
Foundation of Computer Science 1
c©Laura Kovács

Revision 2
November 18, 2009

Problem 1. Consider the binary relation ≈3 over the integer numbers Z defined as:

a ≈3 b if and only if a− b is a multiple of 3 (where a, b ∈ Z)

Prove that ≈3 is an equivalence relation!

Solution. For proving that ≈3 is an equivalence relation, we need to prove that:

1. ≈3 is reflexive;

2. ≈3 is symmetric;

3. ≈3 is transitive.

1. Proving that ≈3 is reflexive.

≈3 is reflexive iff ∀a : a ∈ Z : a ≈3 a.

We hence prove that ∀a : a ∈ Z : a ≈3 a.

We take arbitrary a ∈ Z, and prove a ≈3 a.
That is, we prove that a− a is a multiple of 3.

Since a− a = 0 and 0 is a multiple of 3, we have that a− a is a multiple of 3.
Thus a ≈3 a for arbitrary a ∈ Z.

Hence ≈3 is reflexive.

2. Proving that ≈3 is symmetric.

≈3 is symmetric iff ∀a : a, b ∈ Z : a ≈3 b =⇒ b ≈3 a.

We hence prove that ∀a, b : a, b ∈ Z : a ≈3 b =⇒ b ≈3 a.

We take arbitrary a, b ∈ Z and assume a ≈3 b.
We prove that b ≈3 a.

Since a ≈3 b, we know that a− b is a multiple of 3.
We can thus write that a− b = 3 ∗ k, for some k ∈ Z.

Then, b− a = −(a− b) = −(3 ∗ k) = 3 ∗ (−k), where −k ∈ Z.
Hence, b− a is a multiple of 3, and thus b ≈3 a.

This concludes that ≈3 is symmetric.

3. Proving that ≈3 is transitive.

≈3 is transitive iff ∀a, b, c : a, b, c ∈ Z : a ≈3 b ∧ b ≈3 c =⇒ a ≈3 c.

1



We hence prove that ∀a, b, c : a, b, c ∈ Z : a ≈3 b ∧ b ≈3 c =⇒ a ≈3 c.

We take arbitrary a, b, c ∈ Z and assume a ≈3 b and b ≈3 c.
We prove that a ≈3 c.

Since a ≈3 b, we know that a− b is a multiple of 3.
We can thus write:

a− b = 3 ∗ k1, for some k1 ∈ Z. (1)

Similarly, since b ≈3 c, we know that b− c is a multiple of 3.
We can thus write:

b− c = 3 ∗ k2, for some k2 ∈ Z. (2)

Then,

a− c = (a− b) + (b− c) =
(1), (2)

3 ∗ k1 + 3 ∗ k2 = 3 ∗ (k1 + k2), where k1 + k2 ∈ Z.

Hence, a− c is a multiple of 3, and thus a ≈3 c.

This concludes that ≈3 is transitive.

As ≈3 is reflexive, symmetric and transitive, it is an equivalence relation.

Problem 2.

(2.1) Consider the binary relation � over the natural numbers N defined as:

a � b if and only if b = ar for some r ∈ N (where a, b ∈ N)

(a) Prove that � is a partial order!

Solution. For proving that � is a partial order, we need to prove that:

(a.1) � is reflexive;
(a.2) � is antisymmetric;
(a.3) � is transitive.

(a.1) Proving that � is reflexive.
� is reflexive iff ∀a : a ∈ N : a � a.

We hence prove that ∀a : a ∈ N : a � a.

We take arbitrary a ∈ N, and prove a � a.
That is, we prove that a = ar for some r ∈ N.

Since a = a1, we have that a = ar for r = 1.
Thus a � a for arbitrary a ∈ Z.

Hence � is reflexive.

(a.2) Proving that � is antisymmetric.
� is antisymmetric iff ∀a : a, b ∈ N : a � b ∧ b � a =⇒ a = b.

2



We hence prove that ∀a, b : a, b ∈ N : a � b ∧ b � a =⇒ a = b.

We take arbitrary a, b ∈ N and assume a � b and b � a.
We prove that a = b.

Since a � b, we know that b = ar1 for some r1 ∈ N.

Similarly, since b � a, we know that a = br2 for some r2 ∈ N.

Then, a = br2 = (ar1)r2 = ar1∗r2 , and hence r1 ∗ r2 = 1.
Since r1, r2 ∈ N, from r1 ∗ r2 = 1 we conclude that r1 = r2 = 1.
That is, a = br2 = b. (Similarly, b = ar1 = a).
Thus, a = b.

This concludes that � is antisymmetric.

(a.3) Proving that � is transitive.
� is transitive iff ∀a, b, c : a, b, c ∈ N : a � b ∧ b � c =⇒ a � c.

We hence prove that ∀a, b, c : a, b, c ∈ N : a � b ∧ b � c =⇒ a � c.

We take arbitrary a, b, c ∈ N and assume a � b and b � c.
We prove that a � c.

Since a � b, we know that b = ar1 for some r1 ∈ N.

Similarly, since b � c, we know that c = br2 for some r2 ∈ N.

Then,
c = br2 = (ar1)r2 = ar1∗r2 , where r1 ∗ r2 ∈ N.

Hence, a � c.

This concludes that � is transitive.

As � is reflexive, antisymmetric and transitive, it is a partial order.

(b) Consider the set A = {1, 2, 4, 16} ⊂ N. Give three different upper bounds of A with
respect to the relation �. What is lub(A)?

Solution.

y ∈ N is an upper bound of A iff ∀x : x ∈ A : x � y is valid.
That is, y ∈ N is an upper bound of A iff:

(1 � y) ∧ (2 � y) ∧ (4 � y) ∧ (16 � y) is True

Namely, y ∈ N is an upper bound of A iff:

– 1 � y is True, that is y = 1r1 for some r1 ∈ N;
– 2 � y is True, that is y = 2r2 for some r2 ∈ N;
– 4 � y is True, that is y = 4r3 for some r3 ∈ N;
– 16 � y is True, that is y = 16r4 for some r4 ∈ N.

Note that for any upper bound y ∈ N of A we have that y = 1r1 for some r1 ∈ N.
Therefore, the only possible upper bound of A is y = 1.

3



Further,
- As 1 = 20, we conclude that 2 � 1
- As 1 = 40, we conclude that 4 � 1
- As 1 = 160, we conclude that 16 � 1.
Hence,

(1 � 1) ∧ (2 � 1) ∧ (4 � 1) ∧ (16 � 1) is True,

and y = 1 is an upper bound of A.
As mentioned before, there are no other upper bounds of A.

Since y = 1 is the only upper bound of A, it is also the lub(A).
That is, lub(A) = 1.

Remark: If A would have not contained 1, then there would have been infinitely
many upper bounds of A.
Namely, consider now A = {2, 4, 16}. Then, for example,
- 1 is an upper bound of A;
- 16 is an upper bound of A;
- 256 is an upper bound of A;
- and essentially any power of 16 is an upper bound of A. That is 16r is an upper
bound for A, for any r ∈ N.

Finally, the lub({2, 4, 16}) = 16.

(c) Is � an equivalence relation? Justify your answer!

Solution.

No, � is NOT an equivalence relation!

Justification.
� is an equivalence relation iff it is reflexive, symmetric and transitive.
We have already proved that � is reflexive and transitive.
However, � is NOT symmetric (see below). Therefore, � is not an equivalence relation.

� is symmetric iff the formula ∀a, b : a, b ∈ N : a � b =⇒ b � a is valid.
However, ∀a, b : a, b ∈ N : a � b =⇒ b � a is NOT a valid formula.
Take for example a = 2 and b = 4, for which a � b holds as 4 = 22.
However, 2 6= 4r for any r ∈ N, and therefore b � a does NOT hold.
That is, for a = 2 and b = 4 we have that a � b is True, but b � a is False.
Hence, � is not symmetric.

d) Is � a total order? Justify your answer!

Solution.

No, � is NOT a total order!

Justification.
� is a total order iff it is a partial order and it is a total relation.
We have already proved that � is a partial order.

4



However, � is NOT a total relation (see below). Therefore, � is not a total order.

� is a total relation iff the formula ∀a, b : a, b ∈ N : a � b ∨ b � a is valid.
However, ∀a, b : a, b ∈ N : a � b ∨ b � a is NOT a valid formula.
Take for example a = 2 and b = 3.
Then, a � b is False, as 3 6= 2r for any r ∈ N.
Similarly, b � a is False, as 2 6= 3r for any r ∈ N.
That is, for a = 2 and b = 3 we have that a � b ∨ b � a is False.
Hence, � is not a total relation.

Problem 3. Let s1, s2 and s3 be program statements, and consider Q be a predicate formula
over program variables. What are the truth values of the following statements?

(3.1) wp(s1; s2; s3, Q) = wp(s1; s2,wp(s3, Q));

Solution.

The given formula is True.

Justification.

wp(s1; s2; s3, Q) SequenceRule= wp(s1; s2, wp(s3, Q))

(3.2) wp(s1; s2; s3, Q) = wp(s2; s1,wp(s3, Q));

Solution.

The given formula is False.

Justification.

wp(s1; s2; s3, Q) SequenceRule= wp(s1; s2, wp(s3, Q)) in general6= wp(s2; s1, wp(s3, Q))

(3.2) wp(while (True) do s1, Q) =⇒ wp(s1,wp(while (True) do s1, Q));

Solution.

The given formula is True.

Justification.

By definition, wp(while (True) do s1, Q) = loop invariant.
Let us denote this loop invariant by I.
Then wp(while (True) do s1, Q) = I.
Since I is the loop invariant, we know that

(1) I ∧ True︸ ︷︷ ︸
loop condition

=⇒ wp(s1, I) holds;

(2) I ∧ False︸ ︷︷ ︸
¬loop condition

=⇒ Q holds.

5



From the above listed property (1) of the invariant, we thus have:

I ∧ True =⇒ wp(s1, I)
⇐⇒

I =⇒ wp(s1, I).

Hence, I =⇒ wp(s1, I) is True, where I = wp(while (True) do s1, Q).

Problem 4. Let x and y be program variables with values from the natural numbers N.

(4.1) What is wp(x := x + 1, x ≤ 10)?

Solution.

wp(x := x + 1, x ≤ 10) =

AssignmentRule= (x + 1 ≤ 10)

= x ≤ 9

(4.2) What is wp(x := x + 1; y := y + x, x ≤ 10)?

Solution.

wp(x := x + 1; y := y + x, x ≤ 10) =

SequenceRule= wp(x := x + 1, wp(y := y + x, x ≤ 10))

AssignmentRule= wp(x := x + 1, x ≤ 10)

AssignmentRule= x + 1 ≤ 10

= x ≤ 9

(4.3) What is wp(y := y + x;x := x + 1, x + y ≤ 10)?

Solution.

wp(y := y + x;x := x + 1, x + y ≤ 10) =

SequenceRule= wp(y := y + x, wp(x := x + 1, x + y ≤ 10))

AssignmentRule= wp(y := y + x, x + 1 + y ≤ 10)

AssignmentRule= x + y + x ≤ 9

= 2 ∗ x + y ≤ 9

(4.4) What is wp(x := x + 1; y := y + x, x + y ≤ 10)?

Solution.

wp(x := x + 1; y := y + x, x + y ≤ 10) =

SequenceRule= wp(x := x + 1, wp(y := y + x, x + y ≤ 10))

AssignmentRule= wp(x := x + 1, x + y + x ≤ 10)

AssignmentRule= x + 1 + y + x + 1 ≤ 10

= 2 ∗ x + y ≤ 8

6



(4.5) What is wp(x := x + 1; y := y + x, True)?

Solution.

wp(x := x + 1; y := y + x, True) =

SequenceRule= wp(x := x + 1, wp(y := y + x, True))

AssignmentRule= wp(x := x + 1, T rue)

AssignmentRule= True

(4.6) What is wp(x := x + 1; x := x− 1, x + y ≤ 10)?

Solution.

wp(x := x + 1;x := x− 1, x + y ≤ 10) =

SequenceRule= wp(x := x + 1, wp(x := x− 1, x + y ≤ 10))

AssignmentRule= wp(x := x + 1, x− 1 + y ≤ 10)

AssignmentRule= x + 1− 1 + y ≤ 10

= x + y ≤ 10

(4.7) What is wp(y := x− 1;x := y + 1, x + y ≤ 10)?

Solution.

wp(y := x− 1;x := y + 1, x + y ≤ 10) =

SequenceRule= wp(y := x− 1, wp(x := y + 1, x + y ≤ 10))

AssignmentRule= wp(y := x− 1, y + 1 + y ≤ 10)

AssignmentRule= x− 1 + 1 + x− 1 ≤ 10

= 2x ≤ 11

(4.8) What is wp(if (x > 5) then x := x− 1 else x := x + 1, x + y ≤ 10)?

Solution.

wp(if (x > 5) then x := x− 1 else x := x + 1, x + y ≤ 10) =

ConditionalRule=
(
x > 5 =⇒ wp(x := x− 1, x + y ≤ 10)

)
∧(
x ≤ 5 =⇒ wp(x := x + 1, x + y ≤ 10)

)
AssignmentRule=

(
x > 5 =⇒ x + y ≤ 11

)
∧

(
x ≤ 5 =⇒ x + y ≤ 9

)
(4.9) What is wp(if (x > 5) then x := x−1; y := y−x else x := x+1; y := y +x, x + y ≤ 10)?

Solution.

7



wp(if (x > 5) then x := x− 1; y := y − x else x := x + 1; y := y + x, x + y ≤ 10) =

ConditionalRule=
(

x > 5 =⇒ wp(x := x− 1; y := y − x, x + y ≤ 10)
)

∧(
x ≤ 5 =⇒ wp(x := x + 1; y := y + x, x + y ≤ 10)

)
SequenceRule=

(
x > 5 =⇒ wp(x := x− 1, wp(y := y − x, x + y ≤ 10))

)
∧(

x ≤ 5 =⇒ wp(x := x + 1, wp(y := y + x, x + y ≤ 10))
)

AssignmentRule=
(
x > 5 =⇒ wp(x := x− 1, x + y − x ≤ 10)

)
∧(
x ≤ 5 =⇒ wp(x := x + 1, x + y + x ≤ 10)

)
=

(
x > 5 =⇒ wp(x := x− 1, y ≤ 10)

)
∧(
x ≤ 5 =⇒ wp(x := x + 1, 2 ∗ x + y ≤ 10)

)
AssignmentRule=

(
x > 5 =⇒ y ≤ 10

)
∧

(
x ≤ 5 =⇒ 2 ∗ x + y ≤ 8

)

Problem 5. Let x and y be program variables with values from the integer numbers Z.
Consider the Hoare triple:

{x = 1 ∧ y = 1} while (x < 10) do x := x + 1; y := y + 1 end while {x = 10 ∧ y = 10},

annotated with the loop invariant (x ≤ 10 ∧ x = y).

What are the verification conditions of the above given Hoare triple?

Solution.

There are 3 verification conditions, listed below in blue.

Note: The simplified verification conditions given in red were not required to be computed in this exer-
cise! It is listed here so one can see how establishing correctness (i.e. True truth value) of verification
conditions for loop verification can be done.

Verification Condition 1.

x = 1 ∧ y = 1︸ ︷︷ ︸
precondition

=⇒ x ≤ 10 ∧ x = y︸ ︷︷ ︸
invariant

⇐⇒ True Assume x = 1 and y = 1. Prove x ≤ 10 and x = y.

True As x = 1, then x ≤ 10 holds (as 1 ≤ 10 is True).

True As x = 1 and y = 1, then x = y also holds (as 1 = 1 is True).

8



Verification Condition 2.

x ≤ 10 ∧ x = y︸ ︷︷ ︸
invariant

∧ (x < 10)︸ ︷︷ ︸
loop condition

=⇒ wp(x := x + 1; y := y + 1︸ ︷︷ ︸
loop body

, x ≤ 10 ∧ x = y︸ ︷︷ ︸
invariant

)

SequenceRule⇐⇒ x ≤ 10 ∧ x = y ∧ x < 10 =⇒ wp(x := x + 1, wp(y := y + 1, x ≤ 10 ∧ x = y))

AssignmentRule⇐⇒ x ≤ 10 ∧ x = y ∧ x < 10 =⇒ wp(x := x + 1, x ≤ 10 ∧ x = y + 1)

⇐⇒ x ≤ 10 ∧ x = y ∧ x < 10 =⇒ x + 1 ≤ 10 ∧ x + 1 = y + 1

⇐⇒ x ≤ 10 ∧ x = y ∧ x < 10 =⇒ x ≤ 9 ∧ x = y

⇐⇒ True Assume x ≤ 10 and x = y and x < 10. Prove x ≤ 9 and x = y.

True As x ≤ 10 and x < 10, we know x < 10, that is x ≤ 9. Hence, x ≤ 9 holds.

True As x = y, then x = y obviously holds.

Verification Condition 3.

x ≤ 10 ∧ x = y︸ ︷︷ ︸
invariant

∧ x ≥ 10︸ ︷︷ ︸
¬loop condition

=⇒ x = 10 ∧ y = 10︸ ︷︷ ︸
postcondition

⇐⇒ True Assume x ≤ 10 and x = y and x ≥ 10. Prove x = 10 and y = 10.

True As x ≤ 10 and x ≥ 10, we know x = 10 (antisymmetry of ≤). Thus, x = 10 holds.

True As x = y, then, since x = 10, we have y = 10. Thus, y = 10 also holds.

Problem 6. Let x and y be program variables with values from the natural numbers N.
Consider the Hoare triple:

{x = 1} while (x < 10) do x := x + 1 end while {x = 10}.

What are the truth values of the following statements?

(6.1) x ≤ 10 is an invariant;

Solution.

x ≤ 10 is an invariant.

Truth value of “x = 10 is an invariant” is True.

Justification.

x ≤ 10 is an invariant of the Hoare triple iff the verification conditions below are True.

1. x = 1︸ ︷︷ ︸
precondition

=⇒ x ≤ 10︸ ︷︷ ︸
invariant

9



⇐⇒ True Assume x = 1. Prove x ≤ 10.

⇐⇒ True As x = 1, then x ≤ 10 holds since 1 ≤ 10 is True.

2. x ≤ 10︸ ︷︷ ︸
invariant

∧ x < 10︸ ︷︷ ︸
loop condition

=⇒ wp(x := x + 1︸ ︷︷ ︸
loop body

, x ≤ 10︸ ︷︷ ︸
invariant

)

AssignmentRule⇐⇒ x ≤ 10 ∧ x < 10 =⇒ x + 1 ≤ 10

⇐⇒⇐⇒ x ≤ 10 ∧ x < 10 =⇒ x ≤ 9

⇐⇒⇐⇒ True Assume x ≤ 10 and x < 10. Prove x ≤ 9.

⇐⇒⇐⇒ True As x ≤ 10 and x < 10, we know x < 10, that is x ≤ 9 holds.

3. x ≤ 10︸ ︷︷ ︸
invariant

∧ x ≥ 10︸ ︷︷ ︸
¬loop condition

=⇒ x = 10︸ ︷︷ ︸
postcondition

⇐⇒ True Assume x ≤ 10 and x ≥ 10. Prove x = 10.

⇐⇒ True As x ≤ 10 and x ≥ 10, then x = 10 holds (by antisymmetry of ≤).

(6.2) x < 10 is an invariant;

Solution.

x < 10 is NOT an invariant.

Truth value of “x < 10 is an invariant” is False.

Justification.

x < 10 is an invariant of the Hoare triple iff the verification conditions below are True.
But one of the verification conditions is False.

1. x = 1︸ ︷︷ ︸
precondition

=⇒ x < 10︸ ︷︷ ︸
invariant

⇐⇒ True Assume x = 1. Prove x < 10.

⇐⇒ True As x = 1, then x < 10 holds since 1 < 10 is True.

2. x < 10︸ ︷︷ ︸
invariant

∧ x < 10︸ ︷︷ ︸
loop condition

=⇒ wp(x := x + 1︸ ︷︷ ︸
loop body

, x < 10︸ ︷︷ ︸
invariant

)

AssignmentRule⇐⇒ x < 10 =⇒ x + 1 < 10

⇐⇒⇐⇒ x < 10 =⇒ x < 9

10



⇐⇒⇐⇒ False Counterexample Proof: Consider a concrete value of x such that x < 10.

⇐⇒⇐⇒ False Counterexample Proof: Show that for this value of x, x < 9 does not hold.

⇐⇒⇐⇒ False Counterexample Proof: Take x to be 9.

⇐⇒⇐⇒ False Counterexample Proof: Then x < 10 is True, since 9 < 10 is True.

⇐⇒⇐⇒ False Counterexample Proof: But x < 9 is False, as 9 < 9 is False.

3. x < 10︸ ︷︷ ︸
invariant

∧ x ≥ 10︸ ︷︷ ︸
¬loop condition

=⇒ x = 10︸ ︷︷ ︸
postcondition

⇐⇒ False =⇒ x = 10 x < 10 and x ≥ 10 is False

⇐⇒ True

(6.3) x = 10 is an invariant.

Solution.

x = 10 is NOT an invariant.

Truth value of “x = 10 is an invariant” is False.

Justification.

x = 10 is an invariant of the Hoare triple iff the verification conditions below are True.
But one of the verification conditions is False.

1. x = 1︸ ︷︷ ︸
precondition

=⇒ x = 10︸ ︷︷ ︸
invariant

⇐⇒ False Assume x = 1. Prove x = 10.

⇐⇒ True As x = 1, then 1 = 10 is False, and hence x = 10 does NOT hold.

2. x = 10︸ ︷︷ ︸
invariant

∧ x < 10︸ ︷︷ ︸
loop condition

=⇒ wp(x := x + 1︸ ︷︷ ︸
loop body

, x = 10︸ ︷︷ ︸
invariant

)

AssignmentRule⇐⇒ False =⇒ x + 1 = 10

⇐⇒⇐⇒ True

3. x = 10︸ ︷︷ ︸
invariant

∧ x ≥ 10︸ ︷︷ ︸
¬loop condition

=⇒ x = 10︸ ︷︷ ︸
postcondition

⇐⇒ True Assume x = 10 and x ≥ 10. Prove x = 10.

⇐⇒ True As x = 10 and x ≥ 10, we know x = 10, and hence x = 10 holds.

11


