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Problem 1. Consider the binary relation a3 over the integer numbers Z defined as:
a~3b if and only if a — b is a multiple of 3 (where a, b € Z)

Prove that a3 is an equivalence relation!
Solution. For proving that ~3 is an equivalence relation, we need to prove that:

1. =3 is reflexive;

2. =3 is symmetric;

3. =3 is transitive.
1. Proving that ~3 is reflexive.

~3 is reflexive iff Va:a € Z : a =3 a.

We hence prove that Va:a € Z : a ~3 a.

We take arbitrary a € Z, and prove a =3 a.
That is, we prove that a — a is a multiple of 3.

Since a — a = 0 and 0 is a multiple of 3, we have that a — a is a multiple of 3.
Thus a =3 a for arbitrary a € Z.

Hence ~3 is reflexive.
2. Proving that =3 is symmetric.
/23 is symmetric iff Va:a,b€Z:a~3b = b=3a.
We hence prove that Va,b:a,b€Z:a~3b = b=3a.

We take arbitrary a,b € Z and assume a =3 b.
We prove that b ~3 a.

Since a ~3 b, we know that a — b is a multiple of 3.
We can thus write that a — b = 3 x k, for some k € Z.

Then, b—a=—(a—b) = —(3xk) =3 % (—k), where —k € Z.
Hence, b — a is a multiple of 3, and thus b =3 a.

This concludes that ~3 is symmetric.

3. Proving that ~3 is transitive.

/3 is transitive iff Va,b,c:a,b,c€Z:a~3b Nbr3c = a~3c.



We hence prove that Va,b,c:a,b,c€Z:a~3b N brgc = a=3ec.

We take arbitrary a,b,c € Z and assume a ~3 b and b ~3 c.
We prove that a ~3 c.

Since a ~3 b, we know that a — b is a multiple of 3.
We can thus write:
a—0b=3xky, for some ki € Z. (1)

Similarly, since b ~3 ¢, we know that b — ¢ is a multiple of 3.
We can thus write:
b— ¢ = 3xky, for some kg € Z. (2)

Then,

a—c = (a—b)+(b—c) 3x k) +3xky = 3% (ki + ko), where k1 + ko € Z.

1), @)
Hence, a — ¢ is a multiple of 3, and thus a =3 c.

This concludes that ~3 is transitive.

As =3 is reflexive, symmetric and transitive, it is an equivalence relation.

Problem 2.

(2.1) Consider the binary relation > over the natural numbers N defined as:
a>0b if and only if b = a" for some r € N (where a, b € N)

(a) Prove that > is a partial order!

Solution. For proving that > is a partial order, we need to prove that:

(a.1) > is reflexive;
(a.2) > is antisymmetric;
(a.3) > is transitive.
(a.1) Proving that > is reflexive.
> is reflexive iff Va:a € N:a > a.
We hence prove that Va:a € N:a > a.

We take arbitrary a € N, and prove a > a.
That is, we prove that a = a” for some r € N.

Since a = a', we have that a = a” for r = 1.

Thus a > a for arbitrary a € Z.

Hence > is reflexive.

(a.2) Proving that > is antisymmetric.
> is antisymmetric iff Va:a,0eN:a>b A b>a = a=0.



(b)

We hence prove that Va,b:a,beN:a>b AN b>»>a = a=0.

We take arbitrary a,b € N and assume a > b and b > a.

We prove that a = b.

Since a > b, we know that b = a"* for some r; € N.
Similarly, since b > a, we know that a = b™ for some ro € N.

Then, a = b = (a")™ =a"*"2, and hence 71 * 179 = 1.
Since r1,79 € N, from r1 x 79 = 1 we conclude that ry = r9 = 1.
That is, @ = b™ = b. (Similarly, b = a"™ = a).

Thus, a = b.

This concludes that > is antisymmetric.

(a.3) Proving that > is transitive.
> is transitive iff Va,b,c:a,b,ceN:a>b A b>c = a>c
We hence prove that Va,b,c:a,b,ceN:a>b N b>c = a>c.

We take arbitrary a,b,c € N and assume a > b and b > c.
We prove that a > c.

Since a > b, we know that b = a™* for some r; € N.

Similarly, since b > ¢, we know that ¢ = b™ for some ro € N.

Then,
c =072 = (a")? = a"""?, where r| xr9 € N.

Hence, a > c.

This concludes that > is transitive.

As > is reflexive, antisymmetric and transitive, it is a partial order.

Consider the set A = {1,2,4,16} C N. Give three different upper bounds of A with
respect to the relation >. What is lub(A)?

Solution.

y € Nis an upper bound of Aiff Vx:x € A: x> y is valid.
That is, y € N is an upper bound of A iff:

I>y) N2>y N @d>y AN16>y) is True

Namely, y € N is an upper bound of A iff:
— 1>y is True, that is y = 1™ for some r; € N;
— 2> yis True, that is y = 2™ for some 19 € N;
— 4> y is True, that is y = 4™ for some r3 € N;
— 16 > y is T'rue, that is y = 16™ for some r4 € N.

Note that for any upper bound y € N of A we have that y = 1" for some r; € N.
Therefore, the only possible upper bound of A is y = 1.



(c)

d)

Further,
- As 1 =29 we conclude that 2 > 1
- As 1 =49 we conclude that 4 > 1
- As 1 = 16°, we conclude that 16 > 1.
Hence,
I>1) AN 2>1) AN Ad>1) A 16>1) is True,

and y = 1 is an upper bound of A.
As mentioned before, there are no other upper bounds of A.

Since y = 1 is the only upper bound of A, it is also the lub(A).
That is, lub(A) = 1.

Remark: If A would have not contained 1, then there would have been infinitely
many upper bounds of A.

Namely, consider now A = {2,4,16}. Then, for example,

- 1is an upper bound of A;

- 16 is an upper bound of A;

- 256 is an upper bound of A;

- and essentially any power of 16 is an upper bound of A. That is 16" is an upper
bound for A, for any r € N.

Finally, the lub({2,4,16}) = 16.

Is > an equivalence relation? Justify your answer!
Solution.

No, > is NOT an equivalence relation!

Justification.

> is an equivalence relation iff it is reflexive, symmetric and transitive.
We have already proved that > is reflexive and transitive.
However, > is NOT symmetric (see below). Therefore, > is not an equivalence relation.

> is symmetric iff the formula Va,b:a,6 e N:a > b = b> a is valid.
However, Va,b:a,b e N:a>b = b> a is NOT a valid formula.

Take for ezample a = 2 and b = 4, for which a > b holds as 4 = 2°.
However, 2 # 4" for any r € N, and therefore b > a does NOT hold.

That is, for a = 2 and b = 4 we have that a > b is T'rue, but b > a is False.
Hence, > is not symmetric.

Is > a total order? Justify your answer!
Solution.
No, > is NOT a total order!

Justification.

> is a total order iff it is a partial order and it is a total relation.
We have already proved that > is a partial order.



However, > is NOT a total relation (sce below). Therefore, > is not a total order.

> is a total relation iff the formula Va,b:a,b€N:a>b V b> a is valid.
However, Va,b:a,b e N:a>b V b>a is NOT a valid formula.

Take for example a = 2 and b = 3.

Then, a > b is False, as 3 # 2" for any r € N.

Similarly, b > a is False, as 2 # 3" for any r € N.

That is, for a =2 and b = 3 we have that a>b V b> a is False.

Hence, > is not a total relation.

Problem 3. Let s1, so and s3 be program statements, and consider () be a predicate formula
over program variables. What are the truth values of the following statements?
(3.1) wp(s1;s2;83,Q) = wp(s1; 52, wp(ss, Q));

Solution.

The given formula is True.

Justification.

wp(s1; 525 83, Q) SequenceRule wp(s1; s2, Wp(s3,Q))

(3.2) wp(s1;s2;53,Q) = wp(s2; 51, wp(s3, Q));
Solution.

The given formula is False.

Justification.

wp(s1i 52353, Q) Sequencemute  Wp(s1 52, Wh(s,Q)) in aegeral  Wh(s2: 51, W(s3, Q)

(3.2) wp(while (True) do s1,Q) = wp(s1, wp(while (True) do s1,Q));
Solution.

The given formula is True.

Justification.

By definition, wp(while (True) do s1,Q) = loop invariant.
Let us denote this loop invariant by 1.

Then wp(while (True) do s1,Q) = 1.

Since [ is the loop invariant, we know that

(1) I N True = wp(s1,]) holds;
loop condition

(2) I A False = (@ holds.

—loop condition



From the above listed property (1) of the invariant, we thus have:

I N True = wp(s1,1)
<~
I = wp(s1,I).

Hence, I = wp(s1,1) is True, where I = wp(while (True) do s1,Q@).

Problem 4. Let x and y be program variables with values from the natural numbers N.
(4.1) What is wp(z :=z+ 1, z < 10)?
Solution.
wp(z:=x+1, £ <10) =
Assignment Rule (ZE +1< 10)

= <9

(4.2) What is wp(z:=2+ Liy:=y+ 2z, v <10)?

Solution.
wp(z:=x+ Ly :=y+x, ©<10) =
SequenceRule  wp(z :=x +1, wp(y := y +z, x < 10))
AssignmentRule  wp(z:=x +1, x < 10)

AssignmentRule x + 1 < 10

= r<9
(4.3) What iswp(y:=y+ax;z:=x+1, z+y < 10)7?

Solution.

wply:=y+xz;z:=x+1, z+y <10) =
SequenceRule  Wp(y :=y+z, wp(z:=x+1, x+y < 10))
AssignmentRule  Wp(y :=y +z, z+ 14y < 10)
AssignmentRule T + Yy + & < 9

= 2« +y <9

(4.4) What iswp(z:=o+ Liy:=y+2x, v +y <10)?

Solution.

wplz:=z+Ly:=y+z, z+y<10) =
SequenceRule  wp(z :=x + 1, wp(y ==y +z, v +y < 10))
AssignmentRule  wp(z:=z +1, x+y+z < 10)
AssignmentRule T + 1+y+2+1<10
= 2xx+y <8



(4.5) What is wp(x .=z + L,y :=y +x, True)?
Solution.
wp(x =z + Ly :=y+x, True) =
SequenceRule  Wp(x :=x + 1, wp(y := y +z, True))
AssignmentRule Wp($ =x+1, TTU@)

AssignmentRule  True

(4.6) What iswp(z:=z+ L;z:=2—1, x +y < 10)?

Solution.

wp(z:=xz+ Lz:=2—-1, 2 +y <10) =
SequenceRule ~ wp(z:=x+1, wp(z:=x—1, z+y < 10))
Assignment Rule wp(z:=x+1, z—1+y <10)
AssignmentRule x*+1—141y <10

= z+y <10

(4.7) What is wp(y :=2 — L;2z:=y+1, z +y < 10)?
Solution.
wply:=x—Liz:=y+1, +y <10) =
SequenceRule ~ wp(y =z —1, wp(z:=y+1, z+y < 10))
Assignment Rule Wp(y =x — 1, Y+ 1+ Y < 10)
AssignmentRule T — 1+41+2—-1<10
= 2¢ < 11
(4.8) What is wp(if (z > 5) then x :=x —lelse x:=x + 1, x +y < 10)?
Solution.
wp(if (x > 5) thenz:=z —lelsez:=2z+1, z+y <10) =

Conditional Rule (SL’ >5H = Wp(a: =z -1 z4+y< 10))

A
(<5 = wp(z:=x+1, z+y <10))
(

AssignmentRule

r>5 = x+y<1l) ANz<b = z4+y<9)

(4.9) What is wp(if (x > 5) then x == —L;y :=y—zelsez ==+ 1,y :=y+zx, v +y < 10)?

Solution.



wp(if (z>5)thenz:=zx—Liy:=y—zxelsex:=x+L;y:=y+z, v+y<10) =

Conditional Rule

(x>5 = wplx:=z—lL;y:=y—ux, :L‘+y§10))

A

(<5 = wplz:=o+Ly:=y+ux, z+y<10))
SequenceRule (:U>5 = wp(z:=2z—-1, wp(y:=y—z, v+y< 10)))

A
(x§5 = wp(z:=2z+1, wp(y:=y+z, v4+y< 10)))

AssignmentRule (CU >5 = wp(z:=x—-1, z4+y—x< 10))

(xﬁSzwp(a:::xﬂ—l, :C—i—y—l—azgl()))
= (a:>5:>wp(x::x—1,y§10))
<5 = wp(z:=z+1, 2xz+y<10))

(
AssignmentRule ((B >5 — y < 10) A (.%' <bh = 2xx4y< 8)

Problem 5. Let z and y be program variables with values from the integer numbers Z.
Consider the Hoare triple:

{r=1Ay=1} while (r <10)do x:=x+ 1;y:=y+ 1 end while {2z =10Ay = 10},
annotated with the loop invariant (z < 10 A x = y).

What are the verification conditions of the above given Hoare triple?

Solution.

There are 3 verification conditions, listed below in blue.

Note: The simplified verification conditions given in red were not required to be computed in this exer-

cise! Tt is listed here so one can see how establishing correctness (i.e. True truth value) of verification
conditions for loop verification can be done.

Verification Condition 1.

r=1ANy=1 = z<10Az=y

—_————— N —
precondition invariant
<~ T’I”LLG Assume © = 1 and y = 1. Prove x < 10 and = = y.

As z = 1, then = < 10 holds (as 1 < 10 is True).

Asz =1 and y = 1, then = = y also holds (as 1 = 1 is T'rue).



Verification Condition 2.

r<10Nz=y N (x<10) = wp(z:=z+Liy=y+1, 2<10Az=y)
—— — ——

~
invariant loop condition loop body invariant

SequgneeRule r<10ANz=yAr <10 = wp(z:=z+1, wp(y:=y+1, 2 <10Az=y))

AssignmentRule < 10 ANz =yAzx <10 = wp(z:=z+1, <10 Az=y+1)

= r<10Nz=yANz<10 = 2+1<10Az+1=y+1
<— r<10ANz=yANx <10 = z2<9Ax=y
< T'I'UG Assume x < 10 and * = y and « < 10. Prove x < 9 and = = y.

As z <10 and = < 10, we know x < 10, that is z < 9. Hence, =z < 9 holds.

As x = y, then @ = y obviously holds.

Verification Condition 3.

r<10ANx=y A x> 10 — z=10Ay =10
~—

—_———
invariant —loop condition postcondition
A T'f‘ue Assume x < 10 and * = y and « > 10. Prove = 10 and y = 10.

As z <10 and = > 10, we know =z = 10 (antisymmetry of <). Thus, z = 10 holds.

As & = y, then, since = 10, we have y = 10. Thus, y = 10 also holds.

Problem 6. Let z and y be program variables with values from the natural numbers N.
Consider the Hoare triple:

{r =1} while (z < 10) do = := x + 1 end while {z = 10}.
What are the truth values of the following statements?
(6.1) = <10 is an invariant;
Solution.
xr < 10 is an tnvariant.

Truth value of “z = 10 is an invariant” is True.

Justification.

x < 10 is an invariant of the Hoare triple iff the verification conditions below are True.

1. z=1 — <10
e SN—

precondition invariant



et TTU,B Assume x = 1. Prove = < 10.

As x = 1, then & < 10 holds since 1 < 10 is True.

2. 2 <10N <10 = wp(z:=z+1, 2<10)

invariant loop condition loop body invariant
Assig@ztl%ule r<10ANx<10 = z+1<10
<= r<10ANr <10 = <9
<= True Assume x < 10 and @ < 10. Prove = < 9.

As z < 10 and =z < 10, we know z < 10, that is z < 9 holds.

3. <10 AN z>10 = x=10
N—— ~——

v s
invariant —loop condition postcondition
< TTU/(f Assume z < 10 and = > 10. Prove x = 10.

As x < 10 and = > 10, then = 10 holds (by antisymmetry of <).

(6.2) x < 10 is an invariant;
Solution.
x < 10 is NOT an invariant.

Truth value of “z < 10 is an invariant” is False.

Justification.

x < 10 is an invariant of the Hoare triple iff the verification conditions below are True.
But one of the verification conditions is False.

1. =1 — x<10

— e
precondition invariant
<~ T7‘u€ Assume x = 1. Prove x < 10.

As x = 1, then = < 10 holds since 1 < 10 is True.

2.2<10 AN z2<10 = wp(z:=z+1, z<10)
~—— ~—— —_— Y—~

invariant loop condition loop body  invariant

AssignmentRule <10 — z+1<10

<= <10 = =<9

10



et F(J/ZSC Counterexample Proof: Consider a concrete value of  such that =z < 10.

Show that for this value of z, x < 9 does not hold.

Take = to be 9.
Then x < 10 is T'rue, since 9 < 10 is True.

But x < 9 is False, as 9 < 9 is False.

3. <10 AN z>10 = x=10
N~—— —— ~——

invariant —loop condition postcondition
< Fa/lse —— T = 10 xz < 10 and @ > 10 is False
< True

(6.3) = =10 is an invariant.
Solution.

x =10 is NOT an invariant.

Truth value of “z = 10 is an invariant” is False.

Justification.

x = 10 is an invariant of the Hoare triple iff the verification conditions below are True.
But one of the verification conditions is False.

1. z=1 — x=10
—— —

precondition invariant

<~ F(llse Assume x = 1. Prove x = 10.

As x = 1, then 1 = 10 is False, and hence z = 10 does NOT hold.

2.2=10 N <10 = wp(z:=z+1, z=10)
~— S~—— —_——— ——

invariant loop condition loop body invariant
Assi tRule False — xz+1=10
ssignmentRule +
= True

3. 2=10 AN x>10 = x=10
N—— S——r

. . v s
invariant —loop condition postcondition
S T'f’ue Assume x = 10 and = > 10. Prove x = 10.

As x = 10 and =z > 10, we know = = 10, and hence = = 10 holds.
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