Introduction to Program Verification

Laura Kovécs

«0O>» «F)»r « =

<

v

DA

Program Verification

Example — Maximum of Two Natural Numbers

Given two natural numbers x and y.
Compute the maximum value of x and y.

Program Verification

Example — Maximum of Two Natural Numbers

Given two natural numbers x and y.
Compute the maximum value of x and y.

The maximum of x and y is x iff x > y.
Otherwise, the maximum of x and y is y.

Program Verification

Example — Maximum of Two Natural Numbers

Given two natural numbers x and y.
Compute the maximum value of x and y.

The maximum of x and y is x iff x > y.
Otherwise, the maximum of x and y is y.

Computing the maximum (max) of x and y:

if(x>y)
then max := x
else max =y

Program Verification

Example — Maximum of Two Natural Numbers

REQUIREMENT ON

Given two natural numbers x and y. PROGRAM’S INPUT

REQUIREMENT ON

The maximum of x and y is x iff x > y. PROGRAM’S OUTPUT

Otherwise, the maximum of x and y is y.

Computing the maximum (max) of x and y:
if (x > y)

hen max - x

else max =y

Program Verification

Example — Maximum of Two Natural Numbers

REQUIREMENT ON

Given two natural numbers x and y. PROGRAM’S INPUT

PRECONDITION

REQUIREMENT ON

The maximum of x and y is x iff x > y. PROGRAM’S OUTPUT

Otherwise, the maximum of x and y is y.

POSTCONDITION
Computing the maximum (max) of x and y:
if (x > y)

hen max - x

else max =y

Program Verification

Example — Maximum of Two Natural Numbers

Given two natural numbers x and y. REQU'REM,ENT ON
PROGRAM’S INPUT
(x=>0Ay>0)
PRECONDITION
The maximum of x and y is x iff x > y. REQUIREMENT ON
Otherwise, the maximum of x and y is y. PROGRAM’S OUTPUT

(max > x)A(max > y)A(max = xVmax = y) POSTCONDITION

Computing the maximum (max) of x and y:
if (x > y)

hen max - x

else max =y

Program Verification

Example — Maximum of Two Natural Numbers

Given two natural numbers x and y. REQUIREM,ENT ON
PROGRAM’S INPUT
P:(x>0Ay>0)

PRECONDITION P

The maximum of x and y is x iff x > y. REQUIREMENT ON
Otherwise, the maximum of x and y is y. PROGRAM’S OUTPUT

Q: (max > x)A(max > y)A(max = xVmax = y) POSTCONDITION Q

Computing the maximum (max) of x and y:
if (x > y)

len max — x
else max =y

Program Verification: Programs and Specifications

Example — Maximum of Two Natural Numbers

Given two natural numbers x and y. REQUIREM,ENT ON
PROGRAM’S INPUT
P:(x>0Ay>0)

PRECONDITION P

The maximum of x and y is x iff x > y. REQUIREMENT ON
Otherwise, the maximum of x and y is y. PROGRAM’S OUTPUT

Q: (max > x)N(max > y)A(max = xVmax = y) POSTCONDITION Q

Computing the maximum (max) of x and y:
if (x > y)

then max - x
else max =y

Program Verification: Programs and Specifications

Program Verification:
program satisfies its requirements (specification P, Q) (vorbedingung P, Endbedingung @)

Example.

Given two natural numbers x and y.
Compute the maximum value(max) of x and y.

Precondition P: (x > 0) A (y > 0)
Postcondition Q: (max > x) A (max > y) A (max = x V max = y)
Program (code) S: if(x>y)

then max := x

else max ==y

Program Verification: Programs and Specifications

Program Verification:
program satisfies its requirements (specification P, Q)

PROGRAM CORRECTNESS

Example.

Given two natural numbers x and y.
Compute the maximum value(max) of x and y.

Precondition P: (x > 0)A(y > 0)
Postcondition Q: (max > x) A (max > y) A (max = x V max = y)

Program (code) S: if(x>y)
then max := x
else max .=y

Hoare triple (correctness formula): {P} S {Q}

. Hoare (1969)

Program Verification: Programs and Specifications

Program Verification:
program satisfies its requirements (specification P, Q)

PROGRAM CORRECTNESS

Example.

Given two natural numbers x and y.
Compute the maximum value(max) of x and y.

Precondition P: (X > 0) N (y > 0) INITIAL STATE
Postcondition Q: (max > x) A (max > y) A(max = XV max = y) Fasme
Program (code) S: if(x>y)
then max := x How?
else max .=y

Hoare triple (correctness formula): {P} S {Q}

. Hoare (1969)

Program Verification: Programs and Specifications

Program Verification:
program satisfies its requirements (specification P, Q)

PROGRAM CORRECTNESS

Program ... HOW to compute
using program statements S

Specifications ... WHAT to compute
using predicate logic formulas P, Q (ssertions, zusicherungen)

Hoare triple (correctness formula): {P} S {Q}

. Hoare (1969)

Program Verification: Programs and Specifications

Program Verification:
program satisfies its requirements (specification P, Q)

PROGRAM CORRECTNESS

Program ... HOW to compute
using program statements S

Specifications ... WHAT to compute
using predicate logic formulas P, Q (ssertions, zusicherungen)

Program state ... every program variable has a value

Hoare triple (correctness formula): {P} S {Q}

. Hoare (1969)

Programs

Program Statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

o ASSignments: var .= A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;

variable var receives (is updated by) the value A

Programs

Program Statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

o ASSIgnmentS: var .= A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;
variable var receives (is updated by) the value A
A% x L aln] | alX] | A + Ap | Ay — A | Ay x Ag, where n € N; xis a scalar variable with values from I;

ais an array variable; Ay , Ay are arithmetic expressions

Programs

PI’Ogram Statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

o ASSIgnmentS: var .= A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;
variable var receives (is updated by) the value A
A% x L aln] | alX] | A + Ap | Ay — A | Ay x Ag, where n € N; xis a scalar variable with values from I;

ais an array variable; Ay , Ay are arithmetic expressions

° SeqUenCing: S1; S2, where s; and s, are program statements;

execution of statement sy is followed by execution of statement sy

Programs

PI’Ogram Statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

o ASSIgnmentS: var .= A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;
variable var receives (is updated by) the value A
A% x L aln] | alX] | A + Ap | Ay — A | Ay x Ag, where n € N; xis a scalar variable with values from I;

ais an array variable; Ay , Ay are arithmetic expressions
e Sequencing: S1, So2, where sq and s, are program statements;
3 1 2

execution of statement sy is followed by execution of statement sy

e Conditionals: ﬂ (B) then s; else So, where Bis a boolean expression;

if B holds then Sq is executed, otherwise Sp is executed

Programs

PI’Ogram Statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

o ASSIgnmentS: var .= A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;
variable var receives (is updated by) the value A
A% x L aln] | alX] | A + Ap | Ay — A | Ay x Ag, where n € N; xis a scalar variable with values from I;

ais an array variable; Ay , Ay are arithmetic expressions

° SeqUenCing: S1; S2, where s; and s, are program statements;

execution of statement sy is followed by execution of statement sy

e Conditionals: ﬂ (B) then s; else So, where Bis a boolean expression;

if B holds then Sq is executed, otherwise Sp is executed

8% Twe | False | =By | By A By | By v By | Ay < A, where By , By are boolean expressions;

Aq, Ay are arithmetic expressions

Programs

Program Statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

o ASSIgnmentS: var .= A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;
variable var receives (is updated by) the value A
A% x L aln] | alX] | A + Ap | Ay — A | Ay x Ag, where n € N; xis a scalar variable with values from I;

ais an array variable; Ay , Ay are arithmetic expressions

° SeqUenCing: S1; S2, where s; and s, are program statements;

execution of statement sy is followed by execution of statement sy

e Conditionals: ﬂ (B) then s; else So, where Bis a boolean expression;
if B holds then Sq is executed, otherwise Sp is executed

8% Twe | False | =By | By A By | By v By | Ay < A, where By , By are boolean expressions;

Aq, Ay are arithmetic expressions

L] LOOpS: Wh||e (B) d70 S end While, where s is a program statement.

until B holds, statement s is executed

Programs

Program Statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

o ASSIgnmentS: var .= A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;
variable var receives (is updated by) the value A
A% x L aln] | alX] | A + Ap | Ay — A | Ay x Ag, where n € N; xis a scalar variable with values from I;

ais an array variable; Ay , Ay are arithmetic expressions

° SeqUenCing: S1; S2, where s; and s, are program statements;

execution of statement sy is followed by execution of statement sy

e Conditionals: ﬂ (B) then s; else So, where Bis a boolean expression;

if B holds then Sq is executed, otherwise Sp is executed

8% Twe | False | =By | By A By | By v By | Ay < A, where By , By are boolean expressions;

Aq, Ay are arithmetic expressions

L] LOOpS: Wh||e (B) d70 S end While, where s is a program statement.

until B holds, statement s is executed

Program S is a finite sequence of statements:
S=51;%;...,8:-1;8n

Programs

Program Statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

o Assignments: var .= A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;
variable var receives (is updated by) the value A
A%, | x| aln] | alx] | Ay + Ag | Ay — Ax | Ay = Ap, where n € N; x is a scalar variable with values from I;
ais an array variable; Ay , Ay are arithmetic expressions

° SeqUenCing: S1; S2, where s; and s, are program statements;

execution of statement sy is followed by execution of statement sy

e Conditionals: ﬂ (B) then s; else So, where Bis a boolean expression;

if B holds then Sq is executed, otherwise Sp is executed

B def True | False | =By | By A By | By V By | Ay < Ay, where By, By are boolean expressions;

Aq, Ay are arithmetic expressions

o LOOpS: Wh||e (B) d70 S end While, where s is a program statement.

until B holds, statement s is executed

Program S is a finite sequence of statements:
S=51;%;...,8:-1;8n

NOTE: LOOPS MAY NOT TERMINATE! (infinite loop)

Example: Integer Division

Example.
Given two natural numbers x and y, with y being non zero.

Compute:

the quotient (quo) and the remainder (rem) of the integer division of x by y.

Example: Integer Division

Example.
Given two natural numbers x and y, with y being non zero.

Compute:

the quotient (quo) and the remainder (rem) of the integer division of x by y.

Precondition P: (x > 0) A (y > 0)
Postcondition Q: (quo x y + rem = x) A (0 < rem < y)
Program (code) S: quo := 0; rem := x;

while y < rem do

rem:=rem—y; quo := quo + 1
end while

Example: Integer Division

Example.
Given two natural numbers x and y, with y being non zero.

Compute:

the quotient (quo) and the remainder (rem) of the integer division of x by y.

Precondition P: (x > 0) A (y > 0)
Postcondition Q: (quo x y + rem = x) A (0 < rem < y)
Program (code) S: quo := 0; rem := x;

while y < rem do

rem :=rem—y; quo := quo + 1
end while

Hoare triple (correctness formula): {P} S {Q}

Program Correctness

Partial correctness easmemeserorae Of {P} S {Q}:
Every execution of S that:

e starts in a state satisfying P and

e is terminating,
ends in a state satisfying Q.

Program Correctness

Partial correctness easmemeserorae Of {P} S {Q}:
Every execution of S that:

e starts in a state satisfying P and

e is terminating,
ends in a state satisfying Q.

Total correctness wanomsansgiorse Of {P} S {Q}:
Every execution of S that:

e starts in a state satisfying P,
terminates in a state satisfying Q.

Program Correctness

Partial correctness easmemeserorae Of {P} S {Q}:
Every execution of S that:

e starts in a state satisfying P and

e is terminating,
ends in a state satisfying Q.

Total correctness wanomsansgiorse Of {P} S {Q}:
Every execution of S that:

e starts in a state satisfying P,
terminates in a state satisfying Q.

Total correctness = Partial correctness + Termination

Program Correctness

Partial correctness easmemeserorae Of {P} S {Q}:
Every execution of S that:

e starts in a state satisfying P and

e is terminating,
ends in a state satisfying Q.

Verifying Program Correctness - the Process of Program Verification

Verifying Program Correctness - the Process of Program Verification

Specification

Vel’lflcatIOﬂ COI’]dItIOﬂS (in Predicate Logic)

Prove Verification Conditions |

Verifying Program Correctness - the Process of Program Verification

Program

Specification

Weakest Precondition

Vel’lflcatIOﬂ COI’]dItIOI’]S (in Predicate Logic)

Prove Verification Conditions |

E. W. Dijsktra (1975)

e
Weakest Precondition (WP) Strategy

Formula P is weaker setwachen than formula R iff R = P.

DA

Weakest Precondition (WP) Strategy

Formula P is weaker (schwachen than formula R iff R — P.

Weakest Precondition wp(S, Q) (schwachste vorbedingung) for S with Q:
forany {R} S{Q} wehave R — wp(S,Q).

Note: {wp(S,Q)} S {Q}.

Weakest Precondition (WP) Strategy

Formula P is weaker (schwachen than formula R iff R — P.

Weakest Precondition wp(S, Q) (schwachste vorbedingung) for S with Q:
forany {R} S{Q} wehave R — wp(S,Q).

Note: {wp(S,Q)} S {Q}.
VERIFICATION OF {P} S {Q}: (P}

S1;
1. Compute wp(S, Q);
2. Prove P = wp(S, Q)

Sn—1,

Sn

{Q}

Weakest Precondition (WP) Strategy

Formula P is weaker (schwachen than formula R iff R — P.

Weakest Precondition wp(S, Q) (schwachste vorbedingung) for S with Q:
forany {R} S{Q} wehave R — wp(S,Q).

Note: {wp(S,Q)} S {Q}.
VERIFICATION OF {P} S {Q}: (P}

S,
1. Compute wp(S, Q);
2. Prove P = wp(S, Q)

Sp—1;
— Wp(Sm Q)
Sn

{Q}

Weakest Precondition (WP) Strategy

Formula P is weaker (schwachen than formula R iff R — P.

Weakest Precondition wp(S, Q) (schwachste vorbedingung) for S with Q:
forany {R} S{Q} wehave R — wp(S,Q).

Note: {wp(S,Q)} S {Q}.

VERIFICATION OF {P} S {Q}: {P}
S:S1;.4.,Sn71 Sn
S,
1. Compute wp(S, Q); :
2. Prove P = wp(S, Q) ' — Wp(Sn_1,Wp(sn, Q))
Sn—1;
— Wp(sm O)
Sn

{Q}

Weakest Precondition (WP) Strategy

Formula P is weaker (schwachen than formula R iff R — P.

Weakest Precondition wp(S, Q) (schwachste vorbedingung) for S with Q:
forany {R} S{Q} wehave R — wp(S,Q).

Note: {wp(S, Q)} S {Q}.

VERIFICATION OF {P} S {Q}: {P}
S=51;...;81-1;5n — wp(s1,wp(...,wp(sn, Q)))
St wp(S,Q)
1. Compute wp(S, Q); :
2. Prove P = wp(S, Q) . — wp(Sn—1, wp(sn, Q))
Sn—1;
— wp(sn, Q)
Sn

{Q}

wp(x = A, Q)

WP Rules
L] Sca|al’ ASS|g n mentS (x is a scalar variable, A is arithmetic expression):

QX«—A

formula Q, . 4 results from Q by substituting every occurence of x by A

«0O)>» «F»

it
a
it

DA

WP Rules

° Scalar ASS|gn mentS (x is a scalar variable, A is arithmetic expression):

wp(x = A, Q) = Qca

formula Q, . 4 results from Q by substituting every occurence of x by A
wp(x =5, X +y = 6) = 5+y=6
wp(x =x+1,x+y=6) = x+1+y=6

WP Rules

° Scalar ASS|gnmentS (x is a scalar variable, A is arithmetic expression):
wp(x = A, Q) = Qua

formula Q, . 4 results from Q by substituting every occurence of x by A

wp(x =5, X +y = 6) = 5+y=6
X X+1+y=6

+
<
I
2
|

wp(x = x + 1,

L] Array ASSig n ments (ais an array variable, x is a scalar variable, A is arithmetic expression):

wp(a[x] = A, Q) = Qa—z

formula Q , results from Q by substituting every occurence of a by array a’,

a—a

where a’ results from a by replacing the xth element by A

WP Rules

° Scalar ASS|g n mentS (x is a scalar variable, A is arithmetic expression):

wp(x = A, Q) = Qua

formula Q, . 4 results from Q by substituting every occurence of x by A

wp(x =5, x+y =6) = 5+y=6
X

wp(x:=x+1, x+y=6) = x+1+y=6

L] Array ASSignmentS (ais an array variable, x is a scalar variable, A is arithmetic expression):

wp(a[x] := A, Q) = Quuo
formula Oa<—a’ results from Q by substituting every occurence of a by array a’,

where a’ results from a by replacing the xth element by A

wp(a[l]:=x+1, all] = al2)) = a[t]=4]2]

where a’[1] = x +1 and a’[i] = ali] for every i # 1

WP Rules

° Scalar ASS|gn mentS (x is a scalar variable, A is arithmetic expression):

wp(x = A, Q) = Qua

formula Q, . 4 results from Q by substituting every occurence of x by A

wp(x =5, X +y = 6) = 5+y=6
X

wp(x:=x+1, x+y=6) = x+1+y=6

° Array ASSlgnmentS (ais an array variable, x is a scalar variable, A is arithmetic expression):
wp(a[x] := A, Q) = Quuo
formula Oa<—a’ results from Q by substituting every occurence of a by array a’,
where a’ results from a by replacing the xth element by A

wp(a[l] :=x+1, a[l]=af2]) = a[1]=4[2]

where a’[1] = x +1 and a’[i] = ali] for every i # 1

= x+1=a2]

e Sequencing:

wp(si; 2, Q)

wp(si, wp(sz, Q))

(O AT =

<

i
v

Q>

WP Rules

e Sequencing:

wp(si; 2, Q)

wp(s1, wp(sz, Q)
Wp(x :=x+1;y =y +Xx, y > 10)

(O @ <=>

<

i
v

Q>

e Sequencing:

wp(si; sz, Q)

wp(x = x+ 1,y =y +x, y>10)

WP Rules

Wp(sh Wp(SZ, Q))

Wp(X ::X+17 Wp(y ::y+X7

(O AT =

<

y> 10))

Q>

WP Rules

e Sequencing:

wp(si; sz, Q) = wp(si, wp(sz, Q))
wp(x =x+1y:=y+x,y>10) = wp(x:=x+1, wp(y =y +x, y>10))
wp(x :=x+1, y+x>10)

«O» «F»r «=» «

DA

WP Rules

e Sequencing:

wp(si; s2, Q) = wp(si, wp(sz, Q))

wp(x :=x+1,y:=y+x, y>10) wp(x :=x +1, wp(y ==y + x, y > 10))

wp(x :=x+1, y+x>10)

y+x+1>10

WP Rules
e Conditionals:

wp(if (B) then s else sz, Q)

(B = wp(s1, Q))A (=B = wp(s, Q))

«0O>» «F)»r « =

<

it
v

DA

WP Rules

e Conditionals:

wp(if (B) then sy else 52, Q) = (B = wp(si, Q)) A (=B = wp(sz, Q))

Special Case:

wp(if (B) then s,, Q) = (B — wp(si, Q)) A(-B = Q)

WP Rules

e Conditionals:

wp(if (B) then sy else 52, Q) = (B = wp(si, Q)) A (=B = wp(sz, Q))

Example revisited: Maximum of Two Natural Numbers

Postcondition Q: (max > x) A (max > y) A (max = x V. max = y)

wp(if x > y then max .= x else max .=y, Q) =

WP Rules

e Conditionals:

wp(if (B) then sy else 52, Q) = (B = wp(si, Q)) A (=B = wp(sz, Q))

Example revisited: Maximum of Two Natural Numbers

Postcondition Q: (max > x) A (max > y) A (max = x V. max = y)

wp(if x > y then max .= x else max .=y, Q) =

(x>y = wp(max = x, Q)) A (x <y = wp(max =y, Q) =

WP Rules

e Conditionals:

wp(if (B) then sy else 52, Q) = (B = wp(si, Q)) A (=B = wp(sz, Q))

Example revisited: Maximum of Two Natural Numbers
Postcondition Q: (max > x) A (max > y) A (max = x V. max = y)
wp(if x > y then max .= x else max .=y, Q) =

(x>y = wp(max = x, Q)) A (x <y = wp(max =y, Q) =

(X >y = Oma)(ex) A (X <y — Omaxgy) =

WP Rules

e Conditionals:

wp(if (B) then sy else sz, Q) (B = wp(s1, Q)) A (-B = wp(sz, Q))
Example revisited: Maximum of Two Natural Numbers

Postcondition Q: (max > x) A (max > y) A (max = x V. max = y)

wp(if x > y then max .= x else max .=y, Q) =
(x>y = wp(max = x, Q)) A (x <y = wp(max =y, Q) =
(X > y — Oma)a—x) A (X < y — Oma)a—y) =

(ny = (x>x)/\(x>y)/\(x—x\/x—y)))
A

(x<y = (y=0A=NA=xVy=7))

WP Rules
e Loops L = while (B) do s end while :

wp(while (B) do s end while, Q)

«0O>» «F)»r « =

<

it
v

DA

WP Rules
e Loops L = while (B) do s end while :

wp(while (B) do s end while, Q)

{wp(L, Q)}
if (B) then s; while (B) do s end while
while (B) do s end while
{Q}

«Oo» «F»

DA

WP Rules
e Loops L = while (B) do s end while :

wp(while (B) do s end while, Q)

use conditional together with loop: ” instead of a single loop:
{wp(L, Q)}

if (B) then s;
{wp(L, @)}

while (B) do s end while
{Q}

while (B) do s end while

DA

e Loops L = while (B) do s end while :

WP Rules

wp(while (B) do s end while, Q) = |

where /is a |00p invariant (/s invariant/remains unchanged) (Schlaufen-Invariant)

{wp(L, @)}

{wp(L, @)}

{Q}

use conditional together with loop: ‘ ‘ instead of a single loop:
if (B) then s while (B) do s end while
if (B) then s; while (B) do s end while
while (B) do s end while

WP Rules

e Loops L = while (B) do s end while :
wp(while (B) do s end while, Q) = |

where /is a |OOp invariant (/is invariant/remains unchanged) (Schlaufen-Invariant)

LOOP INVARIANTS (INDUCTIVE ASSERTIONS):
evaluate to true before and after each loop iteration

WP Rules
e Loops L = while (B) do s end while :
wp(while (B) do s end while, Q) = |

Whel’e I iS a |00p inVariant (/s invariant/remains unchanged) (Schlaufen-Invariant)

LOOP INVARIANTS (INDUCTIVE ASSERTIONS):
evaluate to true before and after each loop iteration

lis an invariant for {P} while (B) do s end while {Q} iff:

0. initial condition: P — [;
1. iterative (inductive) condition: {/ A B} s {/};
2. final condition: IA-B = Q

WP Rules
e Loops L = while (B) do s end while :
wp(while (B) do s end while, Q) = |
where ['is a loop invariant (s invariantiremains unchanged) (Schiaufen-invariant)

and VERIFICATION CONDITIONS:
1. INB = [I', where ! =wp(s, /);
2. INn-B — Q.

LOOP INVARIANTS (INDUCTIVE ASSERTIONS):
evaluate to true before and after each loop iteration

l'is an invariant for {P} while (B) do s end while {Q}

0. initial condition: P — [;
1. iterative (inductive) condition: {/ A B} s {/};
2. final condition: IAN-B — Q

iff:

WP Rules
e Loops L = while (B) do s end while :
wp(while (B) do s end while, Q) = |
where ['is a loop invariant (s invariantiremains unchanged) (Schiaufen-invariant)

and VERIFICATION CONDITIONS:
1. INB = [I', where ! =wp(s, /);
2. IN-B = Q.

VERIFICATION OF {P} WHILE (B) DO s END WHILE {Q} :

e Compute wp(while (B) do s end while , Q) = ;
e Prove VERIFICATION CONDITIONS:

0. P = I
1. INB = I, where ! =wp(s, /);
2. INn-B = Q.

Example revisited: Integer Division

Precondition P: (x > 0) A (y > 0)

Postcondition Q: (quoxy +rem=x) A (0 < rem < y)
Loop DivLoop:

while (y < rem) do

rem:=rem—y; quo := quo + 1
end while

wp(DivLoop, Q)

«O» «F»r «=» «

DA

Example revisited: Integer Division ANNOTATED with invariant

Precondition P: (x > 0) A (y > 0)
Postcondition Q: (quox y +rem=x) A (0 < rem < y)

Loop DivLoop:

Invariant | : (quoxy+rem=x)A (0 <rem)A(0<y)A(x>D0)
while (y < rem) do

rem:=rem—y; quo := quo + 1
end while

wp(DivLoop, Q) =

u]
o)
1l
n
it

DA

Example revisited: Integer Division ANNOTATED with invariant

Precondition P: (x > 0) A (y > 0)

Postcondition Q: (quoxy +rem=x) A (0 < rem < y)

Loop DivLoop:

Invariant | : (quoxy +rem=x)A(0<rem)A(0<y)A(x>0)
while (y < rem) do

rem:=rem—y; quo := quo + 1
end while

wp(DivLoop, Q) = (quoxy+rem=x)A(0<rem)A(0<y)A(x>0)

Example revisited: Integer Division ANNOTATED with invariant

Precondition P: (x > 0) A (y > 0)

Postcondition Q: (quoxy +rem=x) A (0 < rem < y)

Loop DivLoop:

Invariant | : (quoxy +rem=x)A(0<rem)A(0<y)A(x>0)
while (y < rem) do

rem :=rem—y; quo := quo + 1
end while

wp(DivLoop, Q) = (quoxy+rem=x)A(0<rem)A(0<y)A(x>0)

VERIFICATION CONDITIONS:
P =
IN(y<rem) = ((quo+1)xy+(rem—y)=x)A(0<rem—y)A(0<y)A(x >0)
IN(y >rem) = Q

Weakest Precondition Strategy — Revised Summary

VERIFICATION OF {P} S {Q}:

1. Compute wp(S, Q);

2. Prove:
e P — wp(S,Q);

o additional verification
conditions

{P}
— wp(si,wp(...,wp(sn, Q)))
st wp(S,Q)
1 verification
— wp(Sn—1,Wp(Sn, Q)) conditions
Spn—1;
— wp(sn, Q)
Sn

{Q}

Example

Example (Integer Division.)
Verify the correctness of the annotated { P} S {Q}, where:
P:(x>0)A(y>0)
Q: (quoxy+rem=x)A(0<rem<y)
Annotated S (S annotated with invariant) -
quo :=0; rem := x;
invariant (quo * y +rem=x) A (0 <rem) A (0 < y)A(x > 0)
while (y < rem) do
rem:=rem—y; quo := quo + 1
end while

Example

Example (Integer Division.)
Verify the correctness of the annotated { P} S {Q}, where:
P:(x>0)A(y>0)
Q:(quoxy+rem=x)A(0<rem<y)
Annotated S (S annotated with invariant) -
quo := 0; rem = x;
invariant (quo * y +rem=x) A (0 <rem) A (0 < y)A(x > 0)
while (y < rem) do
rem:=rem—y; quo := quo + 1
end while
Verification Conditions:
X>0)A(y>0 =
X=X)AX>0AXx>0Ay>0
X=rem+yxquo)Ax>0Arem>0Ay >0Ay <rem —
x=(rem—y)+yx*x(quo+1)Ax>0Arem—y>0Ay >0

X=rem+yxquo)Ax>0Arem>0Ay >0Ay>rem =
xX=rem+y*xquo)AN0<rem<y

~N NN~

Exercise (1)
Is the Hoare triple {x :== 1} x .= x+ 1,y := x+ 1 {y > 2} correct?

Exercise (2)
Compute: wp(t:=x;x:=y;y=t, x=YAy=X).

Exercise (3)
Verify the correctness of the annotated { P} S {Q}, where:
P: x=0Ay=0
Q: x=10Ay =10
Annotated S: invariant (x = y) A (x < 10)
while (x < 10) do x := x + 1; y := y + 1 end while

Exercise (4)

Consider the Hoare triple {P} S {Q}, where:
P: x=0

Q. x=5

S: while (x < 5) do x := x + 1 end while
e Isx <5 aninvariant?

e Isx < 5 aninvariant?
e Isx =5 aninvariant?

