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Abstract

Newly developed materials such as engineered naeoiala are produced in increasing amounts andieph a
growing number of products. Once released to ther@mment, they can pose a hazard to ecosystemsamein
health. To assess potential risks, the exposutkeomaterial to humans and the environment ha® tdebermined.
For many materials such as engineered nanomatexiglsantitative measurement of environmental cotnagons is
not feasible. Material flow models can be used etednine these concentrations indirectly by préajctmaterial
flows in the environment. Several modelling applreesccan be applied to represent existing knowledigeait the
flows of materials into and between environmentatim or compartments and to consider the unceytaimd varia-
bility of the input parameters. In this study weakesate four existing approaches with regard tortbapabilities for
indirect exposure assessment, focusing on thelityatm treat uncertainty. We first explain how \peeselected the
four most promising modelling approaches: matdt@l analysis, system dynamics, material flow netvgp and
probabilistic material flow analysis. We then defia set of evaluation criteria based on the remérgs of envi-
ronmental exposure assessment and develop a sedmitample system that is designed to test thiteeia. Based
on the comparative modelling and implementatiothefexample system, we discuss the capabilitiedianiigtions
of the approaches and indicate what is missin@frgliable environmental exposure prediction usirgerial flow
modelling.

1. Introduction

A main issue in the risk assessment of new subssasiech as engineered nanomaterials (ENM) is to de-
termine the exposure of humans and ecosystems tuttstances. An understanding of the environmental
fate of a chemical product leads to knowledge aletial environmental concentrations, exposures and
potential risks (MacLeod et al. 2010). For manylygahts, a direct measurement of environmental con-
centrations is not feasible and so the environnhdata cannot be determined directly. Material flow
modeling holds the opportunity for an indirect asseent (Klaine et al. 2012). Instead of a diresess-
ment of environmental concentrations, material dfenrs between environmental compartments are re-
garded. This enables an estimation of material matations in the respective compartment and so the
prediction of environmental concentrations basedstandard sizes for environmental compartments
(ECHA 2010).

Even though material flow modeling provides meamrsenvironmental exposure assessments, the in-
formative value is usually limited by incompleteckviedge about some system parameters. This uncer-
tainty results from variances of the actual flomsl ¢he partial or total lack of knowledge aboutirtiieie
behavior. (Paté-Cornell 1996; Refsgaard et al. 20@7obtain reliable results, it is essential tmgider
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these uncertainties, represent them explicithhaftow model and process them through the modatgu
an adequate simulation method.

Another important issue is that temporal delaysukhtve adequately represented in the model. The
transfer of a pollutant from the point where itedeased to the environment to the area whereatlyi ac-
cumulates is usually not immediate. Often, a maltésibound for a long time in a compartment before
is further transferred through the system and lfirecumulates. To investigate such system behayger
propriately, a modeling approach must be able poeent a time dynamic behavior and delayed materia
release from local stocks.

A good example for the use of material flow modglior an environmental exposure assessment is
found at Mueller/Nowack (2008). These authors usedethodology related to material flow analysis
(MFA) to assess environmental concentrations oéis\ENM. Gottschalk et al. (2010) extended thsla
sical MFA approach to probabilistic material flowadysis (PFMA) by the introduction of Bayesian istat
tics to represent and process uncertain knowletigatasystem parameters. Besides MFA and PMFA,
System Dynamics (SD) and Material Flow Networks (\WiFappear to be suitable for a comprehensive
exposure assessment using material flow modeling.

In this study we provide a detailed look on severakt promising material flow modeling approaches.
In particular, we will highlight the capabilitiesia@ limitations of each modeling approach to represe-
certain knowledge about system parameters andd@pendent release behavior from local stocks.

For our investigation we first preselected the nppemising modeling approaches. Then, we developed
an idealized example system that comprises the orastal aspects of exposure assessment modeling.
Finally, we implemented the example system usirgh ed the modeling approaches and based on that
evaluated the specific capabilities and limitatiohthe approaches.

1.1 Selection of material flow modeling approaches

The selection of the approaches to study was basédo principles: The expected capability of an ap
proach to represent a system of material flowsréaalipt environmental concentrations and second, the
coverage of a large variety underlying modeling aimulation mechanisms. That way, four approaches
were chosen for further examination.

System Dynamicsvas developed to represent dynamic systems asfamesterial stocks and flows, in-
terconnected by information flows. The approachvedl a quasi-continuous simulation by numerical-inte
gration with Euler- or Runge-Kutta-methods (Morrist991). The original approach was developed by
Forrester (1961). There are several software taadélable to support System Dynamics modeling and
simulation such as DYNAMO compilers and graphicaldeling tools such as Stella. We used VeAsim
for the exemplary model.

Material Flow Networks are based on Petri Nets. They are mainly useddouat material flows in
operational processes, in particular Life Cycleesssnent. Based on the production of goods the depen
ent substance and energy flows are determined.appeoach was developed by Mdéller (2000) and ex-
tended by Wohlgemuth (2005) and is supported bythphical modeling tool Umbertdt was used for
the implementation of the example.

Material Flow Analysis (MFA) is an approach to model material flows agqueoriented transfer of a
material between system entities (Brunner/Rechbezg@4). The main aspects of MFA are included in

3 Vensim PLE Plus, Computer Program, V.6 Hitp://vensim.com/accessed: March 22 2013.
4 Umberto, Computer prograrttp://www.umberto.de/enaccessed: March 21, 2013.
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the software tool STAN with which we performed the exemplary implementatThe approach was de-
veloped by Baccini/Brunner (1991).

Probabilistic Material Flow Analysis (PMFA) is a modeling approach that was specificd#signed
for environmental exposure modeling (Gottschalklef010). It extends the classical MFA approach by
Bayesian statistics. It describes a stable stadesiystem of dependent material flows under sutigtam-
certainties. There is no software program direictiglementing the approach. Instead the langudgerR
statistical computing and graphics and some packtnge extend it provide the modeling methods.

1.2 Developing evaluation criteria

The criteria to evaluate the different modellingpagaches are chosen to reflect crucial requiremaints
material flow modelling to predict environmentalncentrations. Of particular interest are the waw ho
uncertain knowledge is represented and processgdanw complex and time dependent release from
stock is modelled.

The first evaluation criterion regards the capabitb represent and procesgEomplete knowledge.
Usually, the existing knowledge about the actudldveor of a specific pollutant released to the e
ment is not complete. There is uncertainty abautetease, about the flow rates between the compart
ments of the system, and about the accumulatiordagrhdation rates of the material. The Bayesian co
cept of probability enables the full representatddruncertain knowledge as different assumptionth wi
different degrees of credibility. (Cullen/Frey 199hus, an adequate system representation in tlelmo
and meaningful simulation results should displagautain information as Bayesian probability distrib
tion. Depending on the knowledge about the protessneeds to be examined and the way the infor-
mation was gathered, usually they are availabtbesretical or empirical distribution functions. Weal-
uated the modeling approaches including both vewian

The second evaluation criterion regards st@sid their abilityto represent a dynamic system behavior
over time. Usually, the emergence of environmectatamination from a released pollutant is notran i
mediate process. For instance, a pollutant cancb@din a landfill for several years before it adiy
reaches ground water. The approach should be abiledl with such a delayed release. The modeler
should be able to consider a rate of the total ainstored, a time delay, or external triggers ageiva-
ble factors for a release from a local stock.

Additional attention is paid on the modeling anthdiation process, in particular how they are per-
formed with each approach and what support andagailthe respective software tools provide.

2. Definition of the example system

The aim of this study is to evaluate the modellpgroaches with regard to the previously definée-cr
ria. Therefore, an idealized example system wagldped for comparative implementation. The proper-
ties of the system to be modelled are derived fifoenevaluation criteria. Thus, the fulfiiment o€rdteri-
on can be assessed by the adequacy with whichotinesponding aspect of the system could be imple-
mented.

Beside the requirement to comprise the charadtedspects of flows of pollutants in the environmen
the system should be kept simple in size to avoiteuessary modelling effort and a concealing ofitie
tual modelling and simulation principles of the eggxrh. The basic system consists of several compart

5 STAN, subSTance flow ANalysis, computer program2\b.107 2http://www.stan2web.netaccessed: March 21, 2013.
® R, Programming languagettp://www.r-project.org/accessed: April 7, 2013.
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ments, a source releasing material, relative floatsveen the compartments, material accumulatiahaan
stock with a time delayed release of material (Fédl).

( So w—b Compartment 1
N p

Intermediate
Stock

) 4
\ 4

Compartment 2

Figure 1
Basic Structure of the Example System

For the idealized example we chose the followinecHr parameterisation:

« Material Release: It was assumed that the knowledge about the antasdrial release is incom-
plete. We made the assumption of an empiricalidigion function. A periodic material release
from source of 500 t/y is assumed with the liketiiaof 0.2, 100 t/y with a likelihood of 0.5 and
1500 t/y with 0.3. The periodic release is consgntt should not be varied between the periods.

* Flows: The knowledge about the allocation of the mategdased from source leads to a normal
distribution. Each period 0.6 of the total materi@leased are assumed to be transferred to the “In-
termediate stock” with a standard deviation of @is value is assumed to have a variant behav-
iour over time. The remaining part of the mateisatransferred to “Compartment 1”.

« Delayed release from stockAll material transferred to the “Intermediate Stbremains there for
2 years. Afterwards the material is transferretCtompartment 2” with a rate of 0.5 per year.
The investigation period of the system is 10 years.

3. Implementing the four models of the example system

This section describes the implementation of thelet®using each of the four modelling approaches.
Special attention is paid to the modelling and $ation process and the general procedure, how @nd t
what extent the specific aspects could be impleeteahd general particularities observed.

3.1 System Dynamics using Vensim

The System Dynamics approach assumed continuoow)(fbrocesses. The underlying mathematical
model represents these processes as a set oedifldrequations. To simulate the model the eqnatys-
tem has to be solved for the time instants of @#erin general differential equations are not dielly
solvable, which is the reason why numerical methas applied. For our implementation we chose
Runge-Kutta 4 with a basic calculation time step.dR5 of the basic time unit 1 year.

In the first step of the implementation of the eprmsystem, we had to define the static model struc
ture. All model components had to be placed anchected on a canvas by drag and drop. First the thre
compartments of the example system are placédcasl s (stocks). They can change their values con-
stantly over time. Flows among the stocks or betwstecks and the system’s environment are displayed
as uni- or bidirectiondRat e pipes. Factors that influence the behavior of metdow amounts and rates
were modeled a8uxi | i ari es. They represent the information flow of the systémxiliaries do not
keep information between the calculation steps.eddpncies in the model are visually defined asagro
between the model variables.
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Structure of the Vensim Model

After the model was composed of its static elem#rgsactual behavior of the components was applied
to the model components as mathematical functibimsLevel s were set with 0 as initial value, because
our example system starts with empty stocks. Tlaagh rates of stocked material in thevel s are de-
scribed as the sum of the inflows rates stock mthessum of the outflow rates. The values of flow
Rat es andAuxi | i ari es are displayed by a single value that is eitheistamt or a function of values
of other variables that is determined in each datmn step. During simulation, the calculationpstere
iterated, each calculating the periodic flows dmehtupdating the system state.

Vensim provides an infrastructure to perform Mo@&edo simulation to examine model behavior under
uncertainty. It allows the modeler to assign prdligldistributions to model parameters to reprasae
uncertainty about its true value and evaluate tbdehbehavior over a large set of simulation rumsur
example we varied theyst em i nf | ow parameter between the simulation runs. To exphesempiri-
cal probability distribution we first generated @ifarm distribution and had to map it in a secotehgo
the specific distribution using laookup function. For the transfer coefficient that sptie total system
inflow into a flow toConpar t ment 1 andl nt er medi at e St ock the parameter is varied between
all periods. The intermediate stock compartment wgdemented by splitting it up into twioevel vari-
ables. The first one represents the stocked mhtkagis bound for the first two periods. Afteete peri-
ods the material is transferred to the sedoadel variable. The flow rate is defined using the inflto
the previous compartment and axed del ay function. The actual material stored in the intediate

=@ "B Intermeditate Stock [total materiall: Sensitivity Graph Percentiles al x|
Monte-Carlo Run

50%  75% [ 95% [ 100%
"Intermeditate Stock (total material)"
5,000

N
N
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Time EYear)
Figure 3
Evaluation of material ilntermediate Stoc over time
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stock compartment is displayed byAmxi | i ar y that sums up the material from both stocks.
Simulation results can be displayed as tables &agtams for all model components. Vensim provides
functions for data import and export.

3.2 Material Flow Networks using Umberto

In Material Flow Networks (MFN) the static structuwf a model is a Petri net (for an introductiorPiri
nets see Peterson 1981). It consists of placesthdtmaterials, and transitions that connect twmore
places. In MFN, the transitions define materiahsfars as a transformation rule of inputs to owtplrt
particular, they specify all the material types asldtive amounts.

To implement the example system we first definedttital simulation time period as 10 single periods
of one calendar year. Then we mode®mxr ce, Conpart ment 1, Conpartnent 2 and thel n-
ternedi ate Stock as places. In Umberto, places are suitable toustdbe amounts of stored mate-
rial and their changes over the whole simulateibge’ll flows between the compartments were imple-
mented as transitions. In accordance with the {Aetrhotation th&our ce compartment was designed as
“source” place an€onpart ment 1 and2 as sinks. Flows from one place were aggregatetéaran-
sition that holds the actual algorithm of the mialdransfer. In the case of Transition 1 (Figuyet&om-
prises the two transfer coefficients of the flowghe two subsequent compartments.

Umberto provides a basic support for Monte-Canhousation with the most commonly used mathemat-
ical distribution functions. So the split flow frothesour ce to conpar t nent 1 and the nt er ne-

di ate stock could in general be assigned with a normal distiilm for the transfer coefficients.
However, the implementation was not really strdigfard because probability distributions cannot be
directly assigned to a variable in a transition liane to be declared globally as “net parameted’tagn
introduced in a second step into the intended mpaemeter. The implementation of the periodic niate
al release as empirical distribution was not sujgobby Umberto. Instead a constant value was Udes.
application of Monte-Carlo simulation in Umbertdirmsited to a single period. The variance of mopie!
rameters is processed only for the current pefiedthe following period only the average value loé t
sample is transferred.

The time delayed release of material from the mgstiate stock compartment could not be implement-
ed as an internal model logic. Umberto was nottboilmodel time dynamic behavior. To implement the
model nonetheless, the release friomt er medi at e St ock was calculated manually and the flow be-
tweenl nt er redi at e st ock andConpart nent 2 parameterized accordingly.

The underlying model of a material flow networlaitinear equation system which is determined by the
transfer rules of the model. Using Monte-Carlo datian it becomes a probabilistic model. Umberta-en
bles a representation of results as Sankey diagfantbe flows of one period. Results of Monte-@arl
simulation can also be displayed in the form of dd@arts.

N
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P3: Compartment 1

]| | — ]

et
P2: Intermediatat Stock = 'T2: Auxiliary Transition 2 P4: Compartment 2

P1: Spurce T1: Auxiliary Transition 1

Figure 3
Implementation of the Example System using Umberto
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3.3 Material Flow Analysis using STAN

In MFA a system of dependent flows is represented bet of processes and the flows of substanaks an
goods between them. System changes over more thartime period are represented as changes in
stocked material which is accounted for over thgesimulation time.

In the first step of the modelling process we haddtermine some global settings. We chose a period
length of one year and a total number of 10 peri@dgear was also chosen as the temporal refenanite
and the finest granularity. In the second stepntbelel structure was defined using a drag and drgp-i
face. The compartments of the example systems medeled as processdgsnpart nent 1 and2
and thel medi at e St ock were modeled as stocks. Furthermore, the matéomb were defined.
There are flows between processes and in- andams-bver the system border.

Finally, the model was parameterized, by assigeperific values for flows and dependencies. We as-
signed the inflow to the model & ow 1. The transfer coefficients that split the totdlaw to a flow to
Compartnment 1 andlnternedi ate Stock are assigned in ther oducti on Process. As
Umberto, STAN does not provide means to repredentcomplex and time delayed release behaviour
from thel nt er mredi at e St ock. Therefore the time dependent release from the &r nedi at e
St ock” of the example system could not be defined as glathe model. The amounts were calculated
manually and used for parameterizifigow 4.

The underlying mathematical model is a systemr&dr equations. With the given parameterisation the
equation system is determined. STAN can calculhtremaining model variables as dependent values. |
this approach, the representation and processingadrtainty in terms of Bayesian statistics anchide
Carlo simulation in not feasible. Instead STAN daalihe handling of uncertainty as standard denati
of a normal distribution. It supports the concegfterror propagation and equalization calculughimex-
ample implementation, uncertainty was modeled usiagdard uncertainty.

E Compartment|
1 Flows [t/a]
(DIRCT000.00:200.00 9 Produclion e 756.00+50.00 Stocks [
Flow1 roeess Flow 2 4.000,004
' 252,98
500,00%120,00

Flow 3 Intermediate [Compartment| !
Stock 2

o] IEEBI0T200>
1.800, 4,200,004

Figure 4
Implementation of the Example System using

3.4 Probabilistic Material Flow Analysis in R

Probabilistic material flow analysis (PMFA) extentte basic approach of material flow analysis. In
PMFA incomplete knowledge is expressed as a sas@imptions with assigned Bayesian probabilities. |
allows calculating equilibrium for a set of intetiag flows and representing existing uncertaintesut
the actual values of the original system using Meabarlo simulation.

The example implementations in system dynamicsenatflow networks an MFA were each per-
formed using a specific software tool. Currenthgre is no software tool that specifically suppthnes de-
sign and use of PMFA models. The model it is irdiegplemented in the programming language R.

In the first step of the modeling process all dej@sties between system variables were transfanred i
to a mathematical equation system (Figure 5), sspring the static structure of the system. Inllave
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ing step, uncertain knowledge is displayed in tredeh Bayesian probability distributions are apglie
considering all knowledge about the system dimerssitn this case we created an empirical probgbilit
distribution for the material release fror8dur ce” that regards all assumptions made and theiritikel
hood to be true. The transfer coefficients for fibes between Sour ce” and “Conpart ment 1” and
“Source”to“I nternmedi ate St ock” are displayed by a normal distribution as givenhie example
system. PMFA is not intended to model time dynabg&bavior. For this reason the “Intermediate Stock”
was not included in the implementation. Instead, ittflowing material is directly transferred t€dm
partnent 2"

6Comp 1 = totallnput * TCppcomp1

6Comp 2 = totallnput * (1 — TCrncomp1)

Figure 5
Structure of the Example System as Mathematicabions

The model behavior is produced using Monte-Canhoutation. Therefore, a large set of simulation
runs is performed and evaluated with statisticahods. In each simulation run the model parameters
set with a random value coming from the assignedbatrility distribution. Then the equation system of
the model is solved to determine the values ofaiiables.

The use of the programming language R instead spexialized tool demands a larger previous
knowledge from the modeler about the modeling apgneand the language R. Also, there is no specific
modeling guidance by the tool and no predefinedalization. However, as a language for statisticlca
lation and visualization, R provides a large ranfjpossibilities to visualize simulation resultsgiire 6,
for instance, displays a plot the simulation resak probability densities, mean values, and dearftr
the stocked material of Compartment 1 and 2.

Furthermore, aspects that are not part of the PEMA approach can be represented making use of the
general features of the language. This also enablextension of the existing PMFA approach toesyst
aspects that are not included yet such as the elafrthe system state over time.

—— Compartment 1

*  mean

25/.75 quantiles
Compartment 2
mean

25/.75 quantiles

probability density

0 500 1000 1500

value in tons

Figure 6
Modeling in PMFA (using R), probability densitiesstocked material amounts after one period

4. Discussion

The aim of this study was to evaluate the cap#sliof existing material flow modelling approacties
assessing environmental concentrations. Thereforedealized example system was developed that in-
cludes the most crucial issues of environmental fisocesses. This example system was implemented
using several material flow modelling approachdse €valuation of each of the implementations of the
example system reveals a ranking of the capakildfecach single approach to perform the entireahod
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ling process (see Table 1). While classical MFA araderial flow networks were not able to model most
of the system’s aspects, system dynamics and PMieAved greater capabilities. Altogether, Vensim
could implement the example most adequately, ojdsdibwed by PMFA.

Criterion Material Flow Material Flow Net- | System Dynamics| Probabilistic Materi-
Analysis (STAN) works (Umberto) (Vensim) al Flow Analysis (R)
Empirical distribution 000 000 oo oo
as model input
Normal distribution for 000 000 ceo coe
transfer coefficient

Time delayed release 000 000 ceo 000

from stock
oo Modelling possiblcand well supporte
000 Modelling possible, but ncsupported; not in the foc of the modelling approa
e 00 Modelling partly possible or only with much effpriot in line with the modelling approach
000 Modelling not possibl

Tablel

Evaluation of the modelling approaches

The approaches differ considerably regardireg vitay uncertain knowledge is represented and pro-
cessed. STAN handles uncertainty as standard @®viabm a mean value. Thus, uncertainty can be pro
cessed by error propagation and equalization asculThe other approaches represent uncertain
knowledge using Bayesian statistics and Monte-Cantwlation. That way, they enable a more diffaérent
ated treatment. Monte-Carlo simulation in Umbestadnstrained by some general limitations. It caly o
be applied for one time period. The sample thatesgnts a system variable is transferred to thepesk
od as the single average value. Furthermore, tbieapility distributions have to be defined in aheat
complicated way as global ‘net parameters’. In@gsd step they have to be assigned to the spewdfi:
el variable. Empirical probability distributionsrozot be represented in Umberto.

In contrast to that, Vensim and PFMA are able pyasent and process all aspects of uncertaintyeof t
example model. However, in Vensim some small litiotes occur. At the implementation of the empiri-
cal probability distribution for the material reteaan auxiliary modelling step had to be perforniesl.
emulate the probability function, a uniform distriton had to be mapped onto a lookup function.

The representation of a delayed material releam® fx local stock could be best implemented using
Vensim. Since System Dynamics was developed tdajisfynamic and time dependent system behav-
iours, this system aspect fits to the scope ofroach. In STAN and Umberto the system behav#our
represented as the change of stocked materialléMeé of a stock at the end of a time period indra
ferred to the next period as initial value. Theuatmodel logic is explicitly parameterized for baweri-
od, which makes it impossible to deal with a mgrec#fic time dependent behaviour. PMFA does not in-
clude a method to represent system changes over However its implementation using R enables to
model a specific system behaviour that exceedsutrent specifications of the approach.

As a general remark, none of the four approachasabbe to represent and simulate the entire example
model satisfactorily. In the modelling and simwatiprocess of a real-world case, this will presugnab
have even stronger consequences on the reliaaildysignificance of the obtained results, becausset
systems are usually larger in size and complekiy tour example system.

Therefore, a new approach that combines the adyesmtaf the modelling approaches investigated
could be of great value. For the development &f éiiproach it seems reasonable to take PMFA asta st
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ing point and extend it by the stock and flow melilogy of System Dynamics. Since PMFA is imple-
mented using the language R it provides a larggeraf probability distributions to represent unanty.

To base the new approach on PFMA instead of SyBigmamics has the advantage to avoid the inherent
discretisation error and additional computatioriébré of continuous simulation in System Dynamics.
Furthermore, the model implementation using theufliage leads to a straightforward adjustment and
extension of the existing modelling approach.

5. Acknowledgements

This work was funded by the European Commissiorhiwithe Seventh Framework Program (FP7;
MARINA project - Grant Agreement n° 263215).

6. Bibliography

Baccini, P. and Brunner, P. H. (1991): Metabolidrthe anthroposphere. Berlin [u.a.], Springer.

Brunner, P. H. and Rechberger, H. (2004): Practiaaldbook of material flow analysis. Boca Ratow. FI
[u.a.], Lewis.

Cullen, A. C. and Frey, H. C. (1999): Probabiligichniques in exposure assessment : a handbook for
dealing with variability and uncertainty in modalsd inputs. New York [etc.], Plenum Press.

ECHA (2010): Guidance on information requirementsl @hemical safety assessment Chapter R.16:
Environmental Exposure Estimation. European Chdmiggency.

Forrester, J. W. (1961): Industrial dynamics. Cadd®, Mass. [u.a.] Productivity Press , Wiley.

Gottschalk, F., Scholz, R. W. and Nowack, B. (20Hpbabilistic material flow modeling for assegsin
the environmental exposure to compounds: Methogotogl an application to engineered nano-
TiO2 particles. Environ. Modeling Software 25: BR0-332.

Klaine, S. J., Koelmans, A. A., Horne, N., Carl8y, Handy, R. D., Kapustka, L., Nowack, B. and den
Kammer, F. (2012): Paradigms to assess the enveotah impact of manufactured
nanomaterials. Environmental Toxicology and Chemi3i(1): pp. 3-14.

MacLeod, M., Scheringer, M., McKone, T. E. and Harmihler, K. (2010): The State of Multimedia
Mass-Balance Modeling in Environmental Science Radision-Making. Environmental Science
& Technology 44(22): pp. 8360-8364.

Moller, A. (2000): Grundlagen stoffstrombasiertertrieblicher Umweltinformationssysteme. Bochum,
Projekt-Verl.

Morrison, F. (1991): The art of modeling dynamicsteyns : forecasting for chaos, randomness, and
determinism. New York, Wiley.

Mueller, N. C. and Nowack, B. (2008): Exposure nimde of engineered nanoparticles in the
environment. Environ. Sci. Technol. 42: pp. 4445314

Paté-Cornell, M. E. (1996): Uncertainties in rislalysis: Six levels of treatment. Reliability Engaring
and System Safety 54(2-3): pp. 95-111.

Peterson, J. L. (1981): Petri net theory and thdetiog of systems. Englewood Cliffs, NJ, PrenticaitH

Refsgaard, J. C., van der Sluijs, J. P., Hgjberd,.Aand Vanrolleghem, P. A. (2007): Uncertaintytte
environmental modelling process - A framework amidgnce. Environmental Modelling and
Software 22(11): pp. 1543-1556.

Wohlgemuth, V. (2005): Komponentenbasierte Untézstig von Methoden der Modellbildung und
Simulation im Einsatzkontext des betrieblichen Urtsahutzes : Konzeption und prototypische
Entwicklung eines Stoffstromsimulators zur Intemateiner stoffstromorientierten Perspektive in
die auftragsbezogene Simulationssicht. Aachen, &hak

388



