshment [21], etc. have emerged.

As a consequence, we faced the question of how to support a broad spectrum of applications

with active mechanisms. Some of these applications, such as workflow management, had already

4. While we agree with the authors of [61] that ECA-rules are not suitable means for the specification
of workflows and processes, we have shown elsewhere that generalized event-based systems are in-
deed a viable option for workflow execution [45].

-260f 31 -

been addressed in our projects, yet the challenge was to come up with a general solution to provide
active mechanisms in a way that they can be tailored to the specific requirements of the applica-
tion area. Second, we had concluded that offering active mechanisms on a fixed passive platform
significantly restricts the usability of SAMOS. We therefore faced the research problem of how to
provide active mechanisms so that it can be used for ideally any passive platform. Finally, since
performance of some parts of SAMOS has been a problem, the obvious challenge was how to allow
parts of the ECA-subsystem to be exchanged (e.g., by more efficient ones).

All these questions and requirements refer to the way an ECA-subsystem is designed and im-
plemented, and how tightly it is integrated with the passive part. Hence, in the final part of the
SAMOS project, we have been reconsidering construction issues. The requirements described

above are addressed as follows:
= the “active” subsystem is designed as completely independent from the passive part,

= a construction method allows to tailor active mechanisms to actual needs of applications,

and then to integrate the active subsystem with the passive platform.

The first step is a prerequisite for the ability to combine specialized active subsystems with pas-

sive platforms. To that end, active subsystems have to be available in an “unbundled” form [47]:
= functions typically offered by active subsystems are extracted from ADBMS,

< all the services needed (from the passive platform) are identified and abstracted into general

interfaces.

As a result, active mechanisms are represented in a general, abstract way independent of any con-
crete rule or execution model. Unbundling also helps abstracting from the concrete platform used
(the passive part). In [36], we have described how active functionality can be unbundled.

During rebundling, rule and execution models are implemented according to the application
needs. Viable implementation techniques (such as adequate, efficient event detection) are chosen,
and the active subsystem is “hooked” together with the chosen passive platform. Thus, rebundling
is the inverse activity of unbundling—unbundled components are specialized, instantiated accord-
ing to the application requirements, and finally plugged together into a coherent active system.
Thereby, the rule and execution model can be designed to meet the application needs (e.g., concern-
ing the required event constructors).

Apparently, such an approach should rely on proven software engineering practices. In this re-
spect, we have chosen (component) frameworks as the underlying paradigm. In the FRAMBOISE
project [28], we investigate the design and implementation of a component framework intended to
enable the construction of software systems, so-called ECAS, that allow the definition and execu-
tion of active mechanisms interoperating with specific DBMSs.

We are currently using FRAMBOISE for the construction of ECAS supporting active function-
ality required in the SIRIUS project [37]. In SIRIUS, active mechanisms are used for refreshment

in data warehouses.

-270of 31 -

5 Conclusion

In this paper, we presented an overview of the SAMOS project and system. We have described the
rule and execution models and the tool environment. We have also reported on the evaluation of
the functionality and performance of the SAMOS prototype. The lessons and experiences we draw

from the SAMOS project can be summarized as follows:

= from a functional perspective, the SAMOS model and implementation meets most of the re-

quirements of a broad range of applications;
= runtime performance of several parts of the prototype is not really satisfying;

= the layered approach to the SAMOS implementation is feasible for experimental, research

purposes, yet not for products.

Various use cases showed that the SAMOS prototype would have to be customized or extended in
order to fully meet the encountered requirements. This led us to reconsidering the architecture of
active (database management) systems. In the ongoing Framboise project, we therefore exploit
componentware technology to achieve a higher degree of flexibility in the construction and archi-
tecture of this class of system.

Another lesson that—as we feel—not only applies to ADBMS but to experimental DBMS in
general refers to the platform used for the development of (research) prototypes. Layered ap-
proaches often imply many workarounds; they may prevent some functionality to be implemented
at all and/or may also imply performance degradation. Construction of experimental systems from
scratch is not a viable strategy in academia, because this also requires the implementation of
DBMS-subsystems which are not interesting in the respective context. Extensible database sys-
tems allow to focus on the really interesting parts. However, these systems are often not available
over a sufficiently long period of time, and therefore researchers face the risk that the mainte-
nance of such a system is abandoned in the course of their project. A lesson we therefore draw from
the SAMOS project (and also from EVE) is that the database community should establish some
kind of “open database software foundation” and that making systems (such as Exodus [9], Shore

[11], Open OODB [73]) available should be rewarded much more than today.

6 References

1. The ACT-NET Consortium. The Active Database Management System Manifesto: A Rule-
base of ADBMS Features. ACM Sigmod Record, 25:3, September 1996.

2. M.P. Atkinson, F. Bancilhon, D.J. DeWitt, K.R. Dittrich, D. Maier, S.B. Zdonik. The Object-
Oriented Database System Manifesto (a Political Pamphlet). Proc. 15 Int'l Conf. on Deductive
and Object-Oriented Databases, Kyoto, Japan, December 1989.

3. E. Baralis, S. Ceri., G. Monteleone, S. Paraboschi. An intelligent database system applica-
tion: The design of EMS. Proc. 1st Int'l Conf. on Applications of Databases, Sweden, June
1994,

-280f 31 -

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.
21.

22.

23.

24,

25.

26.

27.

28.

M. Berndtsson, B. Lings. On Developing Reactive Object-Oriented Databases. In [16].

A. Blue, B.M. Brown, W.A. Gray. An Implementation of Alerters for Health District Manage-
ment. Proc. 6th British National Conference on Databases, Cardiff, Wales, July 1988.

H. Branding, A.P. Buchmann, T. Kudrass, J. Zimmermann. Rules in an Open System: The
REACH Rule System. In [57].

A.P. Buchmann, J.Blakeley J.A. Zimmermann, D.L. Wells. Building an Integrated Active
OODBMS: Requirements, Architecture, and Design Decisions. Proc. 11" Int'l Conf. on Data
Engineering, Taipei, Taiwan, March 1995.

M.J. Carey, D.J. DeWitt, S.L. Vandenberg. A Data Model and Query Language for EXODUS.
Proc. ACM SIGMOD Int’l Conf. on Management of Data, Chicago, Illinois, June 1988.

M.J. Carey, D.J. DeWitt, D. Frank, G. Graefe, J.E Richardson, E.J. Shekita, M. Muralikrish-
na. The Architecture of the EXODUS Extensible DBMS. In K.R. Dittrich, U. Dayal, A.P.
Buchmann (eds). On Object-Oriented Database Systems. Springer 1991.

M.J. Carey, D.J. DeWitt, J.F. Naughton. The 007 Benchmark. Proc. ACM SIGMOD Int'l Conf.
on Management of Data, Washington, DC, May 1993.

M.J. Carey, D.J. DeWitt, M. Franklin, N.E. Hall, M.L. McAuliffe, J.F. Naughton, D.T. Schuh,
M.H. Solomon, C.K. Tan, O.G. Tsatalos, S.J. White, M.J. Zwilling. Shoring Up Persistent Ap-
plications. Proc. ACM SIGMOD Int'l Conf. on Management of Data, Minneapolis, May 1994.

S. Ceri, J. Widom. Deriving Production Rules for Constraint Maintenance. Proc. 16™ Intl
Conf. on Very Large Data Bases, Brisbane, Australia, August 1990.

S. Ceri, J. Widom. Deriving Production Rules for Incremental View Maintenance; Proc. 17th
Int’'l Conf. on Very Large Data Bases, Barcelona, Spain, September 1991.

S. Ceri, J. Widom. Managing Semantic Heterogenity with Production Rules and Persistent
Quieries; Proc. 19™ Int’l Conf. on Very Large Data Bases, Dublin, Ireland, September 1993.

S. Ceri., P. Fraternali, S. Paraboschi, L. Tanca. Active Rule Management in Chimera. In [75].
S. Chakravarthy (ed). Active Databases. Special Issue of the Bulletin of the IEEE TC on Data
Engineering 15:1-4, 1992.

S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin, R.H. Badani. ECA Rule Integration into
an OODBMS: Architecture and Implementation. Proc. 11" Int'l Conf. on Data Engineering,
Taipei, Taiwan, March 1995.

S. Chakravarthy, V. Krishnaprasad, E. Anwar, S.-K. Kim. Composite Events for Active Data-
bases: Semantics, Contexts, and Detection. Proc. 20! Int’l Conf. on Very Large Data Bases,
Santiago, Chile, September 1994,

S. Chakravarthy, J. Widom. Proc. 4th Int'l Workshop on Research Issues in Data Engineering:
Active Database Systems, Houston, February 1994.

R. Chandra, A. Segev. Active Databases for Financial Applications. In [19].

S. Chaudhuri, U. Dayal. An Overview of Data Warehousing and OLAP Technology. ACM
SIGMOD Record 26:1, March 1997.

C. Collet, T. Coupaye, T. Svensen. NAOS: Efficient and Modular Reactive Capabilities in an
Object-Oriented Database System. Proc. 20" Int'l Conf. on Very Large Data Bases, Santiago,
Chile, September 1994.

U. Dayal et al. The HiPAC Project: Combining Active Databases and Timing Constraints.
ACM Sigmod Record, 17:1, March 1988.

U. Dayal. Ten Years of Activity in Active Database Systems: What Have We Accomplished?
Proc. Int'l Workshop in Active and Real-Time Database Systems, Skévde, Sweden, 1995.

O. Deux. The O2 System. R.G.G. Cattell, eds.. Special Issue on Next-Generation Database
Systems. Communications of the ACM 34:10, October 1991.

K.R. Dittrich, S. Gatziu. Time Issues in Active Database Systems. Proc. Int'l Workshop on an
Infrastructure for Temporal Databases, Arlington, Texas, June 1993.

U. Fluck. FAME for SAMOS, Implementation of an Application for Active Object-oriented
Database Systems. Diploma Thesis, Department of Computer Science, University of Zurich,
95 (in german).

H. Fritschi, S. Gatziu, K.R. Dittrich. FRAMBOISE—an Approach to Framework-Based Ac-

-290f 31 -

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

tive Database Management System Construction. Proc. 7% Int'l Conf. on Information and
Knowledge Management, Washington, November 1998.

M. Frohlich, M. Werner. Demonstration of the Interactive Graph Visualization System da-
Vinci. Proc. DIMACS Workshop on Graph Drawing, Princeton, 1994.

S. Gatziu, A. Geppert, KR. Dittrich. Integrating Active Mechanlsms into an Object-Oriented
Database System. In P.C. Kanellakis, J.W. Schmidt (eds). Proc. 3" Intl Workshop on Data-
base Programming Languages (DBPL), Nafplion, Greece, August 1991.

S. Gatziu, K.R. Dittrich. SAMOS. An Active, Object-Oriented Database System. In [16].
S. Gatziu, K.R. Dittrich. Events in an Active Object-Oriented Database System. In [57].

S. Gatziu, K.R. Dittrich. Detecting Composite Events in Active Database Systems Using Pet-
ri Nets. In [19].

S. Gatziu, H. Fritschi, A. Vaduva. SAMOS an Active Object-Oriented Database System: Man-
ual. Technical Report 96.02, Department of Computer Science, University of Zurich, 1996.

S. Gatziu, A. Geppert, K.R. Dittrich. The SAMOS Active DBMS Prototype (Demonstration).
Proc. ACM SIGMOD Int’l Conf. on Management of Data, San Jose, CA, May 1995.

S. Gatziu, A. Koschel, G. von Bueltzingsloewen, H. Fritschi. Unbundling Active Functional-
ity. ACM SIGMOD Record 27:1, March 1998.

S. Gatziu, A. Vavouras, K.R. Dittrich. SIRIUS: An Approach for Data Warehouse Refresh-
ment. Technical Report 98.07, Department of Computer Science, University of Zurich, June
1998.

N.H. Gehani, H.V. Jagadish. Ode as an Active Database: Constraints and Triggers. Proc. 1
Int’'l Conf. on Very Large Data Bases, Barcelona, Spain, September 1991.

N.H. Gehani, H.V. Jagadish, O. Shmueli. Composite event specification in active databases:
Model and implementation; Proc. 18™ Int’l Conf. on Very Large Databases, Vancouver, Au-
gust 1992.

A. Geppert, K.R. Dittrich. Specification and Implementation of Consistency Constraints in
Object-Oriented Database Systems: Applying Programming-by-Contract. Proc. GI-Conf.
Datenbanksysteme in Buro, Technik und Wissenschaft (BTW), Dresden, Germany, March
1995, Springer Verlag.

A. Geppert, S. Gatziu, K.R. Dittrich. A Designer's Benchmark for Active Database Manage-
ment Systems: 007 Meets the BEAST. In [63].

A. Geppert, M. Kradolfer, D. Tombros. Realization of Cooperative Agents Using an Active
Object-Oriented Database Management System. In [63].

A. Geppert, S. Gatziu, K.R. Dittrich, H. Fritschi, A. Vaduva. Architecture and Implementa-
tion of the Active Object-Oriented Database Management System SAMOS. Technical Report
95.29, Department of Information Technology, University of Zurich, November 1995.

A. Geppert, M. Berndtsson (eds). Proc. 3™ Intl. Workshop on Rules in Database Systems,
Skdvde, Sweden, June 1997. LNCS 1312, Springer 1997.

A. Geppert, D. Tombros. Event-based Distributed Workflow Execution with EVE. Proc. Mid-
dleware '98. The Lake District, England, September 1998.

A. Geppert, M. Berndtsson, D.F. Lieuwen, C. Roncancio. Performance Evaluation of Object-
Oriented Active Database Management Systems Using the BEAST Benchmark. Theory and
Practice of Object Systems (TAPOS) 4:4, October 1998.

A. Geppert, K.R. Dittrich. Bundling: Towards a New Construction Paradigm for Persistent
Systems. Networking and Information Systems Journal 1(1), June 1998.

E. Hanson. The Design and Implementation of the Ariel Active Database Rule System. IEEE
Transactions on Knowledge and Data Engineering 8:1, February 1996.

T. Haerder, K. Rothermel. Concurrency Control Issues in Nested Transactions. The VLDB
Journal 2:1, 1993.

G. Kappel, S. Rausch-Schott, W. Retschitzegger, S. Viewweg. TriGS: Making a Passive Ob-
ject-Oriented Database System Active. Journal of Object-Oriented Programming 7:4, July
1994.

A. Kotz-Dittrich. Adding Active Functionality on an Object-Oriented Database System: A

7th

-300f31-

52.

53.
54.

55.
56.

57.

58.
59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Layered Approach. Proc. GI Conf. Datenbanksysteme in Biro, Technik und Wissenschaft,
Braunschweig, Germany, March 1993.

C. Lamb, G. Landis, J. Orenstein, D. Weinreb. The ObjectStore Database System. Communi-
cations of the ACM 34:10, 1991.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, New York, 1988.

J.E.B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. MIT
Press, 1985.

Object Design. ObjectStore - Manuals for Release 3.0 SunOS, 1993.

N.W. Paton, O. Diaz, M.H. Williams, J. Campin, A. Dinn, A. Jaime. Dimensions of Active Be-
haviour. In [57].

N.W. Paton, H.W. Williams (eds). Rules in Database Systems. Workshops in Computing,
Springer-Verlag, 1994.

N.W. Paton (ed). Active Rules in Database Systems. Springer, New York, NY, 1999.
N.W. Paton, O. Diaz. Active Database Systems. ACM Computing Surveys 31:1, 1999.

U. W. Pooch, J. A. Wall. Discrete Event Simulation: A Practical Approach. CRC Press Boca
Raton, Florida 93.

J. Reinert, N. Ritter. Applying ECA-Rules in DB-Based Design Environments. Proc. CAD 98,
Darmstadt, Germany, March 1998.

D.S. Rosenblum, A.L. Wolf. A Design Framework for Internet-Scale Event Observation and
Notification. Proc. 6t European Software Engineering Conference/5" ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, Zurich, Switzerland, September 1997.
LNCS 1301, Springer.

T. Sellis (ed). Proc. 2"d Intl Workshop on Rules in Database Systems, Athens, Greece, Sep-
tember 1995. LNCS 985, Springer 1995.

E. Simon, A. Kotz-Dittrich. Promises and Realities of Active Database Systems. Proc. 215t
Int'l Conf. on Very Large Data Bases, Zurich, Switzerland, September 1995.

Stonebraker, E.N. Hanson, S. Potamianos. The POSTGRES Rule Manager. IEEE Transac-
tions on Software Engineering 14:7, 1988.

M. Stonebraker, A. Jhingran, J. Goh, S. Potamianos. On Rules, Procedures, Caching, And
Views in Data Base Systems. Proc. ACM SIGMOD Int'l Conf. on Management of Data, At-
lantic City, NJ, May 1990.

D. Tombros, A. Geppert, K.R. Dittrich. Design and Implementation of Process-Oriented En-
vironments with Brokers and Services. In B. Freitag, C.B. Jones, C. Lengauer, H.-J. Schek
(eds). Object-Orientation with Parallelism and Persistence. Kluwer Academinc Publishers,
1996.

A. Vaduva. Rule Development for Active Database Systems. Doctoral Dissertation, Universi-
ty of Zurich, Switzerland, August 98.

A. Vaduva, S. Gatziu, K.R. Dittrich. Investigating Termination Analysis for Expressive Rule
Languages. In [44].
A. Vaduva, S. Gatziu, K.R. Dittrich:. Graphical Tools for Rule Development in the Active

DBMS SAMOS (Exhibition Paper). Proc. 13" Int’l Conf. on Data Engineering, Birmingham,
UK, April 1997.

A. Vaduva, S. Gatziu, K.R. Dittrich. Rule Termination in Active Databases: Solved and Un-
solved Problems. Submitted for publication.

A. Weinand, E. Gamma, R. Marty. Design and Implementation of ET++, a Seamless Object-
Oriented Application Framework. Structured Programming, 10(2), 1989.

D.L. Wells, J.A. Blakeley, C.W. Thompson. Architecture of an Open Object-Oriented Database
Management System. IEEE Computer 25:10, October 1992.

J. Widom, R.J. Cochrane, B.G. Lindsay. Implementing Set-Oriented Production Rules as an
Extension to Starburst. Proc. 171" Int'l Conf. on Very Large Data Bases, Barcelona, Spain,
September 1991.

J. Widom, S. Ceri (eds). Active Database Systems: Triggers and Rules for Advanced Database
Processing. Morgan Kaufmann Publishers, 1995.

-310f31-

	SAMOS in Hindsight: Experiences in Building an Active Object-Oriented DBMS
	Table of Contents
	1 Introduction
	2 Design and Implementation of SAMOS (1990-1994)
	2.1 ECA-Rules in SAMOS
	2.1.1 Primitive and Composite Events
	2.1.2 Monitoring Intervals
	2.1.3 Conditions and Actions
	2.1.4 Event Parameters and Restrictions

	2.2 Execution Model
	2.3 Example
	2.4 The SAMOS Prototype
	2.4.1 Defining and Storing Rules and Events
	2.4.2 Rule Processing
	2.4.2.1 SAMOS Transactions
	2.4.2.2 Event Detection
	2.4.2.3 Rule Scheduling and Execution
	Immediate Conditions or Actions
	Deferred Conditions or Actions
	Decoupled Conditions or Actions

	2.5 Discussion and Evaluation
	2.5.1 Functionality
	2.5.2 Implementation

	3 Using SAMOS (1994-1998)
	3.1 Performance Evaluation of ADBMS
	3.2 Use Cases
	3.3 The SAMOS Tools
	3.3.1 Buildtime Tools
	3.3.1.1 Browser
	3.3.1.2 Editor/Compiler
	3.3.1.3 Termination Analyzer

	3.3.2 Runtime Tools
	3.3.2.1 Testing Component
	3.3.2.2 Explanation Component

	3.4 Discussion

	4 Construction of Active Systems Revisited (1998-)
	5 Conclusion
	6 References

