
Modeling and Executing the Data Warehouse

Refreshment Process

Athanasios Vavouras, Stella Gatziu, Klaus R. Dittrich

Technical Report 2000.01
January 2000

Department of Information Technology, University of Zurich
{vavouras, gatziu, dittrich}@ifi.unizh.ch

Abstract

Data warehouse refreshment is often viewed as a problem of maintaining
materialized views over operational sources. In this paper, we show that the data
warehouse refreshment process is a complex process comprising several tasks, e.g.,
monitoring, extracting, transforming, integrating and cleaning operational data,
deriving new data, building histories and loading the data warehouse. We propose a
novel approach for defining and executing the refreshment process based on
specifications stored in an object-oriented metadata repository. Our approach
considers the multidimensional character of OLAP data and can be used in
conjunction with various operational sources and target data warehouses.

1 Introduction

The topic of data warehousing [6, 14, 17, 35, 36, 40] comprises architectures, algorithms,

models, tools, organizational and management issues for integrating data from several op-

erational systems in order to provide information for decision support, e.g., using data min-

ing techniques or OLAP (on-line analytical processing) tools. Thus, in contrast to

operational systems which contain detailed, atomic and current data accessed by OLTP

(on-line transactional processing) applications, data warehousing technology aims at pro-

viding integrated, consolidated and historical data. The data warehouse (DWH) can be real-

ized either as a logical (virtual) view of the data physically stored in the various operational

systems, or as a separate database that stores integrated operational data (the latter being

the most typical case). A data warehouse system (DWS) includes the data warehouse and

all components responsible for building, accessing and maintaining the DWH.

Figure 1 shows a typical data warehousing environment. Data from the enterprise’s (in-

ternal) operational systems (e.g., database systems, flat files, etc.) as well as external data

(e.g., WWW data, demographic and statistical data, etc.) are integrated into a large, consis-

tent data repository, the DWH (data acquisition phase). Specialized modeling concepts such

as the multidimensional model, the star and the snowflake schema as well as storage struc-

tures like bitmap ([7], [8], [39], [41]) and join indices ([23], [21,]) are used to store extracted

data in the DWH and/or in particular data marts (data storage phase). A data mart is a se-

lected part of the data warehouse which contains simple replicas of warehouse partitions or
 - 1 -

data that has further been summarized or derived from base warehouse data. A data mart

is usually designed to meet the specific needs of a company’s department or geographical

region. Finally, during the analysis phase, users access the DWH or data marts using vari-

ous tools and applications as shown in Figure 1.

Figure 1 Common data warehousing environment

Implementing a concrete data warehouse solution is a complex task, comprising two

major phases. In the DWS configuration phase, the DWS designer must determine (accord-

ing to user requirements for information) the desired operational data, the appropriate op-

erational sources, the way data will be extracted, transformed integrated and stored, and

how the DWH data will be accessed during analysis. After the initial loading (the first load

of the DWH according to the DWH configuration), during the DWS operation phase, ware-

house data must be regularly refreshed, i.e., modifications of operational data since the last

DWH refreshment must be propagated into the warehouse (and into data marts) such that

warehouse data reflect the state of the underlying operational systems. Besides DWH re-

freshment, DWS operation includes further tasks like archiving and purging of DWH data

or DWH monitoring.

Data Warehouse Refreshment Issues.In this section, we give an overview of the particu-

lar issues related to the data warehouse refreshment process and derive the requirements

for an appropriate data warehouse refreshment system. The issues include 1) the tasks

that must be accomplished during warehouse refreshment, 2) the process of incremental

external
 sourceoperational

 system
operational
 system

operational
 system

Data
Mart

Data
Mart

DSS MDBS Simulation

Data Mining

Data
Warehouse

Statistics

acquisition

storage

analysis
Reporting
 - 2 -

refreshment of warehouses, and 3) temporal issues regarding the initiation of the refresh-

ment process.

The first issue concerns the question of which tasks must be executed during warehouse

refreshment. Operational data resides in a wide range of information systems which run on

diverse platforms and have a variety of representations and formats, due to differences in

data models as well as in understanding and modeling data. Dealing with the heterogene-

ity of the integrated sources in a data warehousing environment implies extracting opera-

tional data from diverse sources and transforming it into a common format. During the

refreshment process, operational data must be integrated and “homogenized” according to a

common, global data model. Furthermore, structural and semantic differences across oper-

ational sources must be reconciled. Data extracted from operational systems often contains

errors, can be inconsistent, unreadable or incomplete. Therefore, it must be cleaned before

being loaded into the data warehouse. Particularly, for the integration of external data,

cleaning is an essential task in order to get correct data into the DWH and improve the

quality of warehouse data. In most cases, additional activities are required (completion) be-

fore loading data into the DWH, for example

• provide a common level of detail for data from different sources and build aggrega-

tions,

• calculate derived data,

• add time-related information (usually by timestamping data with the update date).

A distinguishing characteristic of data warehouses is the temporal character of ware-

house data, i.e., the management of histories over an extended period of time. Historical

data is necessary for business trend analysis which can be expressed in terms of analysing

the temporal development of real-time data. For the refreshment process, maintaining his-

tories in the DWH means that either periodical snapshots of the corresponding operational

data or relevant operational updates are propagated and stored in the warehouse, without

overriding previous warehouse states.

The second issue is how to execute the refreshment process. The first option is to per-

form a complete reload of operational data, i.e., extract the last (complete) state of opera-

tional systems, execute the steps described above, and load the data into the DWH. The

second one is to refresh the DWH incrementally, i.e., detect relevant updates in operational

systems between two refreshment points of time, execute the above mentioned tasks only

for changed data, and update the DWH accordingly. There are several reasons for refresh-

ing a DWH incrementally in contrast to full reloads. First, DWH volumes can reach hun-

dreds of gigabytes or even several terabytes, and will grow even more in the future. At the

same time, the demand for more up-to-date data increases such that a DWH must be up-
 - 3 -

dated more often. Under these circumstances, performing a complete reload of operational

data is a very time-consuming task that becomes unacceptable. Second, since a DWH typi-

cally stores (besides basic operational data) a large amount of derived and aggregated data,

detecting and propagating only updates of basic data will also significantly reduce the time

for computing derived and aggregated data. Finally, there is an important coherence be-

tween incremental refreshment and history management. Detecting updates of operational

data in order to refresh the warehouse incrementally enables at the same time the correct

maintenance of histories in the warehouse. In contrast, discarding updates between two re-

freshment points of time and performing periodical, complete reloads of warehouse data

leads to a (at least partial) loss of histories (this important distinction will be described in

Section 4.1).

Figure 2 Data warehouse refreshment process

The last issue of the refreshment process concerns the question of when to execute the

refreshment process. The DWS should provide a variety of options for defining the begin of

the refreshment process, for example

• periodically, e.g., every day at 19:00, every Friday at 24:00, at the end of every

month, etc.,

• depending on changes of operational data, e.g., when a certain attribute value limit

in one or more operational systems has been reached,

Cleaning

Extraction & Transformation

Integration & Completion

History & Loading

operational

data

data

warehouse

time

re
fr

es
hm

en
t p

ro
ce

ss

systems

marts
 - 4 -

• on explicit request of a DWH-user or the data warehouse administrator.

Figure 2 illustrates the tasks related to the refreshment process. After the initial load-

ing of the DWH, operational updates are propagated into the DWH and data marts at cer-

tain points of time. For modified data, the particular tasks described above are executed

and applied to the previous warehouse state such that the DWH represents a consistent

view of the integrated operational systems.

Related Work. The topic of DWH refreshment so far has been investigated in the research

community mainly in relation to techniques for maintaining materialized views [13, 27]. In

these approaches, the DWH is considered as a set of materialized views defined over opera-

tional data. Thus, the topic of warehouse refreshment is defined as a problem of updating a

set of views (the DWH) as a result of modifications of base relations (residing in operational

systems). Several issues have been investigated in this context. For example, [1, 15, 20, 38,

45, 46, 47] present various algorithms for the consistent, incremental maintenance of a sin-

gle view or a set of views derived from multiple data sources. [16, 25] consider the problem

of view self-maintenance, i.e., maintaining views without accessing all base data. In [30], a

solution for maintaining externally materialized views is presented, i.e., for the case where

access to the base data and the view definition but not to the materialized view is possible.

[29] provides algorithms for answering queries with grouping and aggregation using mate-

rialized views. [31] and [42] deal with the issue of warehouse configuration, i.e., selecting a

set of views to materialize in a DWH. [43] presents a framework for maintaining temporal

views over non-temporal source relations. In [44], the problem of how to preserve the view

definition under schema-level changes of operational systems is addressed. All these ap-

proaches focus on the problem of propagating data updates from operational systems to the

warehouse. However, as discussed above, update propagation using view materialization

techniques is only one of the relevant tasks of the data warehouse refreshment process.

Moreover, most of these approaches presume a “relational environment”, i.e., they as-

sume that operational sources as well as the target warehouse are relational systems,

which is not always true. Operational sources can be any kind of database systems (rela-

tional, hierarchical, network, object-oriented etc.), but also ISAM files or other proprietary

formats. On the other hand, although the majority of projects makes use of relational tech-

nology for implementing the data warehouse, there is an increasing demand for building

data warehouses for “non-standard” applications like genomic [9], geographic or Web ware-

houses [3]. Likewise, it is an interesting issue to integrate data from these application do-

mains into “traditional” warehouses, e.g., to combine customer data of a company with

spatial or Web data. In both cases, refreshment approaches using materialized view tech-
 - 5 -

niques are too limiting because they make it difficult to model and manage non-standard

types such as spatial data types.

In our approach, object-oriented modeling concepts are used to describe the complex

structure of operational data and the multidimensional character of warehouse data. Be-

sides these structural (static) aspects, the dynamic aspects of the refreshment process, i.e.,

the execution of the particular steps of the refreshment process, can be treated in an inte-

grated way by using methods that operate on the above mentioned data structures. The

specification of the refreshment process is stored in an object-oriented metadata repository

which can be extended in a simple way. The execution of the refreshment process is based

on these specifications. Complex mappings and transformations as well as various ways for

defining derived data are supported. History building, key management, incremental re-

freshment and mappings for several typical DWH design methods (e.g., star and snowflake

schemas) are provided using OID’s and object-oriented modeling techniques respectively.

Thus, in contrast to existing refreshment approaches, the main goal of our approach is

to introduce a flexible middleware architecture that

• provides solutions to all refreshment issues discussed above,

• can be used independently of how warehouse data is stored persistently, i.e., with-

out making any assumptions about the DBMS or other data management system

used for storing the warehouse data, and

• can be used in data warehouse environments consisting of a wide variety of hetero-

geneous operational sources (various database systems, flat files, etc.).

The approach developed in the context of our project SIRIUS (Supporting the Incremen-

tal Refreshment of Information Warehouses) is, to the best of our knowledge, the first one

which deals with the warehouse refreshment problem without restricting the DWH to a set

of materialized views over operational data. The same fundamental idea is followed by the

position paper in [4] which discusses the particular steps of the refreshment process and

the differences to the view maintenance problem in a similar way. The focus of their future

work is the design and implementation of the refreshment process by using workflow sys-

tem technology.

The paper is organized as follows. Section 2 presents a running example of a data ware-

house application for a mail-order business. Section 3 presents the basic constructs for the

specification of the refreshment process. Furthermore, we discuss the SIRIUS data model

and the transformation steps that can be defined in SIRIUS for performing the particular

tasks of the refreshment process. Section 4 presents the SIRIUS system architecture, and

shows how the various components cooperate in order to refresh a DWH. Section 5 de-

scribes the most important steps during execution of the refreshment process and Section 6
 - 6 -

summarizes the main features of our approach. The paper concludes with a presentation of

our current and future work.

2 A Running Example

In our running example, a mail-order business aims at building a DWH to support decision

making for different user groups and departments (illustrated in Figure 3).

Figure 3 The Data Warehouse System for the Mail-Order business

The central DWH stores products, sales and customer data that is drawn from various

information systems. We assume that each company branch locally stores its own sales

data (e.g., sold items, quantity, price, date, etc.) and customer data (e.g., name, address, age,

marital status etc.). All branches access the same product catalog which stores information

like product number, description, price, marginal return etc. and is managed by the central

marketing division. Besides, data delivered from the company branches, external data like

demographic data (in order to classify all customers according to several characteristics)

and several market analyses (e.g., about market shares and market demand) will be inte-

grated into the DWH.

We assume that before starting with the configuration of the refreshment process, a

conceptual schema of the warehouse data has been defined using one of the conceptual

models for DWH design recently proposed in the literature [12, 28, 33]. Figure 4 shows a

part of the conceptual dimensional fact schema of our running example using a graphical

notation similar to the one proposed in [12]. The basic components of a dimensional fact

schema are facts, dimensions and hierarchies. Facts represent business events (measures) to

be analysed, e.g., sales, shipments, policy effects, phone calls, etc. Dimensions include the

analysis criteria, i.e., the different points of “view” used for analysing facts. Our example

Data

customer

products
internal
sources

external
sources

market analysesdemographic
database

Integration

Data
Mart

Warehouse

Data
Mart

& statistics

& sales

branch 1

customer
& sales

branch 2

DSS MDBS

Simulation

Data Mining

Statistics

Reporting
 - 7 -

schema consists of the sales fact and the four dimensions product , customer , time , branch .

Dimensions have usually defined on them hierarchies of attributes that specify aggregation

levels and hence the granularity of viewing data. For example, customer ->location ->re-

gion ->country is a hierarchy on the dimension customer that can be used for querying sales

data in diverse aggregation levels by drilling down or rolling up. In Figure 4, hierarchy at-

tributes like location and region are represented by empty circles, whereas non-hierarchy

attributes (i.e., dimension attributes that do not participate in a hierarchy) like date_intro

or supplier are represented by filled vertices.

Figure 4 Conceptual dimensional schema

3 Modeling the Refreshment Process in SIRIUS

As described in the introduction, the main goal of our approach is to support the modeling

and execution of the refreshment process at an intermediate layer between operational

sources and the target data warehouse. On the operational side, capturing the heterogene-

ity of operational sources necessitates concepts for the definition of a uniform “global” rep-

resentation of operational data to be integrated. In our approach, modeling the structure of

operational data is performed by defining a global schema using the SIRIUS global data

model (described in Section 3.1). The global schema is the basis for executing the refresh-

SALES

quantity
sale_unit

time

productcustomer

day_of_week

month year

category

address

marital_status

country

fact

dimension

branch

supplier

date_intro

manager

quarter

salesperson

location

location_class

birth_date
location

region

revenue
pay_method

gender

dimension

dimensiondimension
 - 8 -

ment process, i.e., for integrating operational and external data, performing the particular

refreshment tasks and loading the DWH. On the other hand, we assume that a storage

schema is used for defining the structure of the DWH data as it is stored by the warehouse

DBMS. For example, the warehouse DBMS can be a relational or a multidimensional

DBMS, and the storage schema a star, snowflake or a multidimensional schema. By using a

global schema and defining the appropriate mappings to operational schemas as well as the

warehouse (storage) schema, the SIRIUS approach can be used in various environments

and independently of how warehouse data is persistently stored.

Figure 5 gives an overview of the schema architecture proposed in SIRIUS. For each op-

erational source a source data representation (the database schema, in case of database

systems) describes the structure of the operational data. Parts of each source data repre-

sentation contribute to the global schema. The various SIRIUS components which are re-

sponsible for the execution of the refreshment process (summarized as the Data Warehouse

Refresh Manager, DWRM, in Figure 5) operate on top of the SIRIUS global schema.

Figure 5 Schema architecture in SIRIUS

For the definition of the refreshment process in the SIRIUS level, three basic kinds of infor-

mation are needed:

a. the specification of the global schema

b. a description of operational data and sources to be integrated

c. the mapping between a. and b. including all refreshment tasks.

The specification of the refreshment process in SIRIUS is based on the meta model il-

lustrated in Figure 6 in UML notation. The central element of the meta model is the speci-

Warehouse
Data

...
source data
representation2

source data
representationn

operational
systems
level

SIRIUS
level

data
warehouse
level

source data
representation1

global schema

storage schema

DWRM

Warehouse
DBMS

operational
source

operational
source

operational
source
 - 9 -

fication of the global schema which is the basis for executing the refreshment process. In

order to embody the multidimensional character of OLAP data, the SIRIUS global schema

must be specified by the DWH administrator in terms of fact and dimension classes. Fact

classes contain a set of measures and are associated with several dimension classes. Dimen-

sional classes consist of dimensional attributes which can have hierarchies (by defining ap-

propriate derivations as described in Section 3.1) and histories (Section 4.4) associated with

them. Besides defining hierarchies, derivations can be used in order to “enrich” operational

data, perform aggregations, define rule-based calculations and integrate external data (e.g.,

by classifying customers using a demographic database).

Figure 6 Meta model for defining the refreshment process

FACT

Name
has_dimension

1..*

DIMENSION

Name
1..*

Name

SOURCE

Name

attributes

1..*

1

TRANSFORMATION
Name

STRUCTURAL

1..*

1

MAPPING
VERTICAL
MAPPING CLEANING

Name

1..*

1..*

DERIVATION

Name

OPERATION

SourceOp

MAPPING

File/connection

ATTRIBUTE

1..*

1..*

Name

TARGET
WAREHOUSE

History

MEASURE1..*

SiriusOp

0..*

0..*

0..*

SOURCE

DIMENSION
ATTRIBUTE

History

dim_attributesmeasures

used_in

derived_from

0..*

0..*

1..*

1

source target

1..* 1..*

Name
Type

WAREHOUSE
ATTRIBUTE

Type Type

Primary key

Method

Parameter

Primary key

Hierarchy
 - 10 -

Furthermore, for defining various kinds of transformations between source and ware-

house attributes, SIRIUS provides the following options:

• Structural mappings define the way attributes from a single source map to ware-

house attributes. Section 3.3 describes various structural mappings provided by SI-

RIUS including 1:1, 1:n, n:1 and method mappings.

• In contrast to structural mappings which provide a kind of “horizontal” integration,

vertical mappings can be used in order to define several forms of integrating groups

of attributes from several sources and mapping them to warehouse attributes (i.e.,

structural mappings are defined at the attribute level, whereas vertical mappings

are defined at the entity level). Various kinds of vertical mappings like union, differ-

ence, selection, prioritization are supported by SIRIUS (see also Section 3.4).

• Operational data cleaning can be performed either by using predefined SIRIUS

methods (e.g., for eliminating duplicates) or by integrating specialized tools (Section

3.5).

Finally, the definition of so-called operation mappings between source and warehouse

attributes is used for refreshing the warehouse incrementally by assigning local source op-

erations to SIRIUS operations (Section 3.6).

Defining a concrete refreshment process means that the DWH administrator defines an

instance of the meta model according to Figure 6. This instance is stored in the metadata

repository of SIRIUS and is used for

• the generation of the global schema according to the SIRIUS global data model de-

scribed in the next section,

• the execution of the refreshment process, and

• the documentation and administration of a concrete warehouse configuration.

3.1 The Global Data Model

The SIRIUS global data model is based on the object-oriented data model of the Object Da-

tabase Management Group (ODMG) standard [5]. Similar to other projects focusing on

data integration in heterogeneous environments [22, 26, 2, 19], we exploit the rich seman-

tic expressiveness of object-oriented data models for representing the structure of opera-

tional data in the SIRIUS intermediate layer residing between operational sources and the

DWH. Moreover, choosing the ODMG model as the global model of SIRIUS allows us to

take advantage of further features like object identity.

The SIRIUS global model provides the basic constructs of the ODMG model like types,

objects, attributes and relationships, operations, etc. In the ODMG object model, attributes

may have simple or complex values (e.g., sets or references to other objects). In our ap-

proach, we additionally distinguish between basic and derived attributes [11]. Values of ba-
 - 11 -

sic attributes are assigned directly from the values of the corresponding attributes in the

various operational systems. On the other hand, derived attributes represent information

that is not available (or is not explicitly stored in order to avoid redundancy) in operational

systems and is added to the DWH after integrating data from the operational systems.

A further feature of our global data model is the notion of so-called history attributes

[11]. History attributes can be used for modeling the temporal character of the data stored

in the warehouse, i.e., a warehouse maintains histories of data over an extended period of

time. Further details about the way history attributes are treated are given in Section 4.4.

A part of the global schema of our running example is shown in Figure 7.

Figure 7 Global schema example

During the configuration phase, the global schema is derived from the instance of the

meta model defined as discussed in Section 3. For example, a derived attribute of the global

schema is defined for each WAREHOUSE ATTRIBUTE that has defined a DERIVATION ac-

cording to the meta model of Figure 6. During the execution of the refreshment process,

built-in operations are used by SIRIUS for instantiating the global schema with operation-

al updates, i.e., creating objects, retrieving and updating the attributes of an object. Trans-

formations from operational data to warehouse data are performed using methods defined

over global schema classes.

3.2 Derived Attributes

Producing “new information” in the DWH by defining derived attributes is one of the key is-

sues in a data warehousing environment that can improve the quality of analysis results.

In a typical data warehousing environment, several types of derived attributes can be de-

fined and must be processed during warehouse refreshment:

 fact class SALES {
attribute integer quantity;
attribute date sales_date;
attribute integer saleprice_unit;
attribute string pay_method;
derived attribute integer customer_age;

}

dimension class PRODUCT {

attribute integer prod_id;

attribute string supplier;

derived attribute string prod_category;

history attribute string price_unit;
}

attribute string date_intro;

derived attribute string date_withdrawal;

derived attribute string manager;

dimension class CUSTOMER {

attribute string last_name;
attribute string first_name;
attribute date birth_date;
attribute string marital_status;
history attribute string street;
history attribute string postal_code;
history attribute string location;
derived attribute string region;

derived attribute date customer_since;

derived attribute string country;

} ;

derived attribute integer income_bracket;
derived attribute integer num_children;

attribute integer cust_id;

derived attribute integer branch;
 - 12 -

• Refreshing hierarchy attributes of dimensions at the SIRIUS level is the most im-

portant application of derivations. Hierarchies like customer ->location ->region ->

country of the product dimension can be expressed in our approach by defining the

appropriate derived attributes (Figure 7) and methods for calculating the values of

derived attributes. During the execution of the refreshment process, hierarchy at-

tribute values corresponding to updated basic attribute values are processed and

loaded into the DWH by SIRIUS.

• Since access to warehouse data is mostly read-oriented, data warehouses often store

data in different levels of detail at the same time, thus allowing users to drill down

and roll up through data faster (in a relational warehouse design, this is known as a

fact constellation schema). In our example, if branches deliver sales data at the lev-

el of line items, the refreshment system should further summarize data to daily,

weekly and monthly sales and propagate it into the warehouse. Furthermore, if

branches deliver sales data in different levels of detail (e.g., line items and daily

sales), data must be brought into a common level of detail during warehouse re-

freshment.

• External data (e.g., from demographic and statistical databases) are often used to

enrich operational data and improve the quality of analysis results. In our example,

customer operational data are completed by the derived attributes income_bracket

and num_children which we assume to be provided by a demographic database.

• Operational sources often use various key systems and numbering schemas. In or-

der to preserve object identification when integrating data from different systems, a

new uniform key system must often be introduced. For example, branches could use

similar numbering schemas for identifying customers. Integrating customer data

into the DWH requires the introduction of a new (global) primary key (e.g.,

global_cust_id=cust_id&branch_id) in order to ensure the identification of custom-

ers in the DWH. Derived attributes can thus be used to realize even complex key

synchronization steps.

• Finally, derivations can be used to define a wide variety of rule-based calculations

(e.g., set customer_since equal to the earliest date for which a sale record with the

related customer can be found), complex arithmetic operations, date functions (e.g.,

calculate the day_of_week , month , quarter and year out of the sales_date), times-

tamping data with the refreshment time, and marking extracted operational data

with a source identifier (attribute branch in sales).

In all these cases, using our object-oriented approach has a twofold benefit. First, com-

mon used derivations are implemented in the SIRIUS library and can be used during the
 - 13 -

refreshment process specification. Second, existing derivations can be extended by users to

define new kinds of derivations by inheriting and overriding existing methods, thus facili-

tating the maintenance and extension of the warehouse refreshment process. Thus, com-

pared to the limited facilities provided by view-based approaches (due to restrictions of

SQL), derivations provide a powerful concept for improving the value of warehouse data.

3.3 Structural Mappings

For each operational source and the attributes extracted from it, SIRIUS provides a struc-

tural mapping, i.e., attributes of the integrated sources are mapped to global attributes. A

structural mapping can be defined for one attribute or a group of attributes extracted from

(exactly) one operational source. SIRIUS verifies the specification of the refreshment pro-

cess such that for each attribute of the global schema (except for derived attributes), a

structural mapping exists (while, for example, not every global attribute has a vertical

mapping defined on it). The syntax for a structural mapping specification has the form

<local attribute name, global basic attribute name, [mapping]>

The last (optional) part of a structural mapping specification can be used to define di-

verse kinds of mapping, i.e., 1:1, 1:n, n:1 and mapping methods. The default case is a 1:1

mapping between local and global attributes. In our example, if we assume that the infor-

mation about the marital status of customers is modeled in the same way as in our global

schema, the mapping to the global attribute marital_status will be a 1:1 mapping. Further

(predefined) structural mappings provided by SIRIUS are 1:n (extract n global attributes

from 1 local) and n:1 (merge n local attributes into 1 global). For instance, some systems

store address information in a single, aggregated field. Mapping this information to the in-

dividual global attributes last_name , first_name , address , postal_code , and location re-

quires splitting the extracted local attribute and building the individual global attributes

(1:n mapping). In other cases, more complex mappings are needed and can be defined as a

mapping method which is executed during warehouse refreshment. For example, product

prices in different currencies (integrated from different branches) can be converted into a

common currency by defining an appropriate method that performs a simple arithmetic op-

eration. Figure 10 shows an example of structural mappings for the class PRODUCTof our ex-

ample global schema.

3.4 Vertical Mappings

A vertical mapping assigns values of operational attributes from more than one source to

one global attribute. SIRIUS provides several kinds of vertical mappings for the integration

of operational data from various sources. The most common example is the union opera-
 - 14 -

tion. In our example, detail sales data that is separately stored by each company’s branch

must be merged to build the company’s total sales data. Moreover, the intersection (e.g., pro-

cess only product groups sold by all branches) and difference operation are supported.

Since not all source can deliver operational data at the desired detail level, filtering (se-

lection) of extracted data is often needed. The filtering operation allows the definition of a

condition on attribute values. Only entities (at the SIRIUS layer: objects) that satisfy this

condition are further processed and loaded into the warehouse. For example, we could filter

sales data such that only transactions of customers living in certain regions or sales exceed-

ing a certain value limit are loaded into the warehouse.

Another type of vertical mapping, the prioritization operation, is used in particular in

data warehousing environments where semantically identical data (e.g., customer data) is

stored in several operational systems that differ in the level of data consistency, actuality

or correctness. Integrating data from these sources and identifying identical records, one

would like to be able to specify the source obtaining the priority for delivering the ware-

house data.

3.5 Data Cleaning

Data extracted from operational systems often contains errors, and must first be cleaned

before loading it into the data warehouse. Data values from operational systems can be in-

correct, inconsistent, incomplete or in an unreadable format. Particularly, for the integra-

tion of external data, cleaning is an essential task in order to get correct data into the data

warehouse. Data cleaning includes tasks like

• reconciling semantic differences between multiple sources, due to the use of hom-

onyms (same name for different things), synonyms (different names for same

things) or different units of measurement,

• transforming and enriching data to correct values using rules related to data se-

mantics (in contrast to the transformations related to data structures defined by

means of structural and vertical mappings),

• identifying and eliminating duplicates and irrelevant data.

In our example, customer’s postal codes (or further address information) must be vali-

dated using auxiliary (external) address databases. Since address information will be fur-

ther used as a criterion to classify customers, and analysis of customer profiles is based on

this information, it is very important to get correct values for this data. For the attribute

marital_status , different synonyms used in the operational sources (e.g., ‘1 / 2’, ‘s / m’ and

‘single / married’) must be cleaned and treated in a uniform way. Similar, duplicates of cus-
 - 15 -

tomer data (the same customer has purchased a product from different branches) must be

eliminated.

SIRIUS provides a set of simple cleaning methods for identifying duplicates from differ-

ent sources using matching of key and non-key attributes. Violation of simple, domain-spe-

cific business rules (e.g., no negative product prices or attribute value’s range checking) can

be implemented by defining appropriate methods on the global schema. Since data cleaning

is not the main focus of the project, we only provide an interface for integrating specific

cleaning tools like InfoRefiner [24], Centric [10], and the Trillium Software System (R) [32].

3.6 Operation Mappings

Besides differences related to the structure of operational data, operational systems also

differ in the way update operations (insert, delete, update) are executed. For example,

changing the price of a product could be performed in a certain operational source by up-

dating the value of an existing record, whereas in another source a new record is inserted.

In our global schema example of Figure 7, this update corresponds (in both cases) to an up-

date operation of the attribute price_unit . Similarly, removing a product from the product

line corresponds to the deletion of the appropriate product record (or tuple). In the SIRIUS

level, since the DWH maintains histories of data, the same information is stored by intro-

ducing the attribute date_withdrawal of our example. In this case, the delete operation at

the operational source results in an update operation of the attribute date_withdrawal in

SIRIUS.

Thus, in order to execute the refreshment process incrementally, SIRIUS must further

perform the mapping between operational and global update operations. For a given source,

an operation mapping specification is a pair

<local operation name [local attribute name {, local attribute name}],
global operation name [global attribute name {, global attribute name}]>

where local and global operation names have one of the values insert , update or delete . In

case of an update operation, affected warehouse attribute names also have to be defined

(see also Figure 10 for an operation mapping example).

4 The SIRIUS Architecture

A data warehouse system (DWS) includes the data warehouse and all components responsi-

ble for building, refreshing, accessing and maintaining the DWH. In SIRIUS, we consider

the Data Warehouse Refresh Manager (DWRM) as the central component of a DWS which

has the knowledge about the tasks that must be accomplished during the DWH refresh-
 - 16 -

ment process. Figure 8 illustrates the DWRM and components of a DWS related to the re-

freshment process.

Figure 8 Data Warehouse Refresh Manager as part of a DWS environment

The object manager is responsible for populating the global schema during the execu-

tion of the refreshment process. Based on operation and structural mappings, operational

updates are transformed into (transient) objects according to the global schema. Further-

more, tasks related to key management like the assignment of operational keys to ware-

house keys are performed by the object manager (Section 4.2). The storage schema mapper

performs the mapping of the global schema to storage schemas like the star or the snow-

flake schema (Section 4.3), whereas the warehouse wrapper loads the data warehouse by

using the appropriate update operations of the respective warehouse DBMS. The metadata

repository is used for the persistent storage and management of all metadata used in the

refreshment process. It contains information like the description of operational systems

and their contents, the particular refreshment steps required to process data from the

sources into the DWH, and the documentation of executed transformation steps. The coor-

dinator is responsible for initiating, controlling and monitoring the entire refreshment pro-

cess. Finally, the history manager implements the various techniques for building histories

supported by SIRIUS (Section 4.4).

operational
 system

Metadata
Repository

DWRM

Monitor

Wrapper

Coordinator

Object Manager

Storage Schema Mapper

Warehouse Wrapper

Data
Warehouse

History Manager

Administration
Tools

operational
 system

Monitor

Wrapper
 - 17 -

The DWRM cooperates with operational sources through appropriate monitors and

wrappers. Monitors detect relevant data modifications in each operational source using one

of the techniques described below in Section 4.1 Wrappers translate modified data provided

by the corresponding monitor into the common warehouse format, and send them to the

DWRM.

In the following sections, the various SIRIUS components are presented in the order

they cooperate during the execution of the refreshment process.

4.1 Monitors and Wrappers

One of the main goals of our approach is to provide mechanisms for refreshing a DWH in-

crementally, i.e., to propagate only relevant operational updates (which have occurred since

the last DWH refreshment) into the warehouse. A prerequisite for refreshing a DWH incre-

mentally is the detection and extraction of updates in operational systems. Depending on

the kind of the operational system, various monitoring techniques can be applied for a con-

crete warehouse solution. In this section, we present and classify these techniques, and we

demonstrate how they can be applied in a data warehousing environment and integrated in

our approach.

Moreover, given a set of operational systems and a particular target storage schema,

detected and extracted operational updates must be applied to the warehouse schema, i.e.,

updates must be appended to the previous warehouse state. Operation mappings (as de-

scribed in Section 3.6) and a key concept based on OID’s are used to assign update opera-

tions at operational sources to the corresponding warehouse data.

Finally, in contrast to an incremental refreshment approach, performing a complete re-

load of the warehouse implies that the individual tasks of the refreshment process are exe-

cuted as soon as the beginning of the refreshment process is signalled. This results in a

very long execution time and often in taking the warehouse off-line. In our incremental ap-

proach, various optimizations are possible because updates monitored between two refresh-

ment points of time can be used to “prepare” some of the above-mentioned tasks (for

example, transforming operational data into a common format) before the actual refresh-

ment process starts.

4.1.1. Monitoring Updates at Operational Sources

As mentioned in Section 4.1, building complete histories and refreshing the warehouse in-

crementally presumes the detection of updates in the operational systems. For example, if

warehouse users are interested in analysing how product price changes affect sales, the

warehouse must provide all information about updates of product prices and sales. Since

operational systems are not intended to store histories, there is a difference regarding how
 - 18 -

updates are treated for this kind of data. For event-oriented data like product sales, each

new value is explicitly stored. Delivering data for the warehouse means querying the

source for all sales records. In contrast, updates on state-oriented data like product or cus-

tomer information will normally overwrite previous values. Refreshing the warehouse cor-

rectly means that all relevant updates performed during two refreshment points of time in

operational sources must be monitored and then - at refreshment time - propagated into

the warehouse. In this section, we illustrate how monitors and wrappers cooperate for re-

freshing the DWH.

Each monitor is responsible for the detection of data (residing in the appropriate opera-

tional source) that has changed since the last DWH refreshment. Depending on the kind of

operational systems, there are several techniques that can be used for this purpose:

• Log-based monitoring: Assuming that the source system is a database system main-

taining and exposing a log, log entries with information about committed transac-

tions that changed relevant operational data can be used to refresh the DWH

incrementally. Once the beginning of the refreshment process is signalled, the mon-

itor inspects the log file and extracts the relevant modifications that have occurred

since the last execution of the refreshment process.

• Trigger-based monitoring: For sources that support active mechanisms [37] like

triggers, appropriate events can be defined for the update operations of relevant

data items. In this case, the action part of the trigger (or of an ECA-rule) writes rel-

evant information (e.g., updated entities and attribute values, the kind of the up-

date operation, and update time) into an auxiliary table. After refreshing the DWH,

the contents of the auxiliary table can be removed.

• Replication-based monitoring: Using replication services of commercial DBMS is a

further option to detect changes occurring in source systems. Tools like IBM’s Data

Propagator and Sybase’s Replication Server provide mechanisms for propagating

updates on base tables to outside the operational environment.

• Application-assisted extraction: Particularly for non-DBMS data management sys-

tems, changing existing applications or implementing new ones to notify about data

changes is the only option to support the incremental DWH refreshment process.

Creating snapshots of relevant data and comparing it (on a per-record basis) with

the previous version that has been used for the DWH refreshment could be a solu-

tion for this problem. A further option is to change application programs to time-

stamp changed data. The monitor can periodically poll the source and select data

with a timestamp greater than the one of the previous refreshment.
 - 19 -

Figure 9 illustrates the usage of replication services provided by IBM’s Data Propagator

Relational for our example application. Data Propagator Relational provides replication

services for the DB2 product family. Modification of source data are detected and propagat-

ed to consistent change data tables (CCD). Different kinds of CCD can be defined depend-

ing on user requirements. For our purpose, so-called complete noncondensed CCD tables

provide all required information for maintaining complete histories of data changes includ-

ing primary keys, old and new attribute values, and the operation code (for inserts, deletes

and updates).

Figure 9 Using replication services in SIRIUS

4.1.2. Transforming Updates according to the Global Schema

The discussion of the monitoring techniques in Section 4.1.1. has shown that monitoring

and extracting of updates in operational sources can be performed in various ways. For in-

stance, updates detected by a monitor can be delivered in the form of tuples inserted into

auxiliary tables or as simple dump files. In the next step of the refreshment process, wrap-

pers are responsible for transforming modified data from various operational representa-

tions into a common structure that conforms to the defined global schema. Furthermore,

update operations signalled by monitors must be mapped to the corresponding operations

of the global (SIRIUS) layer. Results delivered by each wrapper provide all necessary infor-

mation about modified data since the last refreshment.

4.1.3. OIF Representation

After transforming modified data using structural and operation mapping specifications,

wrappers convert the results into a common format that can be further processed by the

DWRM. For representing transformed objects in a uniform way, we use a variant of the OIF

(Object Interchange Format) specification language for objects and their states [5]. OIF

supports all object database concepts compliant to the ODMG Object Model like object

identifiers, type bindings and attribute values. Each OIF object definition specifies the

products

DB2

Data Propagator
Relational

consistent change

data table

Wrapper DWRM
 - 20 -

type, attribute values, and relationships to other objects for the defined object. For example,

the object definition

Johnson Customer{last_name “Johnson”, first_name “Ken”, birth_date “01/07/65”}

defines an instance of the class customer and initializes the attributes last_name ,

first_name and birth_date with the values “Johnson”, “Ken” and “01/07/65”. Since SIRIUS

wrappers must provide information about modified objects, object definitions are extended

by a prefix that indicates the kind of the global update operation (i.e., insert, update, de-

lete). Furthermore, each object definition must also contain the corresponding local key

which is then assigned to a SIRIUS object identifier. For updates of the local key, the previ-

ous value of the local key is also needed in order to transform the update correctly.

Figure 10 An example for transforming operational updates into the global model

Figure 10 demonstrates the shown transformation steps for a set of updates on table

product . According to our example of Figure 9, updates are first propagated to the consis-

101
102

300

A
B

F

1. UPDATE product SET price = 75 WHERE nr=101
2. INSERT INTO product VALUES (300, ‘F’, 20)
3. UPDATE product SET price = 60 WHERE nr=101
4. DELETE FROM product WHERE nr=200

30

20

101
300
101
200

A
F
A
R

75
20
60
50

consistent change table

U
I
U
D

structural mappings

{<product.nr, prod_id>,
<product.name, prod_descr>,

<product.price, price_unit>}

operation mappings

{<insert, insert>,
<update(product.nr, product.name, product.price),

class: PRODUCT

<delete, update(date_withdrawal)>}

class: PRODUCT

<-, date_withdrawal, current_date()>,

Wrapper

OIF object definitions

U 101 PRODUCT{prod_id “101”, prod_descr “A”, price_unit “75”}
I 300 PRODUCT{prod_id “300”, prod_descr “F”, price_unit “20”}
U 101 PRODUCT{prod_id “101”, prod_descr “A”, price_unit “60”}
U 200 PRODUCT{prod_id “200”, prod_descr “R”, date_withdrawal “07/04/98”,price_unit “50”}

operational source:1, creation date: 07/04/98

product(nr, name, price)

update(prod_id, prod_descr, price_unit)>,

200 R 50

101 75 60
 - 21 -

tent change table. Then, the wrapper generates for each tuple of this table an OIF object

definition using the according structural and operation mappings.

4.1.4. Wrapper Operating Mode

Another important characteristic of the SIRIUS approach is the “preparation” of operation-

al data before the next refreshment process execution is initiated, i.e., wrappers transform

operational data into the warehouse format in an asynchronous mode (compared to the ac-

tual refreshment point of time). This results in a reduction of the time needed for refresh-

ing the warehouse. The tasks of applying structural and operation mappings and

converting modified data into OIF object definitions can be performed by each source wrap-

per in the time between two warehouse refreshments and independently of processing steps

at other sources. As soon as the beginning of the refreshment process is signalled, only the

integration of the results delivered by each wrapper must be further processed. This is a

much more efficient operating mode compared to full reloads, where at the beginning of the

refreshment process operational data must first be extracted and then transformed by the

wrapper.

The wrapper operating mode is as follows. Wrappers access the data provided by moni-

tors periodically or upon detection of a new update and translate the updates into OIF ob-

ject definitions using the structural and operation mapping specifications as described in

Section 3.6. Once the beginning of the refreshment process is signalled, the OIF object defi-

nitions are delivered to the Data Warehouse Refresh Manager. For the implementation of

this “active” behavior in a simple but powerful way, we plan to use active mechanisms [37].

4.2 Object Manager

As in the ODMG model, each object in the SIRIUS layer has an object identifier which is

unique and immutable during its entire lifetime [5]. Object identifiers are generated by the

object manager and are an important concept for both, supporting the incremental ware-

house refreshment and managing histories. Using immutable object identifiers in the SIRI-

US layer enables to assign object types from operational systems to the persistent

representation in the warehouse in a more natural and efficient way than using value-

based identifiers (used by relational view-based warehouse approaches). Since value-based

identifiers can be updated or deleted, propagating updates to the corresponding warehouse

entities results in a much more complex task. In contrast, unique object identifiers allow

the correct assignment of modified operational data to the corresponding warehouse data.

This is a prerequisite for refreshing the warehouse incrementally.

Assuming that most operational systems support a different notion of object identity,

additional information is needed in order to assign operational entities to SIRIUS objects.
 - 22 -

For this purpose, an object key is assigned to each object identifier. Each object key consists

of the local (operational) key provided by the operational system and a unique source key

that indicates the operational system from which the modified operational data is extract-

ed. 1 SIRIUS maintains a table that assigns OID’s to the corresponding object keys. Since

local primary key values can change, several object keys may be assigned to one OID (i.e.,

an OID can “point” to a set of object keys).

In contrast to the attribute values of the global schema, object keys and the correspond-

ing OID’s are stored persistently by the object manager in the SIRIUS level. During the ex-

ecution of the refreshment process they are used as follows. After wrappers have

transformed data that has been modified since the last refreshment into OIF object defini-

tion, the object manager proceeds with the creation of new SIRIUS objects and the assign-

ment of values to basic global attributes. Depending on the information about the kind of

the global update operation (provided with the OIF object definition), the object manager

creates new OID’s and object keys (in case of an insert) or uses the appropriate object key to

match an existing OID (in case of updates or deletes of non-key attributes). Updates of pri-

mary key values result in creating a new object key version for the same OID.

4.3 Storage Schema Mapper

Data warehouse design methods consider the read-oriented character of warehouse data

and enable efficient query processing over huge amounts of data. A special type of database

schemas, called star schema, is often used to model the multiple dimensions of warehouse

data. In this case, the database consists of a central fact relation and several dimension re-

lations (Figure 11). The fact relation contains tuples that represent measures. Each tuple of

the fact relation references multiple dimension relation tuples, each one representing a di-

mension of interest. Dimension relations of star schemas are not normalized in order to re-

duce the costs of joining the fact relation with dimension relations.

The mapping of a SIRIUS global schema to a star schema is a task performed by the

storage schema mapper using a set of simple rules. Fact and dimension classes of the global

schema are mapped directly to fact and dimension relations. Measures and dimension at-

tributes build the attributes of the fact and dimension relations. For each relationship be-

tween fact and dimension classes, the storage schema mapper assigns the value of the

dimension’s primary key to the corresponding foreign key of the fact relation. Notice that

1. The latter may be used in various ways during warehouse refreshment, e.g., to compute derived at-
tributes based on the origin of an attribute (e.g., the derived attribute branch_ID in the global sche-
ma of Figure 7), or to perform data cleaning.
 - 23 -

mapping to star schemas and other multidimensional logical schemas is simple because

SIRIUS enforces that the global schema is specified in a multidimensional way.

Figure 11 Star schema of our example

In contrast to star schemas, dimension relations of snowflake schemas, are in normal-

ized form. Snowflake schemas increase the complexity and execution costs of queries. How-

ever, they reduce redundance and storage costs significantly, and are therefore often

preferred (especially in very large data warehouses).

Normalization of dimensions typically results from defining new relations for hierarchy

attributes. For example, based on the star schema of Figure 11, we define a new relation

region for the hierarchy customer ->location ->region ->country . Applying similar normal-

ization steps results in the snowflake schema of Figure 12. Mapping a SIRIUS global sche-

ma to a snowflake schema is based on the specification of hierarchies (as discussed in

Section 3). For each group of hierarchy attributes that build a new relation, the storage

schema mapper generates the according tuples and foreign keys.

SALES

quantity
sale_unit PRODUCT

CUSTOMER

day_of_week

marital_status

country

BRANCH

prod_id
prod_descr

manager

salesperson
location
location_class

birth_date

location
region

revenue
pay_methodgender

time_id
product_id
branch_id
customer_id

TIME
time_id

month

customer_id
last_name
first_name
street
postal_code

customer_since
income_bracket
num_children

branch_id

quarter

date_intro
supplier
date_withdrawal
price_unit
category

year
 - 24 -

Figure 12 Snowflake schema of our example

4.4 History Manager

Maintaining histories of operational data in the DWH is one of the essential features of the

data warehousing approach and one of the main reasons for building a DWH. History man-

agement improves decision support by offering the option of viewing changes of operational

data over time and analysing the interdependencies among them (e.g., how did product

price changes affect the company’s sales in various regions). Particularly in the case where

operational sources do not maintain histories of data, storing operational updates in a sep-

arate database (the DWH) is the only option to meet these kind of analysis requirements.

History management during the refreshment process is supported in SIRIUS by defin-

ing and processing history attributes. Notice that it makes only sense to define histories for

state-oriented data, i.e., for attributes of dimension classes. For history attributes, SIRIUS

supports various options for assigning attribute values depending on how temporal infor-

mation is maintained in the DWH. Maintaining complete histories of warehouse data

means that each update in the corresponding operational source is propagated and stored

in the warehouse. For partial histories, all updates during two refreshment points are dis-

carded, and only the current values - at refreshment time - are propagated into the ware-

SALES

quantity
sale_unit

PRODUCT

CUSTOMER

day_of_week

category_id

marital_status

country

BRANCH

prod_id
prod_descr

manager

month_id

salesperson
location_id

location_class

birth_date

location

revenue
pay_method

gender

time_id
product_id
branch_id
customer_id

TIME
time_id

MONTH

month_id

month

customer_id
last_name
first_name
street
postal_code

customer_since
income_bracket
num_children

branch_id

REGION

region_id

quarter

location_id
LOCATION

date_intro
supplier
date_withdrawal
price_unit

CATEGORY
category_id
category

region_id
 - 25 -

house. At the same time, the values stored in the warehouse before refreshing it are being

retained. Finally, in some cases no history is needed for parts of the warehouse, i.e., only

the current values of the operational sources must be propagated into the warehouse to re-

place the old values.

Defining a history global attribute corresponds to the above mentioned case of complete

histories. In this case, the attribute value consists of all modified data that have been as-

signed to the same SIRIUS object. For attributes that are not indicated as history at-

tributes, only the last value assigned to a certain SIRIUS object is propagated into the

warehouse. Distinguishing between partial and no histories is a task of the warehouse

wrapper, i.e, according to the concrete storage schema, current values must be added to the

previous values in the first case, and overwritten in the second.

5 Executing the Refreshment Process

The execution of the refreshment process is based on the specifications stored in the meta-

data repository. The coordinator is responsible for initiating and controlling the execution

of the refreshment process. The beginning of the refreshment process can be signalled in

various ways:

• depending on operational updates, a monitor signals that a predefined threshold

has been reached and informs the coordinator,

• for periodical or user-initiated refreshments, the coordinator starts the refreshment

process.

For the implementation of this “active” behavior in a simple but powerful way, we once

again plan to use active mechanisms [37]. For example, the beginning of the refreshment

process could be defined as a reaction on the occurrence of a primitive event (e.g., a time

event or an operational update operation). Composite events can be used to start the ware-

house refreshment depending on updates in several operational sources.

As described in Section 4.1.4., wrappers transform operational updates into OIF defini-

tions between two refreshment points of time. Only in the case of limited monitoring capa-

bilities, e.g., when periodical snapshots must be compared to extract the delta changes, the

wrapper performs the OIF transformation after the beginning of the refreshment process.

Then, according to operation and structural mappings, the object manager populates the

global schema by creating new SIRIUS objects or assigning updated attribute values to ex-

isting ones. The order of instantiating the global schema with operational updates is impor-

tant, i.e., mappings for dimension attributes are executed first. The reason is that after

processing dimension updates, SIRIUS will propagate updates of fact attributes and check

referential integrity. Thus, fact attribute updates that violate referential integrity will be
 - 26 -

already discarded in the SIRIUS level (and not by the warehouse DBMS loader, eventually

after executing several refreshment steps!). For this purpose, the primary keys of fact and

dimension classes are persistently stored in SIRIUS. The goal of our approach is, after exe-

cuting all refreshment steps, to “deliver” operational updates to the target warehouse and

load the warehouse with a minimum of tasks (like indexing or partitioning) left to the

warehouse DBMS. The resulting benefit is that the DWH needs not be taken off-line for a

long time.

Structural mappings are performed according to the global schema by accessing the

OIF definitions provided by wrappers (first for dimension and then for facts). In a next step,

according to the specification of the particular refreshment steps the various vertical map-

pings and cleaning steps are executed. After all transformation steps have been completed,

derived attributes can be processed. Finally, the storage schema mapper and the warehouse

mapper perform the semantical and syntactical mapping from the global schema to the

storage schema, respectively. The refreshment process ends with the loading of the target

warehouse.

6 Summary

In this chapter, we give an overview of the main features provided by SIRIUS and the way

our approach can be used for modeling and executing the data warehouse refreshment pro-

cess. The definition of a concrete warehouse refreshment process is based on the meta mod-

el described in Section 3 and illustrated in Figure 6. The instance of this meta model for a

concrete warehouse is stored in the metadata repository of SIRIUS. The various SIRIUS

components (presented in Section 4) operate on top of the global schema and execute the re-

freshment process according to the specifications stored in the metadata repository. In sum-

mary, they support the following tasks:

• integration of various operational sources and refreshment of diverse target data

warehouses by using structural and vertical mappings,

• default OID and object key management that ensures global object identity for

warehouse data (generated OID’s can be also used in the target DWH),

• incremental refreshment by defining operation mappings and using the SIRIUS ob-

ject management facilities,

• predefined common derivations (e.g., date functions, aggregations, timestamps),

• cleaning by checking local keys and referential integrity for integrated data,

• mapping to typical DWH logical designs like star and snowflake schemas by defin-

ing the SIRIUS global schema and hierarchies,

• various kinds of history policies by using history attributes.
 - 27 -

The basic functionality provided by SIRIUS can be extended to meet further application

needs in various ways like

• definition of further structural and vertical mappings,

• implementation of advanced cleaning methods and integration in the SIRIUS re-

pository, and

• definition of new or extension of existing derivations by implementing the appropri-

ate methods (e.g., for new warehouse keys).

7 Conclusion and Status

In this paper, we presented the main features of the SIRIUS approach for modeling and ex-

ecuting the data warehouse refreshment process. In contrast to existing approaches which

reduce the refreshment problem to the application of techniques for maintaining material-

ized views, SIRIUS provides mechanisms for modeling and executing several tasks of the

refreshment process. Our approach allows to provide solutions for both, the static and dy-

namic aspects of the refreshment process in an integrated way. Integrating data from vari-

ous heterogeneous operational sources, and refreshing a DWH independently of how

warehouse data is persistently stored, is performed by defining various transformations

and mappings on top of a global schema. Our approach considers the multidimensional

character of warehouse data and allows the definition of derived data in various ways. Key

management and maintenance of histories for different application requirements are sup-

ported. Various monitoring techniques for detecting relevant updates of operational data

can be integrated in our approach. Furthermore, we showed how operational updates are

transformed and propagated into the warehouse using structural, vertical and operation

mapping specifications. Our object-oriented model and especially the notion of object identi-

ty allow the assignment of operational updates to the corresponding warehouse data in a

powerful way.

We currently implement a data warehouse for the example of the mail-order business

presented above. Operational sources are various database systems (e.g., Oracle and O2) as

well as flat files. Updates detected in these systems are loaded into different target ware-

houses (DB2 and Oracle). We have also implemented various monitors and wrappers ac-

cording to the classification of Section 4.1.

The main focus of our future work is the extension of the history manager in order to

support more complex techniques for advanced applications. Furthermore, we plan to ex-

tend the storage schema mapper by mappings for various multidimensional logical sche-
 - 28 -

mas. Transaction support and concurrent execution of particular refreshment steps are

further issues we plan to investigate in the future.

References

1 D. Agrawal, A. El Abbadi, A. Singh, T. Yurek. Efficient View Maintenance at Data Ware-
houses. Proc. of ACM SIGMOD Intl. Conf. of Management of Data, Tucson, Arizona, May
1997.

2 E. Bertino. Integration of Heterogeneous Data Repositories by Using Object-Oriented
Views. Proc. of the 1st Intl. Workshop on Interoperability in Multidatabase Systems, Kyoto,
Japan, April 1991.

3 S. S. Bhowmick, S. K. Madria, W. K. Ng, E.-P. Lim. Pi-Web Join in a Web Warehouse. Proc.
of the 6th Intl. Conf. on Database Systems for Advanced Applications (DASFAA), Hsinchu,
Taiwan, April 1999.

4 M. Bouzeghoub, F. Fabret. Modeling Data Warehouse Refreshment Process as a Workflow
Application. Proc. of the Intl. Workshop on Design and Management of Data Warehouses
(DMDW’99), Heidelberg, Germany, June 1999.

5 R. G.G. Cattell, D. Barry (ed). The Object Database Standard: ODMG 2.0. Morgan Kauf-
mann Publishers, San Francisco, California, 1997.

6 S. Chaudhuri, U. Dayal. An Overview of Data Warehousing and OLAP Technology. ACM
SIGMOD Record, 26:1, March 1997.

7 C. Y. Chan, Y. E. Ioannidis. Bitmap Index Design and Evaluation. Proc. of the ACM SIG-
MOD Intl. Conf. of Management of Data, Seattle, Washington, June 1998.

8 C. Y. Chan, Y. E. Ioannidis. An Efficient Bitmap Encoding Scheme for Selection Queries.
Proc. of ACM SIGMOD Intl. Conf. on Management of Data, Philadephia, Pennsylvania,
June 1999.

9 T. Critchlow. The DataFoundry Project: Managing Change in a Genome Warehouse. Pre-
sentation in: IEEE EMBS Conf. on Information Technology in Biomedicine (ITAB’98),
Washington DC, May 1998.

10 FirstLogic. http://www.firstlogic.com.
11 S. Gatziu, A. Vavouras, K.R. Dittrich. SIRIUS: An Approach for Data Warehouse Refresh-

ment. Technical Report 98.07, Insitut für Informatik, Universität Zürich, July 1998.
12 M. Golfarelli, S. Rizzi. A Methodological Framework for Data Warehouse Design. ACM

First Intl. Workshop on Data Warehousing and OLAP (DOLAP ‘98), Washington, D.C.,
USA, November 1998.

13 A. Gupta, I.S. Mumick. Maintenance of materialized views: Problems, techniques, and ap-
plications. IEEE Data Engineering Bulletin, 18(2), June 1995.

14 J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, Y. Zhuge. The Stanford Data Ware-
housing Project. In [35]

15 R. Hull, G. Zhou. A Framework for Supporting Data Integration Using the Materialized
and Virtual Apporaches. Proc. of the ACM SIGMOD Intl. Conf. on Management of Data,
Montreal, Quebec, Canada, June 1996.

16 N. Huyn. Multiple-View Self-Maintenance in Data Warehousing Environments. Proc. of
the 23rd Intl. Conf. on Very Large Data Bases, Athens, Greece, 1997.

17 W.H. Immon. Building the Data Warehouse. John Wiley, 1996.
18 M. Jarke, Y. Vassiliou. Data Warehouse Quality: A Review of the DWQ Project. Invited pa-

per, Proc. 2nd Conf. on Information Quality, Massachusetts Institute of Technology, Cam-
bridge, May, 1997.

19 M. Kaul, K. Dorsten, E.J. Neuhold. ViewSystem: Integrating Heterogeneous Information
Bases by Object-Oriented Views. Proc. of the 6th Intl. Conf. on Data Engineering, Los An-
geles, California, February 1990.
 - 29 -

20 W. Labio, R. Yerneni , H. Garcia-Molina.Shrinking the Warehouse Update Window. Proc.
of the ACM SIGMOD Intl. Conf. on Management of Data, Philadephia, Pennsylvania,
June 1999.

21 C. Lee, Z.A. Chang. Utilizing Page-Level Join Index for Optimization in Parallel Join Exe-
cution. IEEE Transactions on Knowledge and Data Engineering, 7(6), December 1995.

22 J. Mylopoulos, A. Gal, K. Kontogiannis, M. Stanley. A Generic Integration Architecture for
Cooperative Information Systems. Proc. of the 1st IFCIS Intl. Conf. on Cooperative Infor-
mation Systems, Brussels, Belgium, June 1996.

23 O’Neil, G. Graefe. Multi-Table Joins through Bitmapped Join Indices. SIGMOD Record,
24(3), September 1995.

24 Platinum Software Corporation. http://www.platinum.com.
25 D. Quass, A. Gupta, I.S. Mumick, J. Widom. Making Views Self-Maintainable for Data

Warehousing. Proc. of the 4th Intl. Conf. on Parallel and Distributed Information Systems,
(PDIS ‘96), December 1996.

26 M.T. Roth, P. Schwarz. Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy Data
Sources. Proc. of the 23rd Intl. Conf. on Very Large Data Bases, Athens, Greece, 1997.

27 N. Roussopoulos. Materialized Views and Data Warehouses. SIGMOD Record, 27(1), p21-
26, March 1998.

28 C. Sapia, M. Blaschka, G. Höfling, B. Dinter . Extending the E/R Model for the Multidi-
mensional Paradigm. Proc. Intl. Workshop on Data Warehouse and Data Mining (DWDM
‘98), Singapore, November 1998.

29 D. Srivastava, S. Dar, H.V. Jagadish, A.Y. Levy. Answering Queries with Aggregation Us-
ing Views. Proc. of the 22th Intl. Conf. on Very Large Data Bases, Bombay, India, 1996.

30 M. Staudt, M. Jarke. Incremental Maintenance of Externally Materialized Views. Proc. of
the 22th Intl. Conf. on Very Large Data Bases, Bombay, India, September 1996.

31 D. Theodoratos, S. Ligoudistianos , T. Sellis. Designing the Global Data Warehouse with
SPJ Views. Proc. of the 11th Intl. Conf. on Advanced Information Systems Engineering
(CAiSE’99), Heidelberg, Germany, June 1999.

32 Trillium Software. http://www.trilliumsoft.com.
33 N. Tryfona, F. Busnorg, J.B. Christiansen. StarER: A Conceptual Model for Data Ware-

house Design. ACM Second Intl. Workshop on Data Warehousing and OLAP (DOLAP ’99),
Kansas City, Missouri, USA, November 1999.

34 A. Vavouras, S. Gatziu, K.R. Dittrich. The SIRIUS Approach for Refreshing Data Ware-
houses Incrementally. Proc. GI-Conf. Datenbanksysteme in Büro, Technik und Wissen-
schaft (BTW), Freiburg, Germany, March 1999

35 J. Widom (ed.). Special Issue on Materialized Views and Data Warehousing, IEEE Data
Engineering Bulletin, 18:2, June 1995.

36 J. Widom. Research Problems in Data Warehousing. Proc. of the 4th Intl. Conf. on Infor-
mation and Knowledge, Baltimore, 1995.

37 J. Widom, S. Ceri (ed). Active Database Systems: Triggers and Rules for Advanced Data-
base Processing. Morgan-Kaufmann, 1996.

38 J. Wiener, H. Gupta, W. Labio, Y. Zhuge, H. Garcia-Molina, J. Widom. A System Prototype
for Warehouse View Maintenace. Proc. of the ACM Workshop on Materialized Views: Tech-
niques and Applications, Montreal, June 1996.

39 M.-C. Wu. Query Optimization for Selections using Bitmaps. Proc. of ACM SIGMOD Intl.
Conf. on Management of Data, Philadephia, Pennsylvania, June 1999.

40 M-C. Wu, A.P. Buchmann. Research Issues in Data Warehousing. Datenbanksysteme in
Büro, Technik und Wissenschaft: GI-Fachtagung, Springer-Verlag, Ulm, 1997.

41 M-C. Wu, A.P. Buchmann . Encoded Bitmap Indexing for Data Warehouses. Proc. of the
14th Intl. Conf. on Data Engineering, Orlando, Florida, Februar 1998.

42 J. Yang, K. Karlapalem, Q. Li. Algorithms for Materialized View Design in Data Ware-
housing Environment. Proc. of the 23rd Intl. Conf. on Very Large Data Bases, Athens,
Greece, August 1997.
 - 30 -

43 J. Yang and J. Widom. Maintaining Temporal Views Over Non-Historical Information
Sources For Data Warehousing. Proc. of the 14th Intl. Conf. on Data Engineering, Orlando,
Florida, Februar 1998.

44 X. Zhang , E.A. Rundensteiner. Data Warehouse Maintenance Under Cuncurrent Schema
and Data Updates. Proc. of the 15th Intl. Conf. on Data Engineering, Sydney, Austrialia,
March 1999.

45 Y. Zhuge, H. Garcia-Molina, J, Hammer, J. Widom. View Maintenance in a Warehousing
Environment. Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, San Jose,
California, May 1995.

46 Y. Zhuge, H. Garcia-Molina, J.L. Wiener The Strobe Algorithms for Multi-Source Ware-
house Consistency. Proc. of the 4th Intl. Conf. on Parallel and Distributed Information Sys-
tems, (PDIS ‘96), December 1996.

47 Y. Zhuge, J.L. Wiener, H. Garcia-Molina. Multiple View Consistency for Data Warehousing.
Proc. of the 13th Intl. Conf. on Data Engineering, Birmingham U.K., April 1997.
 - 31 -

:DIMENSION

Name=customer

:DERIVATION

Name:Region

s

HOUSE

ENSION ATTRIBUTE

e=location
=Character

:DIMENSION ATTRIBUTE

Name=region
Type=Character

URE

unit

Method:demobase
 - 32 -

Figure 13 Example refreshment process specification

:CLEANING

Name:convert_euro

:FACT

Name=sales

Name=DB2

:SOURCE ATTRIBUTE

Name=custname

:STRUCTURAL MAPPING

Name:extractlocation

:VERTICAL MAPPING

Name: priorize

:OPERATION MAPPING

SourceOp: I

File=home/..... Name=Expres

:TARGET WARE

SiriusOp: I

:SOURCE

Name: name

:DIMENSION ATTRIBUTE

History:partial
Name=SQLServer
File=C:/.....

:SOURCE

:SOURCE ATTRIBUTE

Name=firstname

:SOURCE ATTRIBUTE

Name=custaddr

:SOURCE ATTRIBUTE

Name=residence

:DIM

Nam
Type

:MEAS

Name=sale_
Type=Float

:STRUCTURAL MAPPING

Name:1_1

:STRUCTURAL MAPPING

Name:1_1

Name=JavaAppl
File=DiscA/....

:SOURCE

:SOURCE ATTRIBUTE

Name=unit_price

:STRUCTURAL MAPPING

Name:N_1

:STRUCTURAL MAPPING

Name:1_1

:OPERATION MAPPING

SourceOp: D
SiriusOp: U

:CLEANING

Name:transf_address

	Abstract
	1 Introduction
	Figure 1 Common data warehousing environment
	Data Warehouse Refreshment Issues
	Figure 2 Data warehouse refreshment process

	Related Work

	2 A Running Example
	Figure 3 The Data Warehouse System for the Mail-Order business
	Figure 4 Conceptual dimensional schema

	3 Modeling the Refreshment Process in SIRIUS
	Figure 5 Schema architecture in SIRIUS
	a. the specification of the global schema
	b. a description of operational data and sources to be integrated
	c. the mapping between a. and b. including all refreshment tasks.

	Figure 6 Meta model for defining the refreshment process
	3.1 The Global Data Model
	Figure 7 Global schema example

	3.2 Derived Attributes
	3.3 Structural Mappings
	3.4 Vertical Mappings
	3.5 Data Cleaning
	3.6 Operation Mappings

	4 The SIRIUS Architecture
	Figure 8 Data Warehouse Refresh Manager as part of a DWS environment
	4.1 Monitors and Wrappers
	4.1.1. Monitoring Updates at Operational Sources
	Figure 9 Using replication services in SIRIUS

	4.1.2. Transforming Updates according to the Global Schema
	4.1.3. OIF Representation
	Figure 10 An example for transforming operational updates into the global model

	4.1.4. Wrapper Operating Mode

	4.2 Object Manager
	4.3 Storage Schema Mapper
	Figure 11 Star schema of our example
	Figure 12 Snowflake schema of our example

	4.4 History Manager

	5 Executing the Refreshment Process
	6 Summary
	7 Conclusion and Status
	References
	1 D. Agrawal, A. El Abbadi, A. Singh, T. Yurek. Efficient View Maintenance at Data Warehouses. Pr...
	2 E. Bertino. Integration of Heterogeneous Data Repositories by Using Object-Oriented Views. Proc...
	3 S. S. Bhowmick, S. K. Madria, W. K. Ng, E.-P. Lim. Pi-Web Join in a Web Warehouse. Proc. of the...
	4 M. Bouzeghoub, F. Fabret. Modeling Data Warehouse Refreshment Process as a Workflow Application...
	5 R. G.G. Cattell, D. Barry (ed). The Object Database Standard: ODMG 2.0. Morgan Kaufmann Publish...
	6 S. Chaudhuri, U. Dayal. An Overview of Data Warehousing and OLAP Technology. ACM SIGMOD Record,...
	7 C. Y. Chan, Y. E. Ioannidis. Bitmap Index Design and Evaluation. Proc. of the ACM SIGMOD Intl. ...
	8 C. Y. Chan, Y. E. Ioannidis. An Efficient Bitmap Encoding Scheme for Selection Queries. Proc. o...
	9 T. Critchlow. The DataFoundry Project: Managing Change in a Genome Warehouse. Presentation in: ...
	10 FirstLogic. http://www.firstlogic.com.
	11 S. Gatziu, A. Vavouras, K.R. Dittrich. SIRIUS: An Approach for Data Warehouse Refreshment. Tec...
	12 M. Golfarelli, S. Rizzi. A Methodological Framework for Data Warehouse Design. ACM First Intl....
	13 A. Gupta, I.S. Mumick. Maintenance of materialized views: Problems, techniques, and applicatio...
	14 J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, Y. Zhuge. The Stanford Data Warehousing Proje...
	15 R. Hull, G. Zhou. A Framework for Supporting Data Integration Using the Materialized and Virtu...
	16 N. Huyn. Multiple-View Self-Maintenance in Data Warehousing Environments. Proc. of the 23rd In...
	17 W.H. Immon. Building the Data Warehouse. John Wiley, 1996.
	18 M. Jarke, Y. Vassiliou. Data Warehouse Quality: A Review of the DWQ Project. Invited paper, Pr...
	19 M. Kaul, K. Dorsten, E.J. Neuhold. ViewSystem: Integrating Heterogeneous Information Bases by ...
	20 W. Labio, R. Yerneni , H. Garcia-Molina.Shrinking the Warehouse Update Window. Proc. of the AC...
	21 C. Lee, Z.A. Chang. Utilizing Page-Level Join Index for Optimization in Parallel Join Executio...
	22 J. Mylopoulos, A. Gal, K. Kontogiannis, M. Stanley. A Generic Integration Architecture for Coo...
	23 O’Neil, G. Graefe. Multi-Table Joins through Bitmapped Join Indices. SIGMOD Record, 24(3), Sep...
	24 Platinum Software Corporation. http://www.platinum.com.
	25 D. Quass, A. Gupta, I.S. Mumick, J. Widom. Making Views Self-Maintainable for Data Warehousing...
	26 M.T. Roth, P. Schwarz. Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy Data Sources...
	27 N. Roussopoulos. Materialized Views and Data Warehouses. SIGMOD Record, 27(1), p21- 26, March ...
	28 C. Sapia, M. Blaschka, G. Höfling, B. Dinter . Extending the E/R Model for the Multidimensiona...
	29 D. Srivastava, S. Dar, H.V. Jagadish, A.Y. Levy. Answering Queries with Aggregation Using View...
	30 M. Staudt, M. Jarke. Incremental Maintenance of Externally Materialized Views. Proc. of the 22...
	31 D. Theodoratos, S. Ligoudistianos , T. Sellis. Designing the Global Data Warehouse with SPJ Vi...
	32 Trillium Software. http://www.trilliumsoft.com.
	33 N. Tryfona, F. Busnorg, J.B. Christiansen. StarER: A Conceptual Model for Data Warehouse Desig...
	34 A. Vavouras, S. Gatziu, K.R. Dittrich. The SIRIUS Approach for Refreshing Data Warehouses Incr...
	35 J. Widom (ed.). Special Issue on Materialized Views and Data Warehousing, IEEE Data Engineerin...
	36 J. Widom. Research Problems in Data Warehousing. Proc. of the 4th Intl. Conf. on Information a...
	37 J. Widom, S. Ceri (ed). Active Database Systems: Triggers and Rules for Advanced Database Proc...
	38 J. Wiener, H. Gupta, W. Labio, Y. Zhuge, H. Garcia-Molina, J. Widom. A System Prototype for Wa...
	39 M.-C. Wu. Query Optimization for Selections using Bitmaps. Proc. of ACM SIGMOD Intl. Conf. on ...
	40 M-C. Wu, A.P. Buchmann. Research Issues in Data Warehousing. Datenbanksysteme in Büro, Technik...
	41 M-C. Wu, A.P. Buchmann . Encoded Bitmap Indexing for Data Warehouses. Proc. of the 14th Intl. ...
	42 J. Yang, K. Karlapalem, Q. Li. Algorithms for Materialized View Design in Data Warehousing Env...
	43 J. Yang and J. Widom. Maintaining Temporal Views Over Non-Historical Information Sources For D...
	44 X. Zhang , E.A. Rundensteiner. Data Warehouse Maintenance Under Cuncurrent Schema and Data Upd...
	45 Y. Zhuge, H. Garcia-Molina, J, Hammer, J. Widom. View Maintenance in a Warehousing Environment...
	46 Y. Zhuge, H. Garcia-Molina, J.L. Wiener The Strobe Algorithms for Multi-Source Warehouse Consi...
	47 Y. Zhuge, J.L. Wiener, H. Garcia-Molina. Multiple View Consistency for Data Warehousing. Proc....
	Figure 13 Example refreshment process specification

