\ Unive rsity of Department of Informatics
) Zurich™

Faculty of Economics, Business Administration and Information

Technologies

Energy Efficient
Programming

An overview of problems, solutions and methodologies

Bachelor Thesis
by
Fethullah Goekkus
Konya, Turkey
07-722-838

University of Zurich
Informatics and Sustainability Research
Prof. Dr. Lorenz Hilty
Supervisor: Dr. Wolfgang Lohmann

Zurich, 01.12.2013

Abstract

There has been a lot of research activity in the field of energy efficiency of ICT systems,
which mainly focus on the hardware side, where the software aspects remained
relatively unexplored. However software can influence the energy efficiency of
hardware significantly, since all hardware is controlled by software. This bachelor thesis
provides an overview of the most important problems and proposed solutions regarding
the energy efficiency of software and to elucidate the software methodologies and
designs that can be used to reduce energy demand of ICT systems, as well as describe

diverse tools that assist in development of energy-efficient software.

Zusammenfassung

Softwarentwickler haben grossen Einfluss darauf, wie viel Energie die vorgesehene
Hardware zur Ausfiihrung eines Programms bendtigt. Im Bereich der Energieeffizienz
von IKT-Systemen sind viele Forschungen zu finden, die sich auf Hardwareaspekte
konzentrieren. Dagegen blieben die Softwareaspekte dieses Gebiets, trotz grossem
Verbesserungspotential, relativ unerforscht. Diese Bachelorarbeit erarbeitet einen
ersten Uberblick im Sinne einer Landkarte von Problemen und L&sungen in diesem
Bereich. Ausserdem werden diverse Methoden fiir energieeffizientes Programmieren
und verschiedene Tools, die Softwareengineers bei der Entwicklung unterstitzen,

vorgestellt. Im Anhang befindet sich noch eine kommentierte Literaturliste.

Table of Contents

I 1410 T oL o N 7
R R 0T o) = | ST OPPPPPPI 7
0 A CTo =1 (- 0T I Yol o o TSR 8
1.3 SEIUCKUIE e e e e s ee e e 8
P2 o ¥ T e 1= Lo 4 T 8
0 T o 1y SO PP PP PPPPTPT 8
2.2 ENVIronNmMENtal ASPECLS coeiiiiiiei ittt eenannnnes 9
2.2.1 Greenhouse GaS (GHG) EMUSSIONSuuuuuuevveeeveiieeiieiieeieeiieiissisiiiereeeeeeeeeseseeenns 10
2.2.2 GIODAI WAIMING ...ttt a e e e et e ettt ettt aaaraaaaaaaaeens 10
2.3 Measuring Energy EffiCciency. ... 12
2.3.1 MEEIICS.ccccooiiieeeeeteee et e e e e 13
2.3.2 MEEROGS ...ttt 15
3 Energy Efficient Programming Methodologies and Common Problems................. 18
3.1 Application Software Efficiencycooooiiiieeeee e 19
3.1.1 ComputationQl EffiCI@NCYcccoeeeeeeeeeeeteeeee ettt ttetaaraaaaaaaa e 19
G2 BV Do (o = j 1ol =14 1oy VPP 26
3.2 OPErating SYSTEIMS . e ittt et e e e e et e e e e e e e e e e ra e aaaas 28
3.2.1 Power SQVING MECRANISMSccoeeeeeeeteeeee et cetseraaaaaaaaaaa e 29
3.2.2 POWEY POIICIES ...ttt 35
3.2.3 CONTEXE AWAIENESS ...veeveeviiiiiiiiiiiiiiietttt ettt a s e e e 37
3.3 General Problems and Solution Proposals........cccccceeveeeeiiiieeicccccrirereeeeee e, 39
3.3.1 Lack of Software Engineering Practices for Energy Efficiencycuuuuo....... 40
3.3.2 The Importance of Software Energy Efficiency is not Perceived Well................ 43
3.4 Summary of the Problems and SolUtioNS...........ueeiieeiieiiiii e, 45

4 Tools and TECANOIOGIEScccuuiireeeiiiiiiiiiieccrrenierreneeerennesreneseerenssessenasssennsssenanns 47

4.1 ToOls for Data EffiCIENCY ..uvviiiiiiiiiiiee e s a7
4.2 ToOls for CONLEXt AWAIrENESS ...uvviiiiiieieeeee e e ettt e e e e e e e e e e e e e e e s eaearaeeaeeeees 49
4.3 Tools for Measuring Energy EffiCiency........eeeeviiiiiiiiiiiiie e 50
4.4 Tools for Operating System Optimizationsccccvvveiieiiiiiiieee e 52
4.5 INStruction Set EXTENSIONS ..cccvviuiiiiiiiiiiie et e e e a e s e e e e aaae s e e eaaaaan 54
5 Conclusion and OULIOOK.......ccc.ciiieeiiiieniiiieiirreeccreeneerrenseeseenssessenssessenssssssnsseseens 55
(SR 3 (= =T (=1 1o =L 56
A V] o 1T 4 o [GO 66
7.1 Annotated Bibliography ... 66
7.2 White Box Measurement EXample ...oo.euiieiiiiiiiiiee et 79
7.3 Advanced Configuration and Power Interface (ACPl) Power States..........cccuuue..... 80

Table of Figures

Figure 1: Global Emissions (GTCO2€) ...cccccuuviieeieeiiiiiee e e ettt eeeectree e e e e e eare e e e e e eenraeeeeeeeanns 10
Figure 3: Methods for measuring energy efficiencycccooovveeieeei e, 15
Figure 4: Computer system hierarchy ... 18

Figure 5: The effect of unrolling factor on the power, execution time and instruction

oo 18 o | PO PPPPPPPPP 21
Figure 7: The impact of multithreading on the average energy consumption 24
Figure 8: Energy consumption of different programming languagesccccccevvvvvveeeeenn. 25
Figure 9: The impact of cache size on the power consumption and EDP......................... 27
Figure 10: Development of CPU clock frequency between 1993-2005cccccvveveeeeenn. 30
Figure 11: The development of CPU power consumption between 1993-2005 31
Figure 12: The impact of timer resolution on average platform power........cccccccvvvveeeeen. 34
Figure 14: Processor package and Core C-Statesccccccciiiiiiiiiiiiece e 82

Table of Tables

Table 1: Global warming potentials of GHGS ..., 11
Table 2: Summary of the problems and solutions: Application software efficiency 45
Table 3: Summary of the problems and solutions: Operating system optimizations....... 46

Table 4: Summary of the problems and solutions: General problems............cccccvvveeeeee. a7

1 Introduction

1.1 Context

The energy efficiency in computing, expressed in computations per energy input, has
doubled every 1.57 years between 1947 and 2009 [1]. On the other hand the computing
performance per personal computer doubled every 1.5 years between 1975 and 2009,
so that these early improvements have since then been cancelled out. Additionally the
number of installed computers doubled on average every three years between 1980 and
2008. Based on these facts we can observe a rapid increase in the energy consumption

of "Information and Communication Technology" (ICT) [2].

Soaring energy consumption of ICT has many environmental, technical and economic
implications. Increasing energy consumption of today’s ICT solutions significantly
contributes to "Green House Gas Emissions" (GHGe) leading to accelerate "Global
Warming" (GW) [3]. Increased energy usage of ICT generates more heat, which can lead
to malfunction of hardware [4]. In order to prevent the heat from affecting the user or
the system’s electronics, systems require increasingly complex thermal packaging and
heat-extraction solutions, adding more costs. According to Capra et al. the current
annual power and cooling costs of servers represent almost 60 percent of the servers’

initial acquisition cost [5].

There has been a lot of research activity, mainly focusing on the hardware side of ICT
systems, whereas the software aspects remained relatively unexplored [6]. However
software can influence the energy usage of hardware significantly, since the behavior of
hardware is controlled by software. Therefore software perspective of energy efficient

computing is an open research field with a lot of potential for improvements [7], [8], [9],

[10].

1.2 Goals and Scope

The purpose of this study is to provide an overview of the most important problems and
proposed solutions regarding the energy efficiency of software and to elucidate the
software methodologies and designs that can be used to reduce energy demand of ICT
systems, as well as describe diverse tools that assist in development of energy-efficient

software.

1.3 Structure

After the introduction, the foundations such as metrics and methods are explained in
section 2. Section 3 overviews common problems regarding energy efficiency of
software and also suggests solutions in order to avoid or minimize these problems. The
section 4 introduces some useful tools and technologies that assist in developing energy
efficient software. Section 5 concludes the study and gives an outlook for future work.
In the section 6 the references are listed and finally section 7 provides an appendix,

including an annotated bibliography.

2 Foundations

In this section we will introduce foundations. After we discuss the economic and
environmental aspects, we will present metrics and methods to measure energy

efficiency of software.

2.1 Cost

According to Winter and Jelschen [11] ICT systems were responsible for %2 of the global
energy consumption in 2007, equivalent to the annual production of eight nuclear

plants [12]. Especially bigger systems such as supercomputers or data centers consume

a significant amount of energy. According to the IT analysis firm IDC the world wide
spending on power management for enterprises was around 40 billion USD in 2009 [13].
Murugesan [14] states that nearly 30 percent of a data center's operating expenses are
the energy costs. There are also indirect implications of inefficient software arising from
energy wasting. Increased power consumption leads to increased complexity in the
design of power supplies to be able to supply sufficient power entailing additional costs.
Bigger systems that need a large amount of energy creates a great amount of heat as
well, leading to increased cooling costs in order to prevent the heat from affecting ICT
systems' behavior [14]. The environmental issues arising from energy wasting cause
additional costs as well. According to the Stern Review, written by former World Bank
Chief Economist Lord Stern, without action the overall costs and risks of climate change
could be the equivalent to losing at least 5 percent of the global gross domestic product

(GDP) each year [15].

Despite the fact that a lot of effort has been put in developing more efficient ICT
systems, many researches have shown that there is still room for improvements to
prevent energy wasting [7], [8], [9], [10], [16], [17]. A significant amount of cost saving

can be achieved by enhancing energy efficiency.

2.2 Environmental Aspects

The term "Green ICT" is a widely used term to express environmental-friendly
information and communication technologies (ICT). Green ICT is defined as the study
and practice of environmentally sustainable IT including designing, manufacturing,
using, and disposing of computers, servers, and associated subsystems efficiently and
effectively with minimal or no impact on the environment [14]. “Green ICT” emphasizes
the necessity for reducing the environmental impacts of ICT systems by reducing their
energy usage and their green house gas emissions [18]. In this section we will present

the environmental aspects of energy efficiency.

2.2.1 Greenhouse Gas (GHG) Emissions

Energy consumption is closely related to carbon emissions [19]. According to the Kyoto
protocol there are 6 major Greenhouse Gasses (GHGs): carbon dioxide (CO,), methane
(CHy4), nitrous oxide (N, O), sulfur hexafluoride (SFs), HFCs, and PFCs. When discussing
carbon emissions we should consider all of the anthropogenic (GHG) emissions [19].
Figure 1 illustrates Global annual CO, and GHG emissions, historic and projected

business as usual assuming no significant efforts to reduce emissions [3].

Global Emissions (GtCO,e)
90 4

80
70
60
50 e

40 -

30
20
10

0 T T T T T T T T

1990 1995 2000 2005 2010 2015 2020 2025 2030 203S 2040 2045 2050

Figure 1: Global Emissions (GtCOze) [3]

2.2.2 Global Warming

Murugesan [14] states that each PC in use generates about a ton of carbon dioxide
every year. The release of carbon dioxide and other GHGs into the atmosphere
contributes to global warming. GHGs create a warming affect by absorbing radiation

reflected from the Earth that would otherwise escape back into space. Each of major the

10

GHGs has a different global warming potential (GWP). Table 1 shows the GWPs of major
GHGs [19].

Table 1: Global warming potentials of GHGs [19]

GHG GWP (CO,e)
COo, 1
CH,4 25
N, O 298
SFe 22800
HFCs 124 - 14800
PFCs 7390-12200

These GWPs are measured relative to the GWP of carbon dioxide in CO,e (CO,
equivalent). For example, for sulfur hexafluoride, which has a GWP of 22800, an
emission with 1 ppmv (parts per million by volume) of methane is equivalent to an

emission with 22800 ppmv of carbon dioxide [19].

Global warming has many impacts on the environment. We will briefly outline a few of

the negative implications of global warming. Further details can be found in the

SMARTer 2020 report of GeSl in 2012 [3].

Cutoff of Thermohaline Circulation (THC)

THC is defined as large-scale ocean circulation that is driven by global density gradients

11

created by surface heat and freshwater fluxes. Potential changes to the thermohaline
circulation are may have significant impact on the Earth’s radiation budget. These
changes also play an important role in determining the concentration of carbon dioxide
in the atmosphere. Warming increases freshwater inflow in the North Atlantic therefore

weakening THC and further increasing warming in the North Atlantic Ocean region [3].

Amazon Rainforest Dieback
Global warming disrupts this recycling, causing rainforest dieback, which then leads to

further dieback [3].

Permafrost Melting
Atmospheric warming causes permafrost to melt, releasing large amounts of methane

and further increasing warming [3].

Disintegration of West Antarctic Ice Sheet
Melting causes ground-line to retreat, potentially leading to ocean water undercutting

the ice sheet and more rapid disintegration [3].

Disruption of Indian Monsoon

"Warming disrupts complex self-sustained moisture circulation of the Indian monsoon"

[3].

Melting of Greenland Ice sheet
Warming leads to melt water residues left on the ice sheet surface, which increases

surface temperature and leads to further melting [3].

2.3 Measuring Energy Efficiency

Above all we need metrics and methods to be able to understand, measure, and

12

compare energy efficiency. Since no standard metrics or methods for determining
energy efficiency of software are existent, it is necessary to define appropriate metrics
and methods. Defining "metrics" and "methods" requires an understanding of these
terms. Hence it is important to investigate these terms further in order to understand
them and to be able to distinguish them from each other. In the next two sections the

terms "metric" and "method" will be studied in detail.

2.3.1 Metrics

The Oxford dictionary defines metric as: "a system or standard of measurement" [20].

Metric defines a unit and provides a basis to compare two measurements.

In general, efficiency can be defined as:

Efficiency = Useful Work Done / Used Effort

In the context of energy efficiency we can adapt this formula as follows:

Energy Efficiency = Useful Work Done / Used Energy

Typically "useful work done" and "used energy" are observed over a limited time
interval as Hilty and Coroama [21] state: "Usually both the output and the energy
consumption are related to a period of time, which obviously leads to the elimination of
time and yields the dimension "services per energy" such as kByte/Ws for an internet

service" [21].

One of the reasons that makes measuring energy efficiency of software complicated is
that there are no standard metrics or methods, since the "useful work done" part varies
dramatically depending on the software. For example it can be "to sort 100000 double's
in an array" or it can also be "to send 100 MB to a host in a network" etc. The unit of
efficiency would be "sorted numbers / Ws" or "sent data / Ws" accordingly. Obviously
there is an almost unlimited number of possibilities, which makes it difficult or even

impossible to set a standard, which fits all kinds of software. This lack of standards

13

necessitates defining appropriate methods and metrics depending on the particular
software or software component. Johann et al. [20] state this the following way:
"Metrics for energy efficient software rely on its useful work done. Since, modern
software consists of manifold modules that all have a special purpose, there can be more
than just one metric. The software parts can be measured individually or combined. For
a proper comparison of software the measured modules should be as similar as possible"
[20]. For example: it would be appropriate to define a "useful work done" for a web
browser and compare different web browsers with this metric. Figure 1 illustrates an

example of such a comparison.

Performance Efficiency

SunSpider JavaScript Benchmark | JSBench Suite Benchmark Memory Usage | CPU Energy Usage
Safari Safari

Chrome Chrome

Firefox Firefox

1 2 3 4 1 2 8

Advanced optimizations in Safari speed up JavaScript execution. 5 Innovative new features in Safari and OS X Mavericks improve energy efficiency.”

Figure 2: Comparison of web browsers

The following metrics could be useful regarding energy efficiency: [23]

Aspect Metric

Energy Efficiency Energy / Unit of Work
CPU-Intensity CPU Cycle Count
Memory Usage Memory Consumption
Peripheral Intensity Peripheral Usage Time
Idleness Idle Time

14

The Energy-Delay Product

EDP is the product of power consumption (averaged over a switching event) times the
input—output delay, or length of the switching event. It has the dimension of energy,
and measures the energy consumed per switching event [24]. The advantage of EDP is
that it balances energy and performance. Shore [10] described EDP as : "Although it has
neither standard units nor methodology, it combines energy consumption with a
measure of performance. Increasing energy use or decreasing performance will increase
EDP, so what we seek is the lowest acceptable value of EDP — in other words, the lowest

energy use consistent with carrying out the required tasks within the time allowed."

2.3.2 Methods

According to the Oxford Dictionary [25], a method is "a particular procedure for
accomplishing or approaching something, especially a systematic or established one".

[25] It is a body of techniques which describe how the measurements are done.

Johann et al. [20] introduced a systematic classification of methods for measuring
energy efficiency of software. They state that the three commonly known methods are:
"Benchmarking", "Individual measurement”, and "Source Code Instrumentation". In the

next section these methods will be investigated in more detail.

Energy Efficiency

Measurement

Black Box White Box
Measuring Measuring

N

\

Individual Source Code

Bedchmarking Measurement Instrumentation

Figure 3: Methods for measuring energy efficiency [20]

15

2.3.2.1 Black Box Measuring

Black-box measuring treats the software as a "black box", examining efficiency of
software as a whole without any knowledge of the efficiency of individual components
of the software. Even though it can detect inefficient software by comparing it to others,
black box methods cannot identify the actual source of inefficiency. This is why black
box methods are not as suitable as the white box methods for detecting inefficiencies
and improving them. According to Johann et al. [20] there are two common black box

methods: "Benchmarking" and "Individual Measurement".

Benchmarking

According to Johann et al. [20] "Benchmarking methods are able to measure a system as
a black box and can generate a statement on how the entire system (software and
hardware) performs on the whole. When it comes to measuring a given software, one
cannot apply these benchmarks because each of them is customized for one specific
group of tasks (database benchmarks, graphic benchmarks, etc.)." Kern et al. [23] list
some common Benchmarks: "Common benchmarks for energy efficiency are
EnergyBench according micro controller, SpecPower according server hardware or TPC-
Energy according databases. Overall, all of the benchmarks produce a standardized
workload on a given system and measure the energy consumption simultaneously.
Though, just in case of TPC-Energy, a specific metric regarding the energy efficiency of

software exists"[23].

Individual Measurement

Another approach is to measure the energy consumption by means of specified use
cases and compare different types or configurations of software. In this case, an
appropriate use case scenario for the type of software is required. This scenario is
applied to the different systems and the energy consumption is measured
simultaneously. Based on the results, software systems can be compared regarding their

energy efficiency for every use case. This method is a black box measurement, since the

16

software system is measured and compared as a whole. Certainly, it does not denote an
insight into the software itself to point out the reason of the energy consumption or the
specific part of the software that is responsible for the results. [22] For example "The
approach of Dick et al. [26] defines individual scenarios for a specific group of software
(e.g. Browsers) and then measures concrete occurrences with the same scenario, which
can give a better statement about the software’s energy consumption"” [20]. There are

many other studies which apply this method such as [23], [27], [28], [29] and more.

2.3.2.2 White Box Measuring

In contrast to the black box method, the white box method takes a look at the code by
the way of code instrumentation. This way internal data can be acquired and taken as
indicators for creating metrics. According to Johann et al. [20] "A white box method is
better suited to find resource intensive parts of programs and to improve them" [20].
White box methods show the energy efficiency of individual components, which allows
identifying actual problem zones or in other words the "bottle necks". Therefore white

box methods enable efficiency improvements.

Source Code Instrumentation

In the context of computer programming, instrumentation refers to an ability to
monitor or measure the level of a product's performance, to diagnose errors, and to
write trace information. Programmers implement instrumentation in the form of code
instructions that monitor specific components in a system (for example, instructions
may output logging information to appear on screen). When an application contains an
instrumentation code, it can be managed using a management tool. Instrumentation is

necessary to review the performance of the application.

There are very few experiments where this method is applied, Johann et al. [20]
introduce two of them. One of them is a "Multi User Web Application”, which will be

discussed in detail in section 6.2 in the appendix.

17

3 Energy Efficient Programming Methodologies and Common

Problems

To understand the software energy efficiency, methodologies for two kinds of software
will be analyzed: application software and system software. For the system software the
focus will be particularly on the operating systems. Afterwards problems and solutions
for these two types of software will be discussed and some common problems and

general methodologies will be introduced.

Figure 4: Computer system hierarchy [30]

There are many studies that test a particular method using a specific tool in order to
achieve energy efficiency [31], [32], [33], [34], [35], [36]. However, the aim of this study
is to provide an overview rather than analyzing a specific solution. Therefore different
approaches and concepts for energy efficient programming were analyzed and

categorized into the following categories: [8], [19], [26]:

* Application software efficiency
* QOperating system optimizations

¢ Common problems and solutions

18

3.1 Application Software Efficiency

3.1.1 Computational Efficiency

Computational efficiency can be defined as getting the work done as quickly as possible.
Energy efficiency aims at minimizing the energy used to complete a task. The task does
not necessarily have to be completed in a shorter time for energy efficiency, however,
completing a task faster allows the computer to return to a low-power-state so that
more energy can be saved. There are many different approaches to achieve

computational efficiency such as [8], [10], [9]:

* Using efficient algorithms and data structures
* Multi Threading

¢ Efficient use of loops

* Vectorizing and instruction sets

¢ Efficient use of programming language

* Energy efficient libraries and drivers

Algorithms and Data Structures

Problem: Insensitive choice of algorithms and data structures lead to significant
energy wasting.

Algorithms and data structures are a long-standing area of research in computer
science. The careful and targeted selection of algorithms and data structures can make a
massive difference in the software performance. Energy efficient programming requires
using high performance algorithms that complete tasks faster, allowing the processor to

idle [8].

Central processor unit (CPU) is a dominant source of power consumption, therefore the
optimization of the CPU can lead to significant energy efficiency improvements [7], [9].
Software engineers should investigate efficient solutions for a particular problem in
order to exploit this energy saving potential. Following examples show the great impact

of algorithm efficiency on the energy usage of software.

19

Johann et al. illustrate the impact of algorithm efficiency on the energy consumption of
software with an experiment. In this experiment, 200 000 double values were sorted
first using "bubble sort", which runs in O(n?) time and then the same sorting is done
using "heap sort", which runs in O(n.log (n)) time. Bubble sort consumed 10800 Joules to
complete the task, whereas heap sort used only 7325 Joules [20]. As this simple
experiment shows, choosing efficient algorithms can have a massive impact on the

energy consumption of ICT systems.

Another example illustrating the importance of algorithm efficiency is presented by
Noureddine et al. [28]. In this work, the authors tested the impact of algorithms on
energy efficiency with a CPU intensive algorithm to solve the Towers of Hanoi puzzle.
This puzzle consists of three rods, and a number of disks of different sizes, which can
slide onto any rod. At the beginning all of the disks are in a regular stack in ascending
order of size on one rod, being the smallest one on the top. The goal is to move this

conical stack to another rod following the 3 rules:

1. Only one disk can be moved at a time
2. Only the disks on top can be moved

3. Adisk cannot be placed on top of a smaller disk.

The authors solved this problem first using a recursive algorithm and then they repeated
the same procedure with an iterative algorithm. The recursive algorithm implemented
in C++ used in average 322.23 joules while the iterative version consumed 1656.26
joules. The iterative solution has consumed approximately 5.14 times more energy than
the recursive version. On the other hand, heavily recursive algorithms can be inefficient,
as they often add overhead by using or exercising more stack than non-recursive

algorithms [8].

In summary, choosing the best algorithm and data structure is a complex decision that
depends on many factors. The effort that has been put into choosing the most efficient

algorithms can be compensated over time.

20

Efficient use of loops

Problem: Careless programming of loops and overuse of spinning and polling loops
lead to inefficiency

Designing the loops by following some simple rules can lead to important energy
savings. For instance, using unsigned integer counters or zero as a termination condition
for count down results in faster loops which use fewer registers [10]. Energy efficiency
can be improved more drastically by loop unrolling. Loop unrolling is defined as
combining the instructions that are called in multiple iterations of the loop into a single
iteration. Loop unrolling reduces the comparison and testing overhead associated with

the loops [8].

1
0.9
0.8
0.7 —a— P ower
* Time
0.6 -=- |nstructions
0.5 -=EDP
0.4
0.3
1 2 <1 5 8

Figure 5: The effect of unrolling factor on the power, execution time and instruction count[10]

Figure 5 shows the effect of the unrolling factor on the execution time, used power, and
instruction count. If the unrolling factor increases, power consumption, execution time,

and the number of instructions decrease.

Unrolling loops reduces the branch predictor accuracy, since there are fewer branches
on which the predictor can train its behavior. However, it also reduces the disruption
frequency of the continuous stream of sequential fetches so that, as a combined effect,
energy consumption per instruction decreases [10]. More register usage and expanded

code size are the possible side effects of loop unrolling [8].

21

Spinning and polling loops are other potential sources of inefficiency. Spinning loop is a
technique in which a process or a thread repeatedly checks to see if a condition is true,
such as whether keyboard input or a lock is available [37]. When the thread is in the
spinning loop, it remains active without performing a useful task. Using spinning loops
can be efficient if threads are locked for short periods of time. This way the overhead
from operating system process re-scheduling or context switching can be avoided [7].
Alternatively, blocking a thread is another technique that handles the locks in an event-
driven fashion. In this case, a thread changes its state to sleep until some event occurs.
There is a tradeoff between the energy saving gained by staying in a lower power state
longer and overheads arising from re-scheduling or frequent state transitions. Blocking a
thread can be efficient if threads are locked for longer periods of time but this approach
can also lead to inefficiency if threads change their states too frequently. Further

information can be found in [31], where the both approaches are compared in details.

Multi Threading

Problem: Single threaded applications are inefficient and waste energy

A thread of execution is the smallest sequence of programmed instructions that can be
managed independently by an operating system scheduler. The process scheduling can
be defined as handling the removal of the running process from the CPU and the

selection of another process on the basis of a particular strategy [38].

The implementation of threads and processes depends on the operating system, but
usually a thread is contained inside a process. While different processes do not share
resources such as memory, multiple threads can exist within the same process and
share these resources [39]. Multiprogramming operating systems allow more than one
process to be loaded into the executable memory at a time and loaded processes share

the CPU using time multiplexing [38].

Multithreading can be implemented by time-division multiplexing on a single processor

(see Figure 6). In this case the processor switches between different threads. The

22

context switching usually occurs frequently enough so that the user perceives the
threads or tasks as running at the same time. Many modern ICT systems have
multiprocessors or processors with multiple cores. These multiprocessor or multi-core
systems can execute threads concurrently, with every processor or core executing a

separate thread simultaneously.

Process

Thread #2

Time

v

Figure 6: Multithreading with two threads of execution on a single processor [39]

Many modern operating systems allow programmers to manipulate threads via the
system call interface. They support both time-sliced and multiprocessor threading with a
process scheduler [39]. Using multiple threads and multiple cores delivers better
performance than using a single thread [7], [8], [9], [40]. Figure 7 shows the average
energy consumption when the same benchmark is executed having different number of
threads [9]. It can be seen that a 8-threaded run was completed approximately 4 times

faster than the single threaded run and used about 25% less energy [9].

23

(2]
o

——

T
2T
4T
8T
L—-—M

wn
o

H
o
I

Average Power (Watts)
w
o

20
10
0

OO0~ OINTTOMHM AN dTONNDOMNOINTTONCHOODDMN O

T NN TN OMNOODDOO A AN MST N OMNOOO O O N

N < OO NS OO MWIN NAOCEMNMOININOCE MW O N

T A AN NN AN ANOOO OO DN T NN

Time interval (50ms)

Figure 7: The impact of multithreading on the average energy consumption [9]

Vectorization and Instruction Sets

Problem: Use of Scalar C-code rather than Vectorizing lead to inefficient software that
waste energy.

Vectorizing the code instead of scalar C-code using instruction set extensions such as
SIMD can help improving performance and energy efficiency. SIMD is the abbreviation
for "single instruction, multiple data", and can be described as performing the same
action on two or more pieces of data with a single instruction, in order to exploit data
level parallelism [9], [41], [42]. There are many useful tools such as "SSE Instructions"
and "Intel Advanced Vector Instructions" (Intel AVX) which assist in vectorizing the

existing software. More details about these tools can be found in the section 4.

Programming Language

Problem: Choosing an inefficient programming language can lead to significant energy
waste.

Programming languages have a great impact on the energy consumption of software,
since the energy consumed by the same algorithm varies dramatically depending on the
programming language of implementation. Figure 8 shows the energy consumption of

the recursive implementation of Tower of Hanoi program in different languages (using a

24

base 10 logarithmic scale) [28]. According to this experiment the most energy efficient
programming language for this program was C++ with O3 optimization consuming only
53.20 joules while the most energy consuming language Perl has spent 25,516 joules. If
we compare the both programming languages we can assess that Perl has spent
approximately 479.6 times more energy than C++ with O3. These numbers are not
representative to make a statement about the energy efficiency of these programming
languages in general, since this experiment does not cover all possible CPU utilization
levels or all possible workload combinations. However, we can observe that in this
particular situation the right choice of the programming language can change the
needed amount of energy to complete a task in the most extreme case up to 479 times
[28]. Thus, choosing the most efficient programming language is crucial for software

energy efficiency.

Perl recursive

Py(hon e C IS Ve I —

O C am] recursi Ve ——
e
e —
]

Prolog recursive
Pascal recursive

Java recursive

C++ recursive with O3
C++ recursive with O2
C++ recursive

C recursive with O3

C recursive with O2

C recursive

10 100 1000 10000
Energy (joule) in logarithmic scale (base 10)

Figure 8: Energy consumption of different programming languages [28]
Energy Efficient Libraries and Drivers
Problem: Not exploiting the well-proven energy efficient solutions can lead to
inefficient software.
Libraries contain optimized implementations of common algorithms. Utilizing libraries

and drivers, which are optimized for energy consumption, can improve the energy

efficiency of an application [9].

25

3.1.2 Data Efficiency

Fetching data from cache or memories costs both energy and time. Data efficient
software minimizes the energy consumption because of data movement through the
memory hierarchy and improves the performance of software as well. The two main
goals of data efficient programming are moving data over shorter distances and

accomplishing tasks with fewest memory accesses [10], [34], [4].

Minimizing Data Movement:

Problem: Unnecessary data movement leads to energy wasting.

The less energy is consumed for a memory access, the closer data is stored to the
processing entity. Thus, a data efficient memory hierarchy should store data as close as
possible to the processing entity, since the energy consumption of different levels of
memory hierarchy varies dramatically. For instance, with the same energy to access
external RAM once, the computer can execute 7 instructions or access cache 40 times or

access Tightly Coupled Memory (TCM) around 170 times [10], [34].

One approach used to reduce data movement is to buffer and batch data requests into
one operation. Buffering the data transferred between memory and typical storage
devices such as hard disks and optical disks avoids frequent reads and writes which lets

the device to idle [4], [8].

Minimizing Memory Accesses:

Problem: Unnecessary memory access leads to energy wasting.

Algorithms that minimize memory access lead to more efficient software. There are
many studies about reducing memory access such as [43]. In this study, Li and Absar
propose a method to reduce memory access related power consumption by reducing
the number of data transfers between processor and memory, or between a higher
(closer to processor) level of memory and a memory at a lower level using source
program transformation. They confirm the contribution of their method by illustrating

experimental results on a number of benchmarks. Efficient use of memory hierarchy by

26

moving the most used data to higher levels and having greater caches reduces memory

access. On the other hand, bigger cache size causes more energy consumption. Because

of the inverse proportional relationship between power and performance, we need to

find the optimum. As introduced in section 2.2.1, the optimum has to be identified.

Figure 9 illustrates the impact of cache size on the power consumption and EDP [44].

Power (W)

Energy-Delay Product

70+

(o2}
o
]

1.2x 1.4x

1x
A

0.6x

0.8x
+

20 T 1 1 T 1
16K 32K 64K 128K 256K
Instruction Cache Size
18- 0.6x 0.8x base 1.2x 1.4x
16
144 ,
124 o
10 A v
8- ® n
6_
4 T T 1 1 I
16K 32K 64K 128K 256K

Instruction Cache Size

Figure 9: The impact of cache size on the power consumption and EDP [44]

Brooks tested the impact of cache size on power consumption and EDP (Energy-Delay

Product) using the two simulators Wattch and PowerTimer [44]. Figure 9 shows that

27

that the power consumption of the system increases continuously, as the EDP first drops
and then increases. In this case, 128k cache size results in the lowest EDP so that it is the

most energy efficient variation.

Minimizing energy-delay product has also its disadvantages. EDP provides a balance
between the performance and the energy, however it is impossible to guarantee the
maximum system performance, and it is also impossible to obtain the maximum energy

savings when performance is of no concern [45].

3.2 Operating Systems

Operating systems need to be able to measure or estimate dynamic power
consumption, forecast a task's workload and apply some power saving mechanisms in
order to reduce the energy usage and increase energy efficiency [46]. "An operating
system (OS) is a collection of software that manages computer hardware resources and
provides common services for computer programs. For hardware functions such as
input and output and memory allocation, the operating system acts as an intermediary
between application software and the computer hardware, although the application
code is usually executed directly by the hardware and will frequently make a system call

to an OS function or be interrupted by it" [47].

Modern operating systems such as Windows 8 have power management policies, which
allow configuring the Power Management settings on the managed devices by creating
power schemes such as "plugged in" or "battery" [48]. The main purpose of a power
management policy is to decide on the order and timing of component state transitions,
based on system history, workload, and performance constraints [49]. In this section,

power saving mechanisms and power policies will be discussed.

28

3.2.1 Power Saving Mechanisms

Problem 1: The existing operating systems can still not exploit the power saving
opportunities completely despite many efforts has been put in to operating system

power optimizations.

Operating systems should be designed considering the energy consumption and existing
operating systems should be revised to improve energy efficiency. There are many
power saving mechanisms, which operating systems may apply. These techniques are
mostly based on predictions of dynamic power consumption and workload of ICT
systems and require compatible hardware, which allow measuring current energy usage
and workload. Thus both the accuracy of the estimations and the compatibility of

hardware play an important role in achieving good results [50].

The most widely employed power saving techniques regarding operating systems can be
listed as [40], [9], [35], [46], [17], [51]:

* Dynamic Voltage and Frequency Scaling (DVFS)

* Advanced Configuration and Power Interface (ACPI)

* Operating System Timer Resolution

Dynamic Voltage and Frequency Scaling

Many modern microprocessors can adjust their clock speed at runtime such as the Intel
SpeedStep and the AMD PowerNow [35]. Dynamic frequency scaling (also known as CPU
throttling) is a technique in computer architecture whereby the frequency of a
microprocessor is adjusted dynamically as the processor burden changes leading to
lower power consumption and reducing the heat produced by CPU [52]. Every computer
has an internal clock that coordinates all its components and controls the frequency at
which instructions are executed. The CPU needs a fixed number of clock ticks (or clock
cycles) to execute each instruction. Higher clock rates allow the CPU to execute more

instructions in a given time [53]. The clock speed of a CPU can be defined as the

29

frequency at which processor executes instructions and is measured in megahertz (MHz)

or gigahertz (GHz).

Dynamic frequency scaling is often combined with dynamic voltage scaling. Since the

energy consumption is proportional to the square of voltage, reducing the voltage when

full performance is not needed can lead to significant energy savings [46].

4.0

35

3.0

2.5

2.0

Gigahertz

1.5

1.0

0.5

0

CPU clock frequency, 1993-2005

Intel

AMD

1 1 ! | | ! !
1993 1995 1997 1999 2001 2003 2005

Figure 10: Development of CPU clock frequency between 1993-2005 [54]

30

1407 cPU power consumption, 1993-2005

120 =

100 —=

80—
) .

60—

Watts

Intel

40—

20—

/

1 | | | ! ! 1
1993 1995 1997 1999 2001 2003 2005

0

Figure 11: The development of CPU power consumption between 1993-2005 [54]

Figure 10 shows that the CPU clock frequencies of Intel and AMD processors have been
increasing constantly between 1993 and 2005. Figure 11 shows that in the same time
the power consumption of processors have been increasing continuously as well. When
comparing both graphs, a strict parallelism between power consumption and clock
frequency of CPUs can be observed. It can be concluded that the frequency of CPU has a
great impact on the energy usage; lowering CPU clock frequency when high

performance is not needed, can therefore lead to significant energy savings.

Energy efficiency can be achieved only then, when all of the components of the ICT
system work together in harmony. For example the capability of dynamic frequency and
voltage adaption of a CPU will not improve energy efficiency, if the operating system
using the CPU cannot adjust the frequency and voltage at runtime. Thus it is crucial for
operating systems to be able to exploit the potential of hardware in order to improve

energy efficiency.

On the other hand one should keep in mind that reducing frequency and voltage will
also decrease performance and thus not necessarily improve energy efficiency. Higher

frequency and voltage provides better performance and can be more effective although

31

higher clock speed leads to higher energy consumption. Completing a task faster allows
the CPU to idle which in turn could lead to greater energy saving. As introduced in
section 4.1.2, the EDP balances energy saving and performance and delivers the most
efficient trade-off between these two. Thus the goal of a programmer should be to

minimize EDP rather than reducing energy usage in exchange for performance loss [55].

Advanced Configuration and Power Interface (ACPI)

ACPI (Advanced Configuration and Power Interface) is a platform-independent power
management specification developed by Hewlett-Packard, Intel, Microsoft, Phoenix, and
Toshiba in 1996. The purpose of ACPI is to consolidate, check and improve upon existing
power and configuration standards for hardware devices. ACPl removes device
management responsibilities from legacy firmware interfaces and enables the operating
system to control the amount of power given to each device attached to the computer.
ACPI allows the operating system to turn off peripheral devices, such as monitors or
hard drives after set periods of inactivity [56], [57]. Microsoft's Windows 98 was the first
operating-system with full support for ACPI, with Windows 2000, Windows XP, Windows
Vista, Windows 7, eComStation, FreeBSD, NetBSD, OpenBSD, HP-UX, OpenVMS, Linux,

and PC versions of SunOS all having support for ACPI [56].

ACPI defines four global states (GO-G3), four device dependent device states (D0-D3)
and four processor states (CO-C3 or more) and a implementation dependent number of
performance states (allowing a maximum of 16 per device), which affect the
component’s operational performance while running (P0O-P15 for each device). The
global states are at the whole system level and have seven sub-states, which are called
as sleep states (S0-S6). Some manufacturers may define additional processor states such
as Intel's Haswell platform that has eleven states and distinguishes between core states
and package states. As the number of a state grows, more precautions are taken to save
energy. For example in the S1-state all the processor caches are flushed, and the CPU(s)
stop(s) executing instructions. Neither CPU nor RAM are powered off. Devices may be

powered off, if they do not indicate that they must remain on. In the S2-state the CPU is

32

powered off additionally and dirty cache is flushed to RAM [17], [56], [58]. A brief
summary of the states can be found in the appendix and all details regarding these

states can be found in the ACPI specification [57].

Operating System Timer Resolution

Operating systems use "timer tick" to track the time of day and thread quantum times.
The operating system timer resolution determines the frequency of the timer ticks. For
example Windows has a standard timer resolution of 15.6 ms, which means that every
15.6 ms the operating system receives a clock interrupt from the system timer

hardware. After receiving each interrupt, the timer tick count is updated.

It is crucial for an operating system to optimize its timer resolution. Both too high and
too low system timer resolutions can lead to inefficiency. As introduced in section 4.2.1,
CPU clock rates have grown constantly and are still increasing. If the operating systems
do not adapt their clock rates accordingly, the operating system scheduler can no longer
identify processes that do not use too much CPU, because they all use less than a single
tick. On the other hand, having operating system timer resolution less than 10 ms can
lead to energy-wasting as well. Modern processors and chipsets, particularly in mobile
platforms, use the idle time between system timer intervals to decrease system power
usage. Many processor and chipset components are switched into low-power idle states
between timer intervals. But when the system timer interval is less than 10 ms,
changing to a low-power state can be inefficient. Figure 12 shows that the average
platform energy consumption constantly grows as the operating system timer resolution

increases. Higher timer resolution results in less frequent clock interruptions.

33

Measured on Platform with Intel® Core™ i5 dual-core processor and Windows 7

— 11.6
£
(;U 11.4 -
= 112
2
o 11.0
o
£ 10.8
S
o~ 10.6 -
k]
a. 10.4
8o
© 10.2 -
7] —
©
10.0 T
>
<

1msec 2.5msec S5msec 10msec 15.6msec

Timer Resolution

Figure 12: The impact of timer resolution on average platform power [9]

Figure 12 shows that the average platform energy consumption constantly grows as the
operating system timer resolution increases. Higher timer resolution results less

frequent clock interruptions.

Problem 2: The success of the power saving methodologies depends on the accuracy

of estimations and the compatibility of hardware.

Researchers should avoid unrealistic assumptions and perform necessary tests and
analysis to confirm these assumptions in order to avoid this problem. To leverage
advanced energy efficient computer hardware, the operating environment must be
capable of using hardware functionality, and it must deliver advanced performance and

power management capabilities for the user and administrator.

Allowing User to Save Energy

Problem: Not allowing user involvement leads to energy wasting.
Operating systems are the intermediate systems between users and the applications.
Even if the applications were very energy efficient, there would still be room for

improvement by allowing user to contribute to save energy. Energy wasting could be

34

reduced, if user gets involved consciously trying to save energy. For example the user
can easily turn off to computer if it is not needed any more but for the computer it takes
certain time and energy to take the same decision based on a long period of inactivity.

Thus operating systems should allow user involvement to improve energy efficiency.

3.2.2 Power Policies

In this section we will investigate the power policies in details. After we suggest
solutions to the following questions, we will discuss the classification of power policies

briefly.

Problem 1: There are a lot of different power policies all claiming to be the best power
policy, however "Best Policy" depends on many factors and changes dynamically, as
the environment changes. Thus choosing a power policy is a complex decision, which

requires great attention.

Problem 2: For general-purpose machines, many different combinations of software
applications may be executed at any given time and it is unlikely that experiments will

be performed to cover all possible workload mixes [59].

A policy is an algorithm that decides the power states to be used and chooses when to
change a component's power states [59]. It has been the main focus of OS-directed
power management research to find better policies in recent years. Many power
management policies have been proposed, which cover each level of the computing
hierarchy[60]. However operating system is the only entity with a global view of
resource usage and has detailed information about tasks and their requirements.
Therefore power management is one of the main tasks of an operating system [61],

[62].

Choosing the best policy is not trivial, unless the policy leads to less energy use, less

power and improved performance. In reality reducing energy consumption is often

35

needs to be balanced with performance based on varying workload and other
constraints and there are hundreds of policies to achieve the most efficient trade-off
between power and performance. Each of these policies has its advantages and
disadvantages. In addition, the policies are evaluated using a single hardware
component in most studies. However, it is not clear whether it is appropriate to apply
the same policy to a similar hardware component. For example, hard drives and CD-
ROM drives are both block devices, which have different workload behaviors. Even if the
workload is same, different policies increase energy savings for different devices. For
general-purpose machines, many different combinations of software applications can be
executed at the same time and it is impossible for an experiment to test all possible

combinations of workload [59].

We can conclude that there is no global best policy for all computers. Choosing a policy
a priori can be efficient for embedded systems where the workload is relatively
homogenous. However, in personal computers, the usage patterns may change
dramatically since the user can execute different programs. In this scenario, a group of
policies can be eligible at runtime, and one policy can be selected based on the changing
request patterns. An example of automatic selection of power policies at run time can

be found in [63].

Classification of Power Policies

Power policies can be categorized into 3 major categories: timeout-based, predictive,
and stochastic. In this section each of these categories will be explained briefly [59],

[64].

Timeout Policies

The timeout policy is the one most widely used in many applications because of its
simplicity. Timeout policy allows the user to set the timeout value statically or
dynamically. Static timeout policies use a fixed timeout value over time. Many adaptive

timeout policies have been proposed to lower wasted idle time by changing the timeout

36

threshold depending on the history of previous idle periods. [65], [66], [67] Static
timeout policies can lead to inefficiencies because they waste power while waiting for

the timeout to expire [49], [59], [64].

Predictive Policies

Predictive policies do not shut down the system for a fixed timeout, instead they predict
the length of idle periods and shut down the system only when the idle period is long
enough to amortize the cost (in latency and power) of shutting down and reactivating

the system later [64].

One shortcoming of predictive policies is that they cannot accurately balance
performance losses caused by transition delays between states of operation and power
savings. Another problem with predictive policies is that they cannot be used in general
system models where multiple incoming requests can be queued while waiting for

service [49], [64].

Stochastic Policies

Stochastic policies use the Markov model and compute a transition probability matrix
for devices. Based on this probability matrix the states can be changed even after a long
burst of accesses or before further idleness has occurred. Stochastic policies provide a
flexible way to control the trade-off between energy use and performance penalty

depending on the optimization constraints.

A shortcoming of the stochastic policies is that they assume the Markov model to be
stationary and known in advance. However in reality, the system can experience also
non-stationary workloads and in such a case stochastic policies may make wrong

decisions for changing the state, which can lead to significant energy wasting [64].

3.2.3 Context Awareness

Problem: Lack of context awareness leads to inefficiency.

37

Context awareness was first introduced by Schilit in 1994 [68]. Context awareness can
be defined as the monitoring of environmental changes and adapting the operations
based on these changes. Contextual conditions such as the state of various energy
consuming devices (i.e. WiFi and Bluetooth) have great impact on energy consumption
of ICT systems [40]. A well-managed context can lead to significant energy savings. For
instance some applications may write cached data to flash when the battery is getting
critically low or when sensors detect that a notebook PC is falling, the hard drive heads

can be parked to prevent a head crash [40], [69].

From the perspective of energy efficiency, context aware computing is the ability to
sense the environment in which ICT systems operate and react to these changes in
order to reduce energy consumption and improve energy efficiency [9]. In some cases
energy consumption can be reduced without improving the energy efficiency. Although
the energy efficiency of the ICT system remains the same, such precautions can still be

useful as they deliver more positive user experiences.

Improving Energy Efficiency Through Context Awareness

Battery lifetime has become an important issue, especially for rapidly evolving mobile
devices with high-performance processors. These devices interact with their
environment very often using various sensors. These interactions deliver useful
information about the context such as: lighting, noise level, network connectivity,
communication costs, communication bandwidth etc. Significant energy savings can be

achieved using this context information [8], [9], [68].

As a representative example, scaling the screen brightness automatically based on the
lighting of the environment can improve both user experience and energy efficiency.
Energy efficiency is defined as "useful work done per energy unit." Useful work for a
screen can be defined as showing the content to the user providing good user
experience. The definition of "good user experience" clearly varies depending on the

user preferences. But for all variations, the required brightness level to maintain clear

38

sight reduces, as the environment gets darker. This way the screen brightness can be
reduced without affecting the user experience and can therefore lead to energy
efficiency improvement by preventing energy wasting of too high brightness.

Being aware of the status of peripherals is a further significant aspect of context-aware
computing. Application software and operating systems should be able to detect
inactivity of the peripherals and turn them off to avoid energy wasting. For instance, if
an application exclusively uses Bluetooth on the system, the Bluetooth device can be

disabled temporarily in the absence of activity [8].

Improving User Experience through Context Awareness

Most of the context aware computing techniques with regard to energy usage aim at
reducing energy consumption. These methods do not necessarily improve energy
efficiency but they improve user experience. For example, reducing energy consumption
of an application in penalty of performance loss can improve user experience by
extending battery lifetime, however, energy efficiency can remain the same [8], [9],

[40].

Operating systems and the application software should be aware of the power events
such as changes in power source (power adapter vs battery) and adapt their behavior
based on these events. For example, if the battery is running low, the operating system
should change its state from high performance to power saver. In addition, application
software should minimize their power consumption by dismissing the non-critical tasks.
Although these adjustments do not necessarily improve energy efficiency, they lead to

significantly better user experience.

3.3 General Problems and Solution Proposals

In sections 3.1 and 3.2 specific problems and methodologies to achieve energy efficient
software were discussed. In this section general problems, which are not specific for a

particular methodology or field, will be discussed.

39

3.3.1 Lack of Software Engineering Practices for Energy Efficiency

Many researches such as [6], [70], [71] have shown that energy efficiency or other
sustainability aspects are not fully supported as a relevant and first-class concern by the
traditional software engineering models, despite increased efforts having been put into
improving the sustainability of ICT systems [6], [70], [71], [72]. Limiting the necessary
precautions for energy efficiency of a software to its programming phase would be a too
narrow perspective [2]. The whole life cycle of software should be optimized in order to
achieve energy efficiency. In order to do so, energy efficiency should be integrated as a
non-functional requirement into the software engineering process models, and the
improvements and optimizations should cover the whole life cycle of the software and
not just the development phase. There are some studies that suggest life cycle based
software engineering models to achieve energy efficiency and sustainability in general.
One of the most cited models is the GREENSOFT Model. After defining some basic

terms, this model will be outlined briefly.

Green Software and Green Software Engineering

In the sustainable informatics literature the terms "Green Software" and "Green
Software Engineering" occur frequently. Dick et al. [73] define green software as
follows: "Green and Sustainable Software is software, whose direct and indirect
negative impacts on economy, society, human beings, and environment that result from
development, deployment, and usage of the software are minimal and/or which has a
positive effect on sustainable development" [73]. Green Software Engineering can be
defined as the art of defining and developing software products in a way, so that the
negative and positive impacts on sustainable development that result and/or are
expected to result from the software product over its whole life cycle are continuously

assessed, documented, and used for a further optimization of the software product [74].

40

Energy Efficiency as non-functional Requirement

Non-functional requirements describe the non-behavioral aspects of a system, capturing
the properties and constraints under which a system must operate where functional
requirements define the intended services, tasks, or functions the system is required to
perform [75], [76], [77]. Some examples of non-functional requirements are reliability,
ease of use, flexibility, and safety. Based on this definition it can be concluded that
energy efficiency is a non-functional requirement, because a lack of efficiency can lead
to serious issues such as battery life time problems for mobile devices, or too much
heating and too high energy consumption for servers. In order to avoid these issues, the
energy efficiency should be accepted as a must-have requirement. On the other hand
energy efficiency is not the main purpose or main functionality of software; it is rather a
constraint that should be kept while achieving the main purpose like calling someone
with a smart phone. As a conclusion it can be stated that energy efficiency is a non-

functional requirement.

The GREENSOFT Model

The GREENSOFT Model is a conceptual reference model for green and sustainable
software that includes a product life cycle model for software products, sustainability
metrics and criteria for software, software engineering extensions for sustainably sound
software design and development, as well as appropriate guidance. The GREENSOFT
Model aims to support software developers, administrators, and software users in
creating, maintaining, and using software in a more sustainable way. The GREENSOFT
Model integrates the whole aspects of sustainable development into the software
development process rather than improving only the energy efficiency [6], [23]. Figure

13 provides an overview of the GREENSOFT Model.

41

Reference Model “Green Software”

(Lifecycle of)
Software Products
>Development>> Usage >> End of Life >
. J
(Sustainability Criteria R
for Software Products
" Common Directly related | Indirectly related |
Quality Criteria Criteria and Criteria and
L and Metrics Metrics Metrics)

Procedure Models

Develop
Administrate Use
Purchase

Recommendations for Action

and Tools
For Developers For For
Administrators Users

For Purchasers

Figure 13: The GREENSOFT Model [6]

As figure 11 illustrates, the GREENSOFT Model has 4 main components: Life cycle of
software products, sustainability criteria for software products, procedure models, and

recommendations for action and tools.

In contrast to traditional life cycles of software the GREENSOFT Model comprises a "Life
Cycle Thinking" (LCT), aiming to assess the ecological, social, human, and economic
compatibility of a product during its whole life cycle beginning with the early stages of
product development and ending with the product’s disposal and recycling [6]. The
results of these assessments can be used for product optimizations [78]. The
"Sustainable Criteria and Metrics" component of the GREENSOFT Model provides quality
models and standardized metrics. Software can be revised using these metrics and

guality aspects to improve energy efficiency and sustainability in general [6].

42

To achieve energy efficient and sustainable software, the whole life cycle of the
engineered software product has to be taken into account as well as the circumstances
under which it will be produced. The model component "Procedure Models" includes
procedure models, based on the different usage types: Developers, purchasers,
administrators, and users. Focusing on green and sustainable software engineering, the
proposed models can be implemented to support the optimization of the different
processes. The models can be adapted to different contexts, since they are general

models [6].

The last component of the model contains Recommendations and Tools, which are
made available to the different stakeholders. These tools and recommendations such as
checklists, guidelines, best practice examples, software tools, as well as other tools (like
paper-based data collection sheets) support stakeholders with different professional
skill levels in applying green or sustainable techniques in general, when developing,
purchasing, administrating, or using software products [23]. Software developers,
professional and private users, software acquirers, and administrators are some

examples of possible stakeholders [6], [23].

Although there are few researches suggesting green software engineering models, no
widely used models that became industry standards exist. As a next step the existing
methods should be evaluated by real life projects, and industry and educational

institutions should encourage research in the field of “green software engineering”.

3.3.2 The Importance of Software Energy Efficiency is not Perceived Well

Problem: Despite the fact that software can influence the energy consumption of ICT
systems dramatically, the potential of software in energy efficiency is still not

perceived well.

In the field of energy efficiency of ICT systemes, it is tempting for many researchers to
focus on hardware, since software does not use energy directly [7]. However all

hardware are driven by software and software has great impact on the energy

43

consumption of ICT systems as well. Despite there is great potential for improvements,
the software aspects of energy efficiency of ICT systems remained relatively unexplored

compared to hardware [8], [7], [16], [9], [40].

There are responsibilities for educational institutions, research labs and industry in
order to solve this problem. Further research in the area of software energy efficiency
should be encouraged and energy awareness of all stakeholders of ICT systems such as
software developers, professional or amateur users, system administrators, system

architects etc. should be improved.

44

3.4 Summary of the Problems and Solutions

Following the mentioned problems and solutions are summarized in a table.

Table 2: Summary of the problems and solutions: Application software efficiency

Application Software Efficiency

1. Problem: Insensitive choice of algorithms and data structures lead to
significant energy wasting.

Solution: Careful and targeted selection of algorithms and data
structures.

2. Problem: Careless programming of loops and overuse of spinning and
polling loops lead to inefficiency.

S | Solution: Designing the loops by following the rules provided in section
3 |311.
é 3. Problem: Single threaded applications are inefficient and waste
w
E energy.
2 Solution: Multithreading
4‘:3 4. Problem: Use of Scalar C-code rather than Vectorizing lead to
g— inefficient software that wastes energy.
o)
o Solution: Vectorization and instruction sets
5. Problem: Choosing an inefficient programming language can lead to
huge energy wasting.
Solution: Careful and targeted selection of programming language.
6. Problem: Not exploiting the well-proven energy efficient solutions can
lead to inefficient software.
Solution: Using energy efficient libraries and drivers.
- 7. Problem: Unnecessary data movement leads to energy wasting.
O
8§ | Solution: Minimizing data movement
m - —
o é 8. Problem: Unnecessary memory access leads to energy wasting.
wl

Solution: Minimizing memory access

45

Table 3: Summary of the problems and solutions: Operating system optimizations

Operating System Optimizations

Power Saving Mechanisms

1. Problem: The existing operating systems can still not exploit the
power saving opportunities completely despite many efforts having
been put in operating system power optimizations.

Solution: Operating systems should be designed considering the
energy consumption and existing operating systems should be
revised to improve energy efficiency.

2. Problem: The success of the power saving methodologies
depends on the accuracy of estimations and the compatibility of
hardware.

Solution: Researchers should avoid unrealistic assumptions and test
the applied methodology and results meticulously.

3. Problem: Not allowing user involvement leads to energy wasting.

Solution: Involve user in saving energy.

Power Policies

4. Problem: There are a lot of different power policies all claiming to
be the best, however, "Best Policy" depends on many factors and
changes dynamically as the environment changes. Thus choosing a
power policy is a complex decision, requiring great attention.

Solution: Researchers should avoid unrealistic assumptions and test
the applied methodology and results meticulously, and power policy
should be adapted dynamically.

5. Problem: For general-purpose machines, many different
combinations of software applications may be executed at any given
time and it is unlikely that experiments will be performed to cover
all possible workload mixes. [54]

Solution: Researchers should avoid unrealistic assumptions and test
the applied methodology and results meticulously, and power policy
should be adapted dynamically.

Context
Awareness

6. Problem: Lack of context awareness leads to inefficiency.

Solution: Context awareness should be improved.

46

Table 4: Summary of the problems and solutions: General problems

1. Problem: Traditional software engineering models do not

Lack of support energy efficiency as a relevant concern.
. | software)) o
g engineering Solution: The whole life cycle of software should be optimized and
S | practices energy efficiency be integrated as a non- functional requirement
§ into the software engineering process models.
= 2. Problem: Despite the fact that software can influence the energy
E Importance | onsumption of ICT systems dramatically, the importance of
& | of software | sqfi\vare aspects of energy efficiency is still not perceived well.
Ez:iecriget\ cy Solution: Encouraging further research and better education of all

stakeholders of an ICT system.

4 Tools and Technologies

In this section various tools for energy efficient programming will be presented.

4.1 Tools for Data Efficiency

PowerEscape Insight:

PowerEscape Insight aims to reduce power consumption by improving the "data

efficiency" of any given C-language code as it is being written [79].

PowerEscape Analyzer:

PowerEscape Analyzer works with any ANSI C-compliant software module compiled
using GCC (Gnu C Compiler) 2.95 or higher and produces detailed reports on the
memory sub-system’s memory access and energy consumption, pinpointing the source
code that causes the most costly data transfers. The tool also records the source-code
location at which memory use peaks, along with data structures in memory at that time.
The Analyzer + Cache tool works with the Analyzer and provides simulation of L1, L2,

and L3 caches in a variety of configurations [79].

47

PowerEscape Architect:

The tool works for power optimization strategies for both hardware and software
engineers. It reveals the ideal memory architecture to the system architect while

exposing power bottlenecks in embedded code to the software developer [79].

VTune Analyzer:

VTune Analyzer is a programming language and Performance Analyzer tool with a
graphical user interface from Intel, which facilitates the application performance tuning
without recompilation. The VTune Analyzer supports all compilers that follow industry
standards including Microsoft and Intel compilers for C, C++ and Fortran. The VTune
Analyzer also supports the most commonly used managed runtime environments such
as Microsoft, NET, JAVA, C# and Visual Basic. The VTune Analyzer offers an extensive set
of tuning events for all the latest Intel processors. The Intel compilers and the VTune

Performance Analyzer can be used together for software optimization [80].

Intel Performance Tuning Utility:

The Intel Performance Tuning Utility (Intel PTU) is a cross-platform performance analysis
tool set. Alongside with such traditional features as identifying the hottest modules and
functions of the application, tracking call sequences, and identifying performance-
critical source code, Intel PTU has new, more powerful capabilities of data collection,
analysis, and visualization. For experienced users, Intel PTU offers the processor
hardware event counters for in-depth analysis of the memory system performance,
architectural tuning, and others. It associates performance issues with the source code.
If symbol sources for an analyzed application are not available, Intel PTU represents
data with basic block granularity and provides a graph of the function execution flow
(control flow graph) to navigate the disassembly. The Intel Performance Tuning Utility is

available for both Windows and Linux operating systems [81].

48

4.2 Tools for Context Awareness

The Microsoft System Event Notification Service (SENS)

The Microsoft System Event Notification Service (SENS) can help alleviate mobile
application issues. The SENS API, distributed with the Intel Mobile Platform SDK,
provides a simple function call for checking if the network connection is alive and
another one pinging a specified address for the user. In addition to these simple
functions, the user can also register with the service to receive events when a
connection is made or lost, to ping a destination, or even as an alternative method to

detect when the system changes power states (battery on, AC on, or battery low).

Intel Laptop Gaming TDK

The Intel Laptop Gaming TDK enables game developers and game engine developers to
design and develop laptop-aware games. The Intel Laptop Gaming TDK does this by
providing functionalities that dynamically detect changes in system-state information
such as power, network and processor. Using this information, game developers can
alter game behavior to maximize game play on laptops. Game developers can also use
the Intel Laptop Gaming TDK to receive notifications of platform events to achieve
maximum game play. In this context, “maximum game play” means utilizing mobility
features in a game in a way that reduces power consumption, which in turn allows for
maximum battery life while playing the game. The Intel Laptop Gaming TDK also allows
game developers to monitor system status, such as remaining battery life, allowing

them to alert the game player to the situation [82].

Intel Web APIs

"The Intel Web APIs allow developers to retrieve information about the platform's
configuration (e.g., display, storage, and processor) and the platform’s context (e.g.,

bandwidth, connectivity, power, and location) using JavaScript and HTML [8], [83]."

49

Koala

Koala is a platform which uses a pre-characterized model at run-time to predict the
performance and energy consumption of a piece of software. An arbitrary policy can
then be applied in order to dynamically trade performance and energy consumption

[50].

4.3 Tools for Measuring Energy Efficiency

Intel Power Checker

Intel Power Checker provides developers a way to evaluate the idle power efficiency of
their applications on mobile platforms with Intel Core processor or Intel Atom
technology running the Microsoft Windows operating system. Any compiled language
application, especially those designed to run on technology based on Intel products and
Java Framework applications, can be analyzed by Intel Power Checker. The checker can

be used with or without a supported external power meter [84].

Perfmon

The equivalent of System Monitor on Windows 2000, Windows XP, and Windows 7 is
called Performance Monitor. Performance Monitor can display information as a graph, a
bar chart, or numeric values and can update information using a range of time intervals.
The categories of information that you can monitor depend on which networking
services are installed on your system, but they always include File System, Kernel, and
Memory Manager. Other possible categories include Microsoft Network Client,

Microsoft Network Server, and protocol categories [85].

PwrTest/Windows Driver Kit

The power management test tool (PwrTest) enables developers, testers, and system
integrators to exercise and record power management information from the system.

PwrTest can be use to automate sleep and resume transitions and record processor

50

power management and battery information from the system over a period of time.

PwrTest (PwrTest.exe) features robust logging and a command-line interface. PwrTest is
capable of logging information to both a Microsoft Windows Test Technologies (WTL)
and XML file format [86].

Windows Event Viewer/Event Log

Event Viewer is a component of Microsoft's Windows NT line of operating systems and
lets administrators and users view the event logs on a local or remote machine. In

Windows Vista, Microsoft overhauled the event system.

Event logs are special files that record significant events on a computer, such as when a
user logs on to the computer, or when a program encounters an error. Whenever these
types of events occur, Windows records the event in an event log that can be read by
using Event Viewer. Advanced users might find the details in event logs helpful when

troubleshooting problems with Windows and other programs [87].

Windows ETW

The core architecture of Windows ETW has been illustrated in Figure 1. As shown, there
are four main types of components in ETW: event providers, controllers, consumers,
and event trace sessions. Buffering and logging take place in event tracing sessions,
which accept events and create a trace file. There are a number of logging modes
available for ETW sessions. For instance, a session can be configured to deliver events
directly to consumer applications or to overwrite old events in a file by wrapping around
when a certain size is reached. A separate writer thread created for each session flushes
them to a file or to real-time consumer applications. To enable high-performance, per-

processor buffers are used to eliminate the need for a lock in the logging path [88].

Powerlnformer

Powerlnformer is a tool developed to provide basic power relevant statistics to a

developer who can use these statistics to optimize his application in a way that it

51

matches battery life constraints (e.g. the game must run for at least 90 minutes on a

notebook with a 56 Whr battery) while also meeting performance requirements [89].

PowerTOP

PowerTOP is a Linux tool for diagnosing issues with power consumption and power
management. In addition to being a diagnostic tool, PowerTOP also has an interactive
mode where you can experiment with various power management settings for cases

where the Linux distribution has not enabled those settings.

PowerTOP reports which components in the system are most likely to blame for a
higher-than-needed power consumption, ranging from software applications to active
components in the system. Detailed screens are available for CPU C and P states, device

activity, and software activity [90].

Battery Life Toolkit

Battery Life Tool Kit is a set of scripts and programs to monitor and log power

consumption of Linux laptops/notebooks under different workloads.

Battery life measurements require repeatable workloads. While BAPCoR MobileMarkR
2005 is widely used in the industry, it runs only on Windows XP. Intel’s Open Source
Technology Center has developed a battery life measurement tool-kit to enable reliable

battery life measurements on Linux R without special lab equipment [91].

4.4 Tools for Operating System Optimizations

The Homogeneous Architecture for Power Policy Integration (HAPPI)

HAPPI is a software framework that simplifies the implementation, configuration, and
automatic selection of power policies. The best power policy depends on a device’s
power parameters and workload. HAPPI simplifies this configuration process by

automatically selecting the appropriate policy for each device, achieving energy

52

consumption within 4 percent of the best individual policy without knowing the

workloads in the beginning [59].

PowerCfg

Using the energy option, powercfg can be used to determine whether an application has
increased the platform timer resolution. The PowerCfg utility is run when the
application is running and the resulting energy report can be examined to see if the
application changed the platform timer resolution. Powercfg will also show the entire
call stack for the request. The report lists all of the instances of increased platform timer
resolution and indicates whether the process hosting the application increased the

timer resolution [9].

Wattch

Wattch is a framework for analyzing and optimizing microprocessor power allocation at
the architecture-level. Wattch has the benefit of low-level validation against industry
circuits, while opening up power modeling to researchers at abstraction levels above

circuits and schematics [92].

PowerAPI

POWERAPI estimates the energy consumption of running processes, in real-time, based
on raw information collected from hardware devices (e.g., CPU, network card) through
the operating system. [28] Unlike current state-of-the-art technology, PowerAPI does
not require any external device to measure energy consumption. This is a purely
software approach where the estimation is based on energy analytical models that
characterize the consumption of various hardware components (e.g. CPU, memory,
disk). PowerAPl is based on a highly modular architecture where each module

represents a measurement unit for a specific hardware component [93], [12].

53

4.5 Instruction Set Extensions

SSE Instructions

SSE is a SIMD extension to the Intel Pentium Ill and AMD AthlonXP microprocessors. SSE
adds a separate register space to the microprocessor. Because of this, SSE can only be
used on operating systems supporting it. All versions of Windows since Windows 98
support SSE, as do Linux kernels since 2.2.SSE adds 8 new 128-bit registers, divided into
4 32-bit (single precision) floating point values. These registers are called XMMO-XMM7.
An additional control register, MXCSR, is also available to control and check the status of
SSE instructions. SSE provides access to 70 new instructions that operate on these 128-

bit registers, MMX registers, and sometimes even regular 32-bit registers [94].

Intel Advanced Vector Instructions

Intel® Architecture Instruction Set Extensions Programming Reference includes the
definition of Intel® Advanced Vector Extensions 512 (Intel® AVX-512) instructions. These
instructions represent a significant leap to 512-bit SIMD support. Programs can pack
eight double precision or sixteen single precision floating-point numbers, or eight 64-bit
integers, or sixteen 32-bit integers within the 512-bit vectors. This enables processing of
twice the number of data elements that AVX/AVX2 can process with a single instruction

and four times that of SSE.

Intel AVX-512 instructions are important because they offer higher performance for the
most demanding computational tasks. Intel AVX-512 instructions offer the highest
degree of compiler support by including an unprecedented level of richness in the
design of the instructions. Intel AVX-512 features include 32 vector registers each 512
bits wide, eight dedicated mask registers, 512-bit operations on packed floating point
data or packed integer data, embedded rounding controls (override global settings),
embedded broadcast, embedded floating-point fault suppression, embedded memory
fault suppression, new operations, additional gather/scatter support, high speed math

instructions, compact representation of large displacement value, and the ability to

54

have optional capabilities beyond the foundational capabilities. It is interesting to note

that the 32 ZMM registers represent 2K of register space [95].

5 Conclusion and Outlook

We have analyzed several software approaches for energy efficiency and provided an
overview of problems and solutions as well as methodologies. Many researches have
shown that software can influence the overall energy consumption of ICT systems
dramatically. Even very simple precautions can result in great achievements. For
example targeted choice of the programming language can reduce the energy
consumption up to nearly 430 times, as we presented in section 3.1.1. This great
potential for energy savings could not be exploited yet, since the software aspects of

energy efficiency remained as a relatively unexplored research field.

In the future we need to understand the role of software in energy efficiency better.
Energy efficiency should be integrated in software engineering models as a non-
functional requirement and we need to optimize the whole life cycle of software and

not just the development phase.

We believe that in the near term, a number of simple methodologies will be used to
reduce the most obvious energy waste associated with the highest-power components,
such as CPUs. In the future we need to achieve more comprehensive energy
optimizations. Further research should be encouraged to explore more general and
comprehensive methodologies. Software may not be able to solve all problems with

regard to energy wasting however it could lead to significant improvements.

55

6

References

[1] J. G. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of historical trends

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

in the electrical efficiency of computing,” Ann. Hist. Comput. IEEE, vol. 33, no. 3, pp.
46-54, 2011.
L. M. Hilty, W. Lohmann, and E. M. Huang, “Sustainability and ICT-An overview of
the field,” Not. Polit., vol. 27, no. 104, pp. 13-28, 2011.
GeSl, “SMARTer 2020,” 2012.
P. Ranganathan, “Recipe for efficiency: principles of power-aware computing,”
Commun ACM, vol. 53, no. 4, pp. 60-67, Apr. 2010.
E. Capra, C. Francalanci, and S. A. Slaughter, “Measuring application software energy
efficiency,” IT Prof., vol. 14, no. 2, pp. 54-61, 2012.
S. Naumann, M. Dick, E. Kern, and T. Johann, “The greensoft model: A reference
model for green and sustainable software and its engineering,” Sustain. Comput.
Inform. Syst., vol. 1, no. 4, pp. 294-304, 2011.
C. Siebra, P. Costa, R. Miranda, F. Q. B. Silva, and A. Santos, “The software
perspective for energy-efficient mobile applications development,” in Proceedings
of the 10th International Conference on Advances in Mobile Computing &
Multimedia, New York, NY, USA, 2012, pp. 143-150.
P. Larsson, “Energy-efficient software guidelines,” Intel Softw. Solut. Group Tech
Rep, 2011.
B. Steigerwald and A. Agrawal, “Developing green software,” Intel White Pap., 2011.
C. Shore, “Developing Power-Efficient Software Systems on ARM Platforms,”
Technol. -Depth, pp. 48-53, 2009.
A. Winter and J. Jelschen, “Energy-Efficient Applications,” 2012.
“PowerAPI: A Software Library to Monitor the Energy Consumed at the Process-

Level.” [Online]. Available: http://ercim-news.ercim.eu/en92/special/powerapi-a-

56

software-library-to-monitor-the-energy-consumed-at-the-process-level. [Accessed:
29-Nov-2013].

[13] “IDC Home: The premier global market intelligence firm.” [Online]. Available:
http://www.idc.com/. [Accessed: 01-Dec-2013].

[14] S. Murugesan, “Harnessing green IT: Principles and practices,” IT Prof., vol. 10,
no. 1, pp. 24-33, 2008.

[15] N. Stern, “Key elements of a global deal on climate change,” 2008.

[16] “Winter and Jelschen - 2012 - Energy-Efficient Applications.pdf.” .

[17] D.J. Brown and C. Reams, “Toward energy-efficient computing,” Commun ACM,
vol. 53, no. 3, pp. 50-58, Mar. 2010.

[18] “Software Engineering Aspects of Green Computing.” [Online]. Available:
http://www.green-se.net/segc/2014/. [Accessed: 01-Jul-2013].

[19] W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet, and P. Demeester,
“Overall ICT footprint and green communication technologies,” in Communications,
Control and Signal Processing (ISCCSP), 2010 4th International Symposium on, 2010,
pp. 1-6.

[20] T.lJohann, M. Dick, S. Naumann, and E. Kern, “How to measure energy-efficiency
of software: Metrics and measurement results,” in Green and Sustainable Software
(GREENS), 2012 First International Workshop on, 2012, pp. 51-54.

[21] L. M. Hilty and V. C. Coroama, The Role of ICT in Energy Consumption and Energy
Efficiency. 2009.

[22] “Apple - OS X Mavericks - Do even more with new apps and features.” [Online].
Available: http://www.apple.com/osx/preview/. [Accessed: 09-Oct-2013].

[23] E. Kern, M. Dick, S. Naumann, A. Guldner, and T. Johann, “Green Software and
Green Software Engineering—Definitions, Measurements, and Quality Aspects,” Inf.
Commun. Technol., p. 87, 2013.

[24] “Power—delay product - Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/Power%E2%80%93delay_product. [Accessed: 01-Dec-
2013].

57

[25] “method: definition of method in Oxford dictionary (British & World English).”
[Online]. Available:
http://oxforddictionaries.com/definition/english/method?g=method. [Accessed: 08-
Oct-2013].

[26] M. Dick, J. Drangmeister, E. Kern, and S. Naumann, “Green Software Engineering
with Agile Methods,” 2013.

[27] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy
consumption in mobile phones: a measurement study and implications for network
applications,” in Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference, 2009, pp. 280—293.

[28] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “A preliminary study of
the impact of software engineering on GreenlT,” in Green and Sustainable Software
(GREENS), 2012 First International Workshop on, 2012, pp. 21-27.

[29] E.-Y. Chung, “Software approaches for energy efficient system design,” stanFord
university, 2002.

[30] “Operating system - Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/Operating_system. [Accessed: 19-Nov-2013].

[31] V.D. Liu, “Energy-efficient synchronization through program patterns,” in Green
and Sustainable Software (GREENS), 2012 First International Workshop on, 2012, pp.
35-40.

[32] K. Grosskop and J. Visser, “Identification of Application-level Energy
Optimizations,” Inf. Commun. Technol., p. 101, 2013.

[33] A.Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,
“Enerl): approximate data types for safe and general low-power computation,”
SIGPLAN Not, vol. 46, no. 6, pp. 164-174, Jun. 2011.

[34] G. Arnout, “Data-Efficient Software and Memory Architectures are Essential for
Higher Performance and Lower Power,” Inf. Q., vol. 4, no. 3, 2005.

[35] S. Albers, “Energy-efficient algorithms,” Commun ACM, vol. 53, no. 5, pp. 86—-96,
May 2010.

58

[36] L. A.Barroso and U. Holzle, “The Case for Energy-Proportional Computing,”
Computer, vol. 40, no. 12, pp. 33-37, Dec. 2007.

[37] “Busy waiting - Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/Busy_waiting. [Accessed: 30-Nov-2013].

[38] “Operating System Process Scheduling.” [Online]. Available:
http://www.tutorialspoint.com/operating_system/os_process_scheduling.htm.
[Accessed: 30-Nov-2013].

[39] “Thread (computing) - Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/Multithreading_(software)#Multithreading. [Accessed:
30-Nov-2013].

[40] B. Steigerwald, R. Chabukswar, K. Krishnan, and J. D. Vega, Creating energy
efficient software. Technical report, Intel, 2007.

[41] “SIMD - Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/SIMD. [Accessed: 04-Nov-2013].

[42] “Whatis SIMD? - A Word Definition From the Webopedia Computer Dictionary.”
[Online]. Available: http://www.webopedia.com/TERM/S/SIMD.html. [Accessed: 04-
Nov-2013].

[43] S.Liand M. J. Absar, “Minimizing Memory Access By Improving Register Usage
Through High-level Transformations,” 1997.

[44] D. Brooks, P. Bose, and M. Martonosi, “Power-performance simulation: design
and validation strategies,” ACM SIGMETRICS Perform. Eval. Rev., vol. 31, no. 4, pp.
13-18, 2004.

[45] D.Snowdon, “Operating System Directed Power Management,” The University
of New South Wales, 2010.

[46] C.Lang, “Components for Energy-Efficient Operating Systems,” 2013.

[47] W. Stallings, Operating Systems: Internals and Design Principles, 7th ed. Upper
Saddle River, NJ, USA: Prentice Hall Press, 2012.

[48] “Novell Doc: ZENworks 11 Configuration Policies Reference - Power

Management Policy.” [Online]. Available:

59

http://www.novell.com/documentation/zenworks11/zen11_cm_policies/data/br5k
nmk.html. [Accessed: 20-Nov-2013].

[49] L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli, “Policy optimization for
dynamic power management,” Comput.-Aided Des. Integr. Circuits Syst. IEEE Trans.
On, vol. 18, no. 6, pp. 813—833, 1999.

[50] D.C.Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser, “Koala: A platform for
OS-level power management,” in Proceedings of the 4th ACM European conference
on Computer systems, 2009, pp. 289-302.

[51] A. Govindasamy and S. Joseph K, “Optimization of Operating Systems towards
Green Computing,” Int. J. Comb. Optim. Probl. Inform., vol. 2, no. 3, pp. 39-51, 2011.

[52] “Dynamic frequency scaling - Wikipedia, the free encyclopedia.” [Online].
Available: http://en.wikipedia.org/wiki/Dynamic_frequency_scaling. [Accessed: 23-
Nov-2013].

[53] “Whatis clock speed? - A Word Definition From the Webopedia Computer
Dictionary.” [Online]. Available:
http://www.webopedia.com/TERM/C/clock_speed.html. [Accessed: 23-Nov-2013].

[54] “Why CPU Frequency Stalled - IEEE Spectrum.” [Online]. Available:
http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled.
[Accessed: 24-Nov-2013].

[55] E.Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: The laws of
diminishing returns,” in Proceedings of the 2010 international conference on Power
aware computing and systems, 2010, pp. 1-8.

[56] “Advanced Configuration and Power Interface - Wikipedia, the free
encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface.
[Accessed: 21-Nov-2013].

[57] “ACPI - Advanced Configuration and Power Interface.” [Online]. Available:

http://www.acpi.info/. [Accessed: 21-Nov-2013].

60

[58] “AnandTech | Intel’s Haswell Architecture Analyzed: Building a New PC and a
New Intel.” [Online]. Available: http://www.anandtech.com/show/6355/intels-
haswell-architecture/3. [Accessed: 24-Nov-2013].

[59] N. (Eddie) Pettis and Y.-H. Lu, “A Homogeneous Architecture for Power Policy
Integration in Operating Systems,” IEEE Trans. Comput., vol. 58, no. 7, pp. 945955,
Jul. 2009.

[60] L.Beniniand G. de Micheli, “System-level power optimization: techniques and
tools,” ACM Trans. Des. Autom. Electron. Syst. TODAES, vol. 5, no. 2, pp. 115-192,
2000.

[61] D. Grunwald, C. B. Morrey lll, P. Levis, M. Neufeld, and K. I. Farkas, “Policies for
dynamic clock scheduling,” in Proceedings of the 4th conference on Symposium on
Operating System Design & Implementation-Volume 4, 2000, pp. 6—6.

[62] Y.-H. Lu, L. Benini, and G. De Micheli, “Operating-system directed power
reduction,” in Proceedings of the 2000 international symposium on Low power
electronics and design, 2000, pp. 37-42.

[63] N. Pettis, J. Ridenour, and Y.-H. Lu, “Automatic run-time selection of power
policies for operating systems,” in Design, Automation and Test in Europe, 2006.
DATE’06. Proceedings, 2006, vol. 1, pp. 1-6.

[64] E.-Y.Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. De Micheli, “Dynamic power
management for nonstationary service requests,” Comput. IEEE Trans. On, vol. 51,
no. 11, pp. 1345-1361, 2002.

[65] R. Golding, P. Bosch, and J. Wilkes, “Idleness is not sloth,” in USENIX Winter,
1995, pp. 201-212.

[66] D.P.Helmbold, D.D. Long, T. L. Sconyers, and B. Sherrod, “Adaptive disk spin-
down for mobile computers,” Mob. Netw. Appl., vol. 5, no. 4, pp. 285-297, 2000.
[67] Y.-H. Lu and G. De Micheli, “Adaptive hard disk power management on personal
computers,” in VLSI, 1999. Proceedings. Ninth Great Lakes Symposium on, 1999, pp.

50-53.

61

[68] B. Schilit, N. Adams, and R. Want, “Context-aware computing applications,” in
Mobile Computing Systems and Applications, 1994. WMCSA 1994. First Workshop
on, 1994, pp. 85-90.

[69] A.K. Dey, “Providing architectural support for building context-aware
applications,” Georgia Institute of Technology, 2000.

[70] S.S. Mahmoud and I. Ahmad, “A Green Model for Sustainable Software
Engineering,” 2013.

[71] B. Penzenstadler, “Towards a Definition of Sustainability in and for Software
Engineering,” in Proceedings of the 28th Annual ACM Symposium on Applied
Computing, 2013, pp. 1183—-1185.

[72] N. Amsel, Z. Ibrahim, A. Malik, and B. Tomlinson, “Toward sustainable software
engineering: NIER track,” presented at the Software Engineering (ICSE), 2011 33rd
International Conference on, 2011, pp. 976-979.

[73] M. Dick, S. Naumann, and N. Kuhn, “A Model and Selected Instances of Green
and Sustainable Software,” in What Kind of Information Society? Governance,
Virtuality, Surveillance, Sustainability, Resilience, vol. 328, J. Berleur, M. Hercheui,
and L. Hilty, Eds. Springer Berlin Heidelberg, 2010, pp. 248-259.

[74] M. Dick and S. Naumann, Integration of environmental information in Europe
proceedings of the 24th International Conference on Informatics for Environmental
Protection Cologne/Bonn, Germany. Aachen: Shaker, 2010.

[75] A.l Anton, “Goal Identification and Refinement in the Specification of Software-
based Information Systems,” Georgia Institute of Technology, Atlanta, GA, USA,
1997.

[76] M. Glinz, “On Non-Functional Requirements,” 2007, pp. 21-26.

[77] R.Malan, D. Bredemeyer, and B. Consulting, “Functional requirements and use
cases,” Functreq Pdf 39k June, 1999.

[78] F.Rubik, U. Tischner, E. Schmincke, and M. Prosler, How to Do Ecodesign?: A

Guide for Environmentally and Economically Sound Design. 2000.

62

[79] “PowerEscape Launches Second Generation Toolset Enabling New Power
Optimization Strategies | Business Wire.” [Online]. Available:
http://www.businesswire.com/news/home/20041025005755/en/PowerEscape-
Launches-Generation-Toolset-Enabling-Power-Optimization. [Accessed: 18-Nov-
2013].

[80] “VTune Analyzer.” [Online]. Available:
http://it.toolbox.com/wiki/index.php/VTune_Analyzer. [Accessed: 18-Nov-2013].

[81] “Intel® Performance Tuning Utility 4.0 Update 5 | Intel® Developer Zone.”
[Online]. Available: http://software.intel.com/en-us/articles/intel-performance-
tuning-utility. [Accessed: 18-Nov-2013].

[82] “Using Intel® Laptop Gaming TDK in Game Application | Intel® Developer Zone.”
[Online]. Available: http://software.intel.com/en-us/articles/using-intel-laptop-
gaming-tdk-in-game-application. [Accessed: 18-Nov-2013].

[83] “Intel® Web APIs.” [Online]. Available:
http://software.intel.com/sites/whatif/webapis/. [Accessed: 18-Nov-2013].

[84] “Using Intel® Power Checker to measure the energy performance of a compute-
intensive application | Intel® Developer Zone.” [Online]. Available:
http://software.intel.com/en-us/articles/using-intel-power-checker-to-measure-
the-energy-performance-of-a-compute-intensive. [Accessed: 18-Nov-2013].

[85] “System Monitor - Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/System_Monitor. [Accessed: 18-Nov-2013].

[86] “PwrTest (Windows Drivers).” [Online]. Available:
http://msdn.microsoft.com/en-
us/library/windows/hardware/ff550682%28v=vs.85%29.aspx. [Accessed: 18-Nov-
2013].

[87] “Open Event Viewer.” [Online]. Available: http://windows.microsoft.com/en-

us/windows7/open-event-viewer. [Accessed: 18-Nov-2013].

63

[88] “Event Tracing: Improve Debugging And Performance Tuning With ETW.”
[Online]. Available: http://msdn.microsoft.com/en-us/magazine/cc163437.aspx#S1.
[Accessed: 18-Nov-2013].

[89] “Intel® PowerInformer | Intel® Developer Zone.” [Online]. Available:
http://software.intel.com/en-us/articles/intel-powerinformer. [Accessed: 18-Nov-
2013].

[90] “PowerTOP v2.0 Release | PowerTOP.” [Online]. Available:
https://01.org/powertop/blogs/ceferron/2012/powertop-v2.0-release. [Accessed:
18-Nov-2013].

[91] L.Brown, K. A. Karasyov, V. Lebedev, A. Starikovskiy, and R. Stanley, “Linux
Laptop Battery Life,” in Proc. of the Linux Symposium, 2006, pp. 127-146.

[92] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for Architectural-
level Power Analysis and Optimizations,” in Proceedings of the 27th Annual
International Symposium on Computer Architecture, New York, NY, USA, 2000, pp.
83-94.

[93] “PowerAPIl by abourdon.” [Online]. Available:
http://abourdon.github.io/powerapi-akka/. [Accessed: 29-Nov-2013].

[94] “SSE Instruction Set.” [Online]. Available:
http://softpixel.com/~cwright/programming/simd/sse.php. [Accessed: 18-Nov-
2013].

[95] “AVX-512 instructions | Intel® Developer Zone.” [Online]. Available:
http://software.intel.com/en-us/blogs/2013/avx-512-instructions. [Accessed: 18-
Nov-2013].

[96] R.N. Mayo and P. Ranganathan, “Energy consumption in mobile devices: why
future systems need requirements—aware energy scale-down,” in Power-Aware
Computer Systems, Springer, 2005, pp. 26—-40.

[97] T.lJohann, M. Dick, E. Kern, and S. Naumann, “Sustainable development,

sustainable software, and sustainable software engineering: An integrated

64

approach,” in Humanities, Science & Engineering Research (SHUSER), 2011
International Symposium on, 2011, pp. 34-39.

[98] A. Noureddine, R. Rouvoy, and L. Seinturier, “A review of middleware
approaches for energy management in distributed environments,” Softw. Pract.
Exp., 2012.

[99] L. M. Hilty and W. Lohmann, “The Five Most Neglected Issues in Green IT,” CEPIS
UPGRADE, vol. 12, no. 4, pp. 12-15, 2011.

[100] L. M. Hilty and W. Lohmann, “An Annotated Bibliography of Conceptual
Frameworks in ICT for Sustainability,” 2013, pp. 288-300.

[101] S. Ruth, “Green it more than a three percent solution?,” Internet Comput. IEEE,
vol. 13, no. 4, pp. 74-78, 2009.

[102] J. W.Smith and |. Sommerville, “Green Cloud: A literature review of Energy-
Aware Computing and Cloud Computing,” 2010.

[103] C.-T. D. Lo and K. Qian, “Green Computing Methodology for Next Generation
Computing Scientists,” 2010, pp. 250-251.

[104] C.S. Ellis, “The case for higher-level power management,” in Hot Topics in
Operating Systems, 1999. Proceedings of the Seventh Workshop on, 1999, pp. 162—
167.

[105] E. Saxe, “Power-Efficient Software,” Queue, vol. 8, no. 1, pp. 10:10-10:17, Jan.
2010.

[106] M. Dick, S. Schade, and P. Smits, Innovations in sharing environmental
observations and informations: proceedings of the 25th Envirolnfo International
Conference, October 5-7, 2011, Ispra, Italy. Aachen: Shaker Verlag, 2011.

[107] “c10.png (PNG Image, 2488 x 1366 pixels) - Scaled (51%).” [Online]. Available:
http://images.anandtech.com/reviews/cpu/intel/Haswell/ULT/c10.png. [Accessed:
25-Nov-2013].

65

7 Appendix

7.1 Annotated Bibliography

Naumann, Dick et al. -2011- The GREENSOFT model: A reference model for green and
sustainable software and its engineering [6]

Naumann and Dick propose the GREENSOFT reference model, which has its focus on the
life cycle of software products aiming to improve it with regard to sustainability. The
model has four parts: “Life Cycle of Software Products”, “Sustainability Criteria and
Metrics”, “Procedure Models”, and “Recommendations and Tools” (Naumann, Dick et
al., 2011, 296). The first two parts explicitly borrow from Life Cycle Analysis, treating
software like a material product that goes through a development (or production)
phase, a use, and an end-of-life phase. The last two parts of the GREENSOFT model aim
at improving the processes in each phase of the life-cycle in order to meet the
sustainability criteria, which are intended to cover all types of ICT impacts (from first to
third order).

Larsson -2011- Energy-efficient software guidelines [8]

Larsson presents guidelines for optimizing software for energy efficiency. These
guidelines are operating system and architecture agnostic and are categorized into 4
main aspects. "Computational efficiency", "Maximize Idle", "Data efficiency", and
"Context/Power aware behavior". After explaining each of these aspects, some tools are
presented, which can help analyze an applications' energy efficiency.

Steigerwald et al. -2007- Creating energy efficient software [40]

Similarly to Larsson's approach, the 3 main categories in this paper are introduced in
order to improve the energy efficiency of software as well. The categories are "(1)
Computational efficiency-methods to reduce energy costs by improving application
performance, (2) Data efficiency-methods reduce energy costs by minimizing data
movement and using the memory hierarchy effectively, and (3) Context awareness-
enabling applications to make intelligent decisions at runtime based on the current state

of the platform". For each of these titles, some methodologies and designs are

66

suggested. In addition, the section Operating Systems (OS) presents how to take
advantage of the resources offered by the OS to save energy. In the last section some
tools and technologies are provided which support creating energy efficient
applications.

Chung -2002- Software approaches for energy efficient system design [29]

In his PhD thesis Chung introduces 2 adaptive Dynamic Power Management (DPM)
techniques, the sliding window technique and the adaptive learning tree technique, and
shows the effectiveness of these by applying them to hard disc drives. Afterwards he
compares these 2 DPM to other DPM policies. At the end Chung describes a "low energy
software optimization framework". This thesis was published in 2002, so that some
information might be outdated.

Siebra et al. -2012- The software perspective for energy-efficient mobile applications
development [7]

This paper discusses several software methods, which could be explored to develop
energy efficient programs. The authors claim that significant energy savings are possible
if energy efficiency of software is considered during the development phase. After the
introduction, the problems of a low-level hardware perspective for energy efficient ICT
Systems are illustrated in section 2. In section 3 various articles/papers about software
aspects of green IT are presented and possible research directions suggested. The
authors suggest, based on this literature, a general approach of 5 steps to develop green
software. (1) Define the operations intended to be investigated, (2) measure the energy
that such operations use, (3) relate these operations to high level development artifacts
(detect which part of software uses how much energy), (4) define refactoring methods
to change these artifacts, considering the energy-saving issue, (5) and finally
test/validate the gains. In section 4 an experiment is presented using this 5-step
methodology. Section 5 presents the adaptations carried out in the previous evaluation
environment. Section 6 compares the methods used in this experiment with other

strategies for measurements. Section 7 concludes this article.

67

Winter and Jelschen -2012- Energy-Efficient Applications [11]

This research agenda discusses software reengineering tools and techniques, like static
and dynamic program analysis, and systematic code transformations like refactoring,
which can be used to obtain more energy efficient applications. "To investigate this
topic a research seminar was held in winter semester 2011 / 2012. From this seminar
three student papers emerged as well as an additional pro-seminar work. The first one is
”Specialized Processors for Energy- Efficient Use of Applications” by Marion Gottschalk,
which focuses on recent processor development for increasing the energy-efficiency of
applications. The second one is "Energy Aware Computing” by Cosmin Pitu, which gives
an overview about development in the field of energy aware computing. The last regular
paper is "Towards an Energy Abstraction Layer” by Mirco Josefiok, which aims at
proposing an abstract energy measurement platform for mobile computing devices. The
pro-seminar work by Michel Falk focuses on evaluating options for energy efficient
development on Android devices." [11]

Mayo and Ranganathan -2005- Energy consumption in mobile devices: why future
systems need requirements-aware energy scale-down [96]

This paper focuses on energy scale-down from different perspectives. Firstly, the
concept of energy scale-down elaborates with the comparison of special-task devices
and general-task devices. Secondly display, wireless, and processor components are
investigated in the concept of energy scale-down optimization. In the first part the
authors conclude that special-task devices reduce energy consumption and are a good
example for developing multi-purpose devices. In the second part general ideas are
given for the three purposes which need to be integrated with the previous studies
voltage and frequency scaling: architectural gating, selective memory usage, and disk
spin-down.

Ranganathan -2010- Recipe for efficiency principles of power-aware computing [4]

In this article Ranganathan suggests general methods (mostly regarding software

engineering aspects) to create power-aware software.

68

9.

10.

11.

12.

Johann et al. -2012- How to measure energy-efficiency of software metrics and
measurement results [20]

This work presents a generic metric to measure software and a white-box method to
apply it in a software engineering process. This method allows programmers to measure
energy consumption of specific parts of software so that programmers are able to
identify a resource-intensive code, which is an advantage compared to black box
methods.

Johann et al. -2011- Sustainable development, sustainable software, and sustainable
software engineering: An integrated approach [97]

The authors make a proposal for a life cycle model which assists in developing green and
sustainable software products. First, the life cycle of a software product is analyzed, and
an approach on how to evolve the standard model for life cycle assessment to a model
that follows sustainable principles is outlined. Then some recommendations are made
for developers, administrators, and users, considering the whole life cycle of software.
At the end two tools are suggested, which help to make software more sustainable.
Dick et al. -2013- Green Software Engineering with Agile Methods [26]

This paper combines the two concepts, which are getting more and more popular: agile
development and sustainable development. Dick at al. "integrates sustainable issues to
the software development process by presenting a generic process model as well as
integrating the Green and Sustainable Software Engineering enhancements into Scrum."
Then two supporting methods are presented: "One integrates energy measurements
into Continuous Integration where the other addresses the calculation of Carbon
Footprints." In the "Related Work" section, there are good references to other studies in
this research area.

Noureddine et al. -2012- A preliminary study of the impact of software engineering on
GreenlT [28]

Noureddine et al. (2012) define Green IT from a software perspective as a “discipline
concerned with the optimization of software solutions with regards to their energy

consumption” (Noureddine et al., 2012, 21). Their focus lies on the environmental

69

13.

14.

15.

impacts caused by software, mainly CO, emissions related to power consumption; the
approach is thus restricted to first-order effects. Conceptually the approach includes
energy models showing the energy use caused by software in hardware resources (in
particular processors, working memory, and hard disks), power monitoring at runtime,
and the use of “power-aware information to adapt applications at runtime based on
energy concerns”. [28]

Noureddine et al. -2012- A review of middleware approaches for energy management
in distributed environments [98]

Noureddine et al. define a comparative taxonomy for middleware approaches targeted
at managing energy. In this study a number of existing approaches are compared and
two major research fields, where contributions are lacking for energy management
middleware, are identified: autonomic approaches, and generic approaches for energy
management middleware platforms. "In Section 2, we review middleware approaches
for energy management in distributed environments, proposing a detailed overview of
the energy management issues in each approach. Section 3 overviews a number of
approaches where a middleware layer is used for energy management of applications
and devices in an intelligent environment. We compare the reviewed middleware
approaches on the basis of an energy taxonomy introduced in Section 4. Finally, we
conclude in Section 5." [98]

Hilty and Lohmann -2011- The Five Most Neglected Issues in Green IT [99]

Hilty and Lohmann (2011) state that many studies have been published focusing on the
energy consumption of ICT or the role of ICT as an enabler of energy efficiency. But this
article argues that this approach is too narrow and a deeper understanding of the
multifaceted relationships between ICT, society, and nature is needed. In this study the
necessity of a broader perspective is emphasized and the five most challenging issues of
Green IT from this perspective are identified.

Hilty and Lohmann -2013- An Annotated Bibliography of Conceptual Frameworks [100]
"This bibliography covers articles published in journals, conference proceedings or as

book chapters that reflect on the role of Information and Communication Technology

70

16.

17.

18.

(ICT) in society’s challenge of developing more sustainable patterns of production and
consumption. The bibliography is focused on contributions presenting conceptual
frameworks intended to structure this interdisciplinary field of research. Some sources
not explicitly presenting a conceptual framework were included for their contribution to
structuring the research field." [100]

Hilty and Coroama -2009- The Role of ICT in Energy Consumption and Energy Efficiency
[21]

This study analyzes the energy consumption of ICT and ICT's potential to induce energy
efficiency and compares them. "The study looks both at today's situation as well as
future opportunities and risks. The study discusses the following research questions:
a.) Estimates of the current energy consumption of ICT,

b.) Prospective future developments in this energy consumption, and

c.) Future energy efficiency potentials induced by ICT in various economic sectors."
The methodology relies on a literature review and expert interviews.

Hilty et al. -2011- Sustainability and ICT — An overview of the field [2]

"This article gives an overview of existing approaches to using Information and
Communication Technology (ICT) in the service of sustainability: Environmental
Informatics, Green ICT, and Sustainable Human-Computer Interaction (HCI). This
consideration leads to the conclusion that a combination of efficiency and sufficiency
strategies is the most effective way to stimulate innovations which will unleash ICT’s
potential to support sustainability."” [2]

Ruth -2009- Green IT — more than a three percent solution [101]

This short article presents different aspects of the Term "Green IT" in a superficial
manner under the following titles and delivers useful numbers:

a. Data centers and servers

b. PC's monitors and workstations

c. Software

d. Telecommuting

e. Metrics

71

19.

20.

21.

This article contains some helpful information, showing that Green IT is getting more
and more important every day and "greening the ICT" is becoming a global tendency. It
is also possible to find some useful statistics (i.e. examples of energy savings by data
centers), which illustrate how important energy savings can be. In addition some
"further readings" are suggested.

Grosskop and Visser -2013- Identification of Application-level Energy Optimizations
[32]

This article focuses on application level optimizations and argues that optimizations on
this level have the best chance of being effective. The importance of visibility of
applications' energy efficiency is emphasized and a method for identifying energy-
efficiency optimizations in software applications is introduced. "In this article we
present the Green Software Scan, an approach to effectively model software application
energy consumption and to arrive at recommendations for optimization." [32] This
method was tested on two industrial cases where such Green Software Scans were
applied to an e-government and a mobile banking application. The result was that
"significant energy savings can be realized with targeted modifications in software code,
architecture, or configuration, that development of energy-efficient applications
requires attention to detail throughout the development process, and that a close
collaboration between operations and development is one of the main success factors
for energy-efficient applications." [32]

Brown and Reams -2010- Toward energy-efficient computing [17]

"This article suggests an overall approach to energy efficiency in computing systems. It
proposes the implementation of energy-optimization mechanisms within systems
software, equipped with a power model for the system’s hardware and informed by
applications that suggest resource-provisioning adjustments so that they can achieve
their required throughput levels and/or completion deadlines." [17]

Sampson et al. -2011- EnerJ approximate data types for safe and general low-power
computation [33]

"Recent research has begun to explore energy-accuracy trade-offs in general-purpose

72

22.

23.

programs." [33] Based on the observation that systems spend a significant amount of
energy guaranteeing correctness, this study proposes that a system can save energy by
exposing faults to the application, because some parts of applications can also be
approximated, without causing any serious errors. "While approximate computation can
save a significant amount of energy, distinguishing between the critical and non-critical
portions of a program is difficult. In this study the EnerlJ type system is presented.
[...]Our type system provides a general way of using approximation: we can use
approximate storage by mapping data to cheaper memory, cache, and registers; we can
use approximate operations by generating code with cheaper, approximate instructions;
and we can use method overloading and class parameterization to enable algorithmic
approximation."

Arnout -2005- Data-Efficient Software and Memory Architectures are Essential for
Higher Performance and Lower Power [34]

Arnout presents tools to analyze the effects of C code running against a model of the
target memory system. He defines general characteristics of data efficient software and
compares data efficiency and computational efficiency. Then he introduces a
methodology with a concrete example for improving data efficiency of systems.
"Algorithm developers, system architects and embedded software engineers can each
use their own expertise to improve data efficiency and make cost/power/performance
trade-offs without changing their familiar design practices. The individual contributions
of software developers, system architects and device optimization experts all lead to
systems that are more data efficient, perform faster, consume less power, run cooler
and are more cost effective."

Smith and Sommerville -2010- Green Cloud — A literature review of Energy-Aware
Computing and Cloud Computing [102]

"Smith and Sommerville have undertaken a systematic literature review of recent work
in the areas of Cloud Computing and Energy Aware Computing in an effort to
understand how Large Scale Complex IT systems consume electricity and what steps

may be taken to improve their efficiency." [102]

73

24,

25.

26.

27.

Albers -2010- Energy-efficient algorithms [35]

This article was summarized well in its introduction part:

"This article focuses on the system and device level: How can we minimize energy
consumption in a single computational device? We first study power-down mechanisms
that conserve energy by transitioning a device into low-power standby or sleep modes.
Then we address dynamic speed scaling in variable-speed processors. This relatively new
technique saves energy by utilizing the full speed/frequency spectrum of a processor
and applying low speeds whenever possible. Finally, we consider some optimization
problems in wireless networks from an energy savings perspective." [35]

Amsel et al. -2011- Toward sustainable software engineering: NIER track [72]

The aim of this study is to "raise awareness that similar software systems can have quite
different levels of energy consumption, and therefore different environmental
footprints, and that these and other environmental impacts are an important part of the
software engineering field. [...] First, we investigated the extent to which users thought
about the environmental impact of their software usage. Second, we created a tool
called GreenTracker, which measures the energy consumption of software in order to
raise awareness about the environmental impact of software usage. Finally, we explored
the indirect environmental effects of software in order to understand how software
affects sustainability beyond its own power consumption."” [72]

Shore -2009- Developing Power-Efficient Software Systems on ARM Platforms [10]
This study mainly focuses on the cost of badly placed memory accesses and also
presents other aspects of energy efficiency of software systems such as computational
efficiency, data efficiency, algorithm efficiency, efficient use of CPU, and impacts of
operating systems. For each of these issues a general overview is provided.

Mahmoud and Ahmad -2013- A Green Model for Sustainable Software Engineering
[70]

Mahmoud and Ahmad focus on the software engineering process and introduce a
software model to develop green software. They further present a brief literature

overview in the field of green IT in the Introduction part. "We developed a green

74

28.

29.

30.

software model with two levels. The first level proposes a new green software
engineering process we designed based upon the development processes of sequential,
iterative, and agile methods. We further also identify how each software engineering
stage can be environmentally sustainable through green processes and/or green
guidelines thus ending up with a green software product, and finally we include the
metrics we consider relevant to measure the greenness of each software stage. The
second level is composed of approaches taken by software itself to contribute to green
computing. We categorize these different approaches and concepts into five main
categories. Finally, we relate both levels to each other to indicate how software tools
built to promote green computing and software concepts can be used and referred to in
the stages of a software engineering process to help output a green and sustainable
software product and have a green development process." [70]

Lo and Qian -2010- Green Computing Methodology for Next Generation Computing
Scientists [103]

Lo and Qian emphasize the importance of greening ICT Systems and show their huge
energy saving potential exemplarily. They also emphasize that greening IT is not trivial
and illustrate its complexity with 2 sample applications. The paper shows the lack of
existing "green software engineering practices" and elucidates the necessity of those
rather than suggesting any concrete solutions.

Penzenstadler -2013- Towards a Definition of Sustainability in and for Software
Engineering [71]

This paper provides an overview of the different aspects of software engineering
regarding sustainability."This paper presents a definition of the aspects of sustainability
in and for software engineering. Thereby, for software engineering is how to make
software engineering itself more sustainable and in software engineering is how we
improve the sustainability of the systems we develop."[71]

Murugesan -2008- Harnessing green IT Principles and practices [14]

The Author suggests some general methodologies for reducing power consumption of IT

systems as follows:

75

31.

32.

33.

1.) Enabling power management features

2.) Turning off the system when not in use (Dynamic power management)

3.) Using screensavers

4.) Using thin-client computers

5.) Greening data centers

6.) Energy conservation

7.) Eco-friendly design

8.) Virtualization
This paper provides a good overview of the field regarding many different aspects and
presents important research areas. It is useful for understanding the term Green IT in
general, but details regarding each aspect mentioned will have to be accessed
elsewhere.
Kern et al. -2013- Green Software and Green Software Engineering — Definitions,
Measurements, and Quality Aspects [23]
This paper discusses a classification of green software and green software engineering
and provides guidelines for measuring energy efficiency of a software. The authors
propose a quality model for green and sustainable software, outlining which metrics
should be considered for energy-efficiency.
Barroso and Holzle -2007- The Case for Energy-Proportional Computing [36]
This paper identifies the importance of energy proportionality in design purposes in the
name of server space motivations. It is a comparative study on server power usage and
energy efficiency in varying utilization levels. CPU contribution to total server power is
comparatively analyzed.
Ellis -1999- The case for higher-level power management [104]
This is an early study from 1999, but Ellis has foreseen the most important points
correctly. This study emphasizes the importance of software aspects for energy
optimization and illustrates it by using a concrete example. It is also emphasized that

there are no adequate and sufficient tools and mechanisms for power management.

76

34.

35.

After 14 years there is still a lack of appropriate tools and methodologies in order to
measure and manage energy efficiency.

Saxe -2010- Power-Efficient Software [105]

Saxe classifies software into two familiar ecosystem roles: resource managers
(producers) and resource requesters (consumers). Then he examines how each can
contribute to (or undermine) overall system efficiency. [105] Some good and bad
software engineering practices are presented here with concrete examples, which
makes it easier to understand the role of software for overall efficiency of a system. At
the end of the article the characteristics of efficient software regarding design, CPU
utilization, memory utilization, and 1/0 utilization are provided.

Govindasamy and Joseph K -2011- Optimization of Operating Systems towards Green
Computing [51]

This paper focuses mainly on operating system optimizations and also outlines briefly
some of the other important aspects through which energy efficiency can be pursued in
computers. This study also provides useful advice for users to aid green computing.
Operating system optimizations are analyzed elaborately and classified into the
following categories:

1. Virtualization

2. Terminal servers

Computer multitasking

3. Shared memory

4. Power management
5. Storage Management
6. Video card

7. Display

8.

9.

Parallel Processing in Computers
10. Parallel computing
11. Amdahl's law and Gustafson's law

12. Software Pipeline

77

36. Vereecken et al. -2010- Overall ICT footprint and green communication technologies
[19]
In this paper the authors give an overview of the environmental issues related to
communication technologies and they present an estimation of the overall ICT footprint.
Additionally they present some approaches on how to reduce this footprint and how ICT
can assist in other sectors reducing their footprint.

37. Dick et al. -2011- Measurement and Rating of Software Induced Energy Consumption
of Desktop PCs and Servers [106]
Dick et al. provide a black box method to measure software-induced energy
consumption of stand-alone applications on desktop computers as well as interactive
transaction-based applications on servers. As a proof of concept, two exemplary
measurements are described, showing the influence of software use on power
consumption.

38. Belady et al. -2008- Center Power Efficiency Metrics PUE and DCIE
In this paper tow metrics are defined in order to measure efficiency of data centers. The
first one is called "Power Usage Effectiveness (PUE)", the second one "Data Center
Infrastructure Efficiency (DCIE)". The PUE is defined as: PUE = Total Facility Power/IT
Equipment Power (1), and its reciprocal, the DCIE, is defined as: DCIiE = 1/PUE = IT
Equipment Power/Total Facility Power x 100%. (2)
The authors also introduce a new metric to measure the efficiency of the components of
a data center as a future work, which could be helpful to identify the bottlenecks. This
way it would be possible to focus on these critical points with the potential of
improvements.

39. Li and Absar -1997- Minimizing Memory Access By Improving Register Usage Through
High-level Transformations
Li and Absar propose a method to reduce memory access related power consumption
by reducing the number of data transfers between processor and memory, or between

a higher (closer to processor) level of memory and a memory at a lower level using

78

source program transformation. They confirm their method by illustrating experimental

results on a number of benchmarks.

7.2 White Box Measurement Example

Johann et al. present the following experiment using white-box measuring: [20] "As a
second example we chose a web-based information system. Usually there are parts such
as browser, web-server and database involved. Therefore, we chose a client/server
application, which is used in productive operations at the Environmental Campus
Birkenfeld. Its purpose is to collect, process and visualize consumption data of the
campus buildings (like: energy, water, etc.). The server stores the data in a database
that is managed by a web interface. For demonstration purposes only a cut out of the
software is used. One of its capabilities is to visualize the consumption data as a line

graph over a time period. The charts are dynamically generated for each request.

When looking at the description of the chart feature, a useful metric is:
Joules / delivered charts. This metric can be expanded to other parts of the chart
generation, e.g. database queries, the image generation, and the complete
request/response cycle. We assume that this is a good way to represent the energy
consumption of this part of the software. It must be kept in mind that there is no ‘one
size fits all’ metric and applications can be split up into more or less fine-grained

modules, which have their own metrics.

The load for the measurement will be simulated and is generated by a fixed number of
users, which send multiple requests to the server. Therefore, the source code must be
instrumented at the point where the request comes in and where the response goes
out. The counters must increase with an incoming request and decrease when the
response is sent. Thus, we know how many requests are currently in progress. In

addition to the two systems described in the set-up, one can use a third system that

79

generates the load. Here, we will try to demonstrate how the energy efficiency changes

when serving different amount of users.

In a first testrun a load of 15 users was generated. The result is shown in figure 5. After
the ramp-up period the users that are waiting for their response (blue) even out at
approximately six users. In this phase the average power rating of the server is about
110 Watts (green), while simultaneously serving 15 users with a waiting time way under
one second. In one hour the system with 15 simultaneous users consumes

110 Wh = 396k].

The same measurement is performed with 25 simultaneous served users, whereas the
average queued users is approximately 17, which means that users have to wait a little
bit longer than in the measurement with 15 users, but still get their response under one
second. The energy consumed is also 110 Watts and users can still be served at a
satisfactory time. As one can see, the claimed response time plays a key role: the higher

the demand for fast response, the lower is the energy efficiency." [20]

7.3 Advanced Configuration and Power Interface (ACPI) Power States

The ACPI specification defines the four Global "Gx" states and six Sleep "Sx" states for an
ACPIl-compatible computer-system:[56][58]
* GO (S0): Working. "Awaymode" is a subset of SO, where monitor is off but
background tasks are running.
* (1, Sleeping. Divided into four states, S1 through S4:

o S1: All the processor caches are flushed, and the CPU(s) stops executing
instructions. The power to the CPU(s) and RAM is maintained. Devices
that do not indicate they must remain on, may be powered off.

o S2: CPU powered off. Dirty cache is flushed to RAM.

o S3: Commonly referred to as Standby, Sleep, or Suspend to RAM (STR).

RAM remains powered.

80

o S4: Hibernation or Suspend to Disk. All content of the main memory is

saved to non-volatile memory such as a hard drive, and is powered down.

* G2 (S5), Soft Off: G2/S5 is almost the same as G3 Mechanical Off, except that the

PSU still supplies power, at a minimum, to the power button to allow return to

SO. A full reboot is required. No previous content is retained. Other components

may remain powered so the computer can "wake" on input from the keyboard,
clock, modem, LAN, or USB device.

* G3, Mechanical Off: The computer's power has been totally removed via a

mechanical switch (as on the rear of a PSU). The power cord can be removed and

the system is safe for disassembly (typically, only the real-time clock continues to

run - using its own small battery).

ACPI defines the device-dependent device states DO-D3:[56]
* DO Fully On is the operating state.
* D1 and D2 are intermediate power-states whose definition varies by device.
* D3 Off has the device powered off and unresponsive to its bus.
o D3 Hot & Cold: The D3 state is further divided into D3 Hot (has aux
power), and D3 Cold (no power provided). A device in D3 Hot state can

assert power management requests to transition to higher power states.

ACPI defines the CPU power states CO-C3 as follows:[56]

* (COis the operating state.

* (1 (often known as Halt) is a state where the processor is not executing
instructions, but can return to an executing state essentially instantaneously. All
ACPI-conformant processors must support this power state. Some processors,
such as the Pentium 4, also support an Enhanced C1 state (C1E or Enhanced Halt

State) for lower power consumption.[11]

81

C2 (often known as Stop-Clock) is a state where the processor maintains all
software-visible state, but may take longer to wake up. This processor state is
optional.

C3 (often known as Sleep) is a state where the processor does not need to keep
its cache coherent, but maintains other state. Some processors have variations
on the C3 state (Deep Sleep, Deeper Sleep, etc.) that differ in how long it takes
to wake the processor. This processor state is optional.

Manufacturers for some processors define additional states. For example, Intel's
Haswell platform has states up to C10, where it distinguishes core states and

package states

Processor Package and Core C-States

PACKAGE STATE

CORE STATE

—» One or more cores or GT executing instructions

- All cores and GT in C3 or deeper, L3 may be flushed and turned off, memory in self refresh, some Uncore
clocks stopped, some Uncore voltages reduced

—» All cores and GT in C6 or deeper, L3 may be flushed and turned off, memory in self refresh, all Uncore
clocks stopped, some Uncore voltages reduced

—» Package C6 + L3 flushed and turned off, additional Uncore voltages reduced
—» Package C7 + most Uncore voltages reduced to OV

-9 Package C8 + VR12.6 in low power state

—» Package C9 + VR12.6 turned off

Core behaves the same as Core C6 state
All core clocks are stopped, core state saved and voltage reduce to OV

Cores flush L1/L2 into L3, all core clocks are stopped

¥ Core halted, most core clocks stopped and voltage reduced to Pn

» Core halted, most core clocks stopped

» Core is executing code

- Possible combination of core/package states

- Impossible combination of core/package states

Note: The “core state” relates to the core which is in the HIGHEST power state in the package (most active)

Figure 14: Processor package and Core C-States [107]

82

