Complexity

Laura Kovacs

‘ Example of a Program Code

How many elementary operations are performed at most when executing the code for
Input of a given size n?

public static long factorial (int n)
{
long factorial := 1;
int i:=1;
while (i=n) do
factorial := factorial * i;
| = i+1;
end while
return factorial;

© 00 N o o A~ W N P

‘ Example of a Program Code

How many elementary operations are performed at most when executing the code for

input of a given size n?

1 public static long factorial (int n)
2 A{

3 long factorial := 1;

4 int i:=1;

5 while (i=n) do

6 factorial := factorial * i;
7 | = 1+1;

8 end while

9 return factorial;

1 }

LNe | oty g
3 1
4 1
5 4
6 4
7 3
9 1

For example, in line 6 we:

-look up the value of i;

-look up the value of factorial;

-multiply these two values;

-assign the result of multiplication to factorial.

‘ Example of a Program Code

How many elementary operations are performed at most when executing the code for

Input of a given size n?

{

© 00 N o o A~ W N P

public static long factorial (int n)

long factorial := 1;

int i:=1;

while (i=n) do
factorial := factorial * i;
| = 1+1;

end while

return factorial;

Line | e | s
3 1
4 1 1
) 4 n
6 4 n
7 3 n
9 1 1

‘ Example of a Program Code

How many elementary operations are performed at most when executing the code for

Input of a given size n?

1 public static long factorial (int n)
2 A{

3 long factorial := 1;

4 int i:=1;

5 while (i=n) do

6 factorial := factorial * i;
7 | = 1+1;

8 end while

9 return factorial;

1 }

Line | e | s
3 1
4 1 1
) 4 n
6 4 n
7 3 n
9 1 1

Total number of elementary operations:

N 5 N, f(n) = 1+1+4*n+4*n+3*n+1 = 11*n +3

‘ Example of a Program Code

How many elementary operations are performed at most when executing the code for

input of a given size n?

{

1
2
3
4
5
6
.
8
9

1 }

public static long factorial (int n)

long factorial := 1;

int i:=1;

while (i=n) do
factorial := factorial * i;
| = 1+1;

end while

return factorial;

Number of elementary operations performed by a comp

Line | e | s
3 1 1
4 1 1
) 4 n
6 4 n
7 3 n
9 1 1

An estimate of the

Total number of elementary operations:

uter depend on many factors!

N 5 N, f(n) = 1+1+4*n+4*n+3*n+1 = 11*n +3

For example:

- operation on a LONG/INT type can get 2 elementary operations, instead of 1 = 11*n+6 is also reasonable.

‘ Example of a Program Code

How many elementary operations are performed at most when executing the code for

input of a given size n?

1 public static long factorial (int n)
2 A{

3 long factorial := 1;

4 int i:=1;

5 while (i=n) do

6 factorial := factorial * i;
7 | = 1+1;

8 end while

9 return factorial;

1 }

Line | e | s
3 1 1
4 1 1
) 4 n
6 4 n
7 3 n
9 1 1

An estimate of the

Total number of elementary operations:

f: N - N, f(n) = 1+1+4*n+4*n+3*n+1 = 11*n +3

UPPER BOUND abstraction for all estimates f: Big O

Notation

‘ Big O Notation - Definition

Let N be the set of natural numbers.

Letf:N - Nand g:N - N be two functions.

Then feO(q) Iff:

A¢, ny (C, neeN) 0(c>0) : ((¥n: (n eN On=ny): (f(n) < c*g(n))

We say:
- O(g) is the order of function g (Ordnung of g)
- If feO(g), then f is of the Order of g (von der Ordnung g)

‘ Big O Notation - Definition

Let N be the set of natural numbers.

Letf:N - Nand g:N - N be two functions.

Then feO(q) Iff:

A¢, ny (C, neeN) 0(c>0) : ((¥n: (n eN On=ny): (f(n) < c*g(n))

We say:
- O(g) is the order of function g (Ordnung of g)
- If feO(g), then f is of the Order of g (von der Ordnung g)

Note: If g: N - N with g(n)=n, we write feO(n) instead of feO(g).

Note: If g(n) # O for every n eN, then feO(g) < lim __f(n)/g(n)=c

‘ Big O Notation - Definition

Let N be the set of natural numbers.

Letf:N - Nand g:N - N be two functions.

Then feO(q) Iff:

A¢, ny (C, neeN) 0(c>0) : ((¥n: (n eN On=ny): (f(n) < c*g(n))

Example (Revisited Factorial Example from slides 2-6)

Consider f: N - N, f(n)=11*n+3. Then fe?

‘ Big O Notation - Definition

Let N be the set of natural numbers.

Letf:N - Nand g:N - N be two functions.

Then feO(q) Iff:
A¢, ny: (c, ngeN) 0(c>0) : ((¥n: (n eN On=ny): (f(n) < c*g(n))

Example (Revisited Factorial Example from slides 2-6)
Consider f: N - N, f(n)=11*n+3. Then feO(n).
Proof: We choose c=12, n,=3. It remains to show:
vn: (n eN 0On=3): (11*n+3 < 12*n), that is 11*n+3 < 12*n for all n=3.
Since n>=3, we have 11*n + 3 < 11*n+n = 12*n.

Therefore, 11*n+3 €0(n).

‘ Big O Notation - Definition

Let N be the set of natural numbers.

Letf:N - Nand g:N - N be two functions.

Then feO(q) Iff:

A¢, ny: (c, ngeN) 0(c>0) : ((¥n: (n eN On=ny): (f(n) < c*g(n))

Example (Revisited Factorial Example from slides 2-6)

- Consider f: N - N, f(n)=11*n+3. Then feO(n).

- Consider f; : N - N, f,(n)=11*n+6. Then f,€O(n).
- Consider f,: N - N, f,(n)=7*n+1. Then f,eO(n).

In case of the Factorial Example:

At most O(n) elementary operations are performed when executing the code for input n_.

‘ Big O Notation - Properties

Computer Programs implement Algorithms.

Algorithms can be:

 deterministic - non-deterministic
(deterministisch) (nichtdeterministisch)

* sequential - parallel
(sequentiell) (parallel)

* finite - infinite
(endlich) (undendlich)

* reversible - irreversible

(reversibel) (irreversibel)

‘ Big O Notation - Properties

Computer Programs implement Algorithms.

Algorithms can be implemented and executed in different ways, depending on computer properties.

(16 / 32/ 64 bits memory allocation for input, CPU-cycles, memory/time limit, etc.)

O(*) measures the worst-case _ (ungiinstigsten _Fall) complexity (Aufwand) of an ALGORITHM!

O(*) gives an upper bound on the execution time of an ALGORITHM!

O(*) does not depend on computer properties!

O(*) depends only on the INPUT of the ALGORITHM!

Algorithms can be:

e deterministic non-deterministic

(deterministisch) (nichtdeterministisch)
* sequential - parallel
(sequentiell) (parallel)
* finite - infinite
(endlich) (undendlich)
* reversible - irreversible

(reversibel) (irreversibel)

‘ Big O Notation — Some Common Orders

O(l) Constant (konstant)
Ifg: N - N with g(n)=1, we write feO(1) instead of feO(g).
O(log n) Logarithmic (ogarithmisch)
If g: N - N with g(n)=log n, we write feO(log n) instead of feO(qg).
O(n) Linear (inear)
If g: N - N with g(n)=n, we write feO(n) instead of feO(g).
O(n2) Quadratic (quadratisch)
If g: N - N with g(n)=n?, we write f€cO(n?) instead of feO(g).
O(n¥) ken || Polynomial (polynomial)
If g: N = N with g(n)=nk, we write feO(n¥) instead of feO(g).
O(eM) Exponential (exponentiel)

Ifg: N - N with g(n)=e", we write feO(e") instead of feO(g).

‘ Big O Notation — Some Common Orders

— exponential
guadratic

— linear
logarithmic

— constant

‘ Bl O Notation — Dependency among Common Orders
g p y g

Exponential

Polynomial
Quadratic

Linear

\C
\,oga('\\“m\

‘ Bl O Notation — Dependency among Common Orders
g p y g

Exponential

Polynomial Note:

If feO(1), then clearly:
» feO(log n);

 feO(n).

 feO(n?);

 feO(nk);

» feO(e").

Quadratic

BUT, we are interested in giving a
TIGHTEST

complexity approximation

Algorithms with input n
n Id n nildn n? 2" n!
10 3 33 100 1024 3*106
20 4 86 400 106 2%1018
100 14 664 10°000 1031 10161
1000 10 10.000 106
10000 13 130.000 108

‘Big O Notation — Calculus Rules

Letf:N - Nand g: N - N be two functions.

0 O(c*f) = O(f), where ce Nis a constant

0 O() + O(g) = O(i+g)

Note: O(f+g)= max{O(f),0(g)}

0 O(i*g) = O(1)*O(9)

Some further properties (follows from O-definition):

Example :
*O(f) € O(g) = fOO(9) o O(|Og n) C O(n)

* O(n*log n) c O(n?)
* O(f) = O(g) = (O(f) < O(9)) T (O(g) < O(f)) * O(log n) c O(n1/2

* O(f) € O(g) = (O(f) € O(9)) U(O(g) # O(f))

‘Big O Notation — Calculus Rules

Letf:N - Nand g: N - N be two functions.

0 O(c*f) = O(f), where ce Nis a constant

0 O() + O(g) = O(i+g)

Note: O(f+g)= max{O(f),0(g)}

0 O(i*g) = O(1)*O(9)

Some further properties (follows from O-definition):
Abbreviation: Denoting ¢ by < Example :

. 0(f) cO(g) = fOO(g) » O(log n) c O(n)

O(f) = O(g) = fOO(9) . O(n*log n) - O(nZ)

+O(f) = 0(g) = (O(f) € O(g)) O(O(g) € O() « O(log n) ¢ O(n¥’2)
O(f) = O(g9) = fOO(9)

* O(f) c O(9) = (O(f) € O(g)) O(O(g) # O(f)
O(f) <0O(g) = (0(HcO(g)) O(O(H*O(g))

‘Big O Notation — Examples

Estimate the below complexities with O-notation.
The estimation should be as tight as possible.

m O(2*n-1) = ...

m O(n*(n+1)/2) = ...

m O(dn)=...

m O(logn?) =...

m O((3*n2+ 6*n+9)*log(1+2*n)) = ...

‘Big O Notation — Examples

Estimate the below complexities with O-notation.
The estimation should be as tight as possible.

m O(2*n-1) = O(n)

m O(n*(n+1)/2) = O(n?)

m O(ld n) =0O(log n)

m O(log n?) = O(log n)

m O((3*n2 + 6*n+9)*log(1+2*n)) = O(n?log(n))

Lower Bounds of an Algorithm’s Execution Time

O-notation for UPPER BOUND (oberen Schrank) ESTIMATION:

feO(g) iff I c, ny (c, ngeN) U(c>0): (Vn: (neN On=ny): (f(n) < c*g(n))

Lower Bounds of an Algorithm’s Execution Time

Letf:N -~ Nand g: N - N be two functions.

Then feQ(g) iff:

A¢, ny (c, nyeN) 0(c>0) : ((¥n: (n eN On=ny): (g(n) < c*f(n))

O-notation for UPPER BOUND (oberen Schrank, ungiinstigsten Fal) ESTIMATION:

feO(g) Iff A c, ny (c, ngeN) U(c>0): (Vn: (neN On=ny): (f(n) < c*g(n))

€2-notation for LOWER BOUND (best-case, unteren Schrank, giinstigsten Fall) ESTIMATION:

fe Q(g) iff Jc,ny (¢, ngeN) J(c>0) : (VYn: (n eNOn=ngy): (g(n) < c*f(n))

Average Bounds of an Algorithm’s Execution Time

Example:
(3n%+6n+9n)*log(1+2n) < 36 N> *logn ——— (3n%+6n+9n)*log(1+2n) €O(n? * log n)

(3n%+6n+9n)*log(1+2n) = n? * log n —— (3n%+6n+9n)*log(1+2n) € Q(n? * log n)

O-notation for UPPER BOUND (oberen Schrank, ungiinstigsten Fal) ESTIMATION:

feO(g) Iff A c, ny (c, ngeN) U(c>0): (Vn: (neN On=ny): (f(n) < c*g(n))

€2-notation for LOWER BOUND (unteren Schrank, giinstigsten Fall Y ESTIMATION:

fe Q(g) iff Jc, ny (¢, ngeN) J(c>0) : (Vn: (n eN On=ngy): (g(n) < c*f(n))

Average Bounds of an Algorithm’s Execution Time

Example:
(3n%+6n+9n)*log(1+2n) < 36 N> *logn ——— (3n%+6n+9n)*log(1+2n) €O(n? * log n)

(3n%+6n+9n)*log(1+2n) = n? * log n —— (3n%+6n+9n)*log(1+2n) € Q(n? * log n)

(3n%+6n+9n)*log(1+2n) € 0 (n? * log n)

O-notation for UPPER BOUND (oberen Schrank, ungiinstigsten Fal) ESTIMATION:

feO(g) Iff A c, ny (c, ngeN) U(c>0): (Vn: (neN On=ny): (f(n) < c*g(n))

€2-notation for LOWER BOUND (unteren Schrank, giinstigsten Fall) ESTIMATION:

fe Q(g) iff Jc, ny (¢, ngeN) J(c>0) : (Vn: (n eN On=ngy): (g(n) < c*f(n))

Average Complexity (mittiere Aufwand): 0(g) = O(g) N Q(Q)

fe 0(g)

iff 4c,,c,,ng: (cy, Cy, NEN)Xc,>0)[(c,>0): (Vn: (n eN O n=ny): (c,*g(n) < f(n) < c,*g(n))

Average Bounds of an Algorithm’s Execution Time

Factorial Example:
O(n) ... linear worst-case complexity
Q(1) ... constant best-case complexity

o(n) ... linear average complexity

O-notation for UPPER BOUND (oberen Schrank, ungiinstigsten Fal) ESTIMATION:

feO(g) Iff A c, ny (c, ngeN) U(c>0): (Vn: (neN On=ny): (f(n) < c*g(n))

€2-notation for LOWER BOUND (unteren Schrank, giinstigsten Fall) ESTIMATION:

feO(g) Iff A c, ny (c, ngeN) U (c>0): (Vn: (neN On=ngy): (g(n) < c*f(n))

Average Complexity (mitlere Autwand): 0(g) = O(g) N Q(g)

fe 8(g) iff 4c,c,n0: (cq, C,, NOEN)Xc,>0)(c,>0): (Yn: (n eN T n=n0): (c,*g(n) < f(n) < c,*g(n))

‘ Complexity — Example 1

s Example:

boolean f (int[][] a, intn) {
for(inti=0;i<n;i++){
for(intj=i+1;j<n;j++){
if (a[i]j] == 0) {return false;}

}

return true,

What is the worst-case complexity?
What is the best-case complexity?
What is the the average complexity?

‘ Complexity — Example 1

s Example:

boolean f (int[][] a, intn) {
for(inti=0;i<n;i++){
for(intj=i+1;j<n;j++){
if (a[i]fj] == 0) {return false;}

}

return true,

O(n?) ... quadratic worst-case complexity
Q(1) ... constant best-case complexity
8(n?) ... guadratic average complexity

‘ Complexity — Example 1

s Example:

boolean f (int[][] a, intn) {
for(inti=0;i<n;i++){
for(intj=i+1;j<n;j++){
if (a[i]fj] == 0) {return false;}

}

return true,

What is the worst-case complexity in case of allar ray elements are 1?

‘ Complexity — Example 1

s Example:

boolean f (int[][] a, intn) {
for(inti=0;i<n;i++){
for(intj=i+1;j<n;j++){
if (a[i]fj] == 0) {return false;}
}
}

return true,

What is the worst-case complexity in case of allar ray elements are 1?

O(n?)

‘ Complexity — Example 2

s Example:

boolean f (int[][]a, intn){
long factorial := 1,
inti:=1;
while (i=n) do
factorial := factorial * i;
| = i+1;
end while;

for(inti=0;i<n;i++){
for(intj=i+1;j<n;jt+){
if (a[i][j] == 0) {return false;}
}
}

return true;

What is the worst-case complexity?
What is the best-case complexity?
What is the average complexity?

‘ Complexity — Example 2

s Example:

boolean f (intm a,intn){

long factorial ;= 1;
inti:=1;
while (i=n) do
factorial := factorial * i;
| = i+1;
end while;

for (INti=0.1<n;i++)4
for(intj=i+1;j<n;jt+){
if (a[i][j] == 0) {return false;}
}
}

return true;

O(n?) ... quadratic worst-case complexity
Q(1) ... constant best-case complexity
0(n?) ... quadratic average complexity

‘ Blg O NOtatIOﬂ — Example of Binary Search

A(n) =1+ A(n/2)
Al)=1

AnN)=1+Ildn = O(A)=0(log n)

A [0 O(log n)

Big O Notation - P and NP Algorithms

An algorithm (problem) is in P iff it can be solved in polynomial time.

An algorithm is in P iff it is solved ___ in O(nk) steps of execution,
where n is the size of the algorithm’s input.

Essentially, P corresponds to the class of problems that are realistically solvable on a computer.

An algorithm in P is called a P-problem, P-algorithm, polynomial-time problem. £, 5je: Factorial is in P.

Big O Notation - P and NP Algorithms

An algorithm (problem) is in P iff it can be solved in polynomial time.

An algorithm is in P iff it is solved ___ in O(nk) steps of execution,
where n is the size of the algorithm’s input.

Essentially, P corresponds to the class of problems that are realistically solvable on a computer.

An algorithm in P is called a P-problem, P-algorithm, polynomial-time problem.

An algorithm is in NP iff it can be verified in O(nX) steps of execution,
where n is the size of the algorithm’s input.

For a problem in NP,

- one guesses a solution-candidate;
- verifies (checks) in POLYNOMIAL TIME whether the solution-candidate is indeed a solution.

An algorithm in NP is called an NP-problem, NP-algorithm, nondeterministic polynomial-time problem.

Big O Notation - P and NP Algorithms

An algorithm (problem) is in P iff it can be solved in polynomial time.

An algorithm is in P iff it is solved ___ in O(nk) steps of execution,
where n is the size of the algorithm’s input.

Essentially, P corresponds to the class of problems that are realistically solvable on a computer.

An algorithm in P is called a P-problem, P-algorithm, polynomial-time problem.

An algorithm (problem) is in NP iff it can be solved in nhondetermistic-polynomial time.

An algorithm is in NP iff it can be verified in O(nX) steps of execution,
where n is the size of the algorithm’s input.

For a problem in NP,
- one guesses a solution-candidate;
- verifies (checks) in POLYNOMIAL TIME whether the solution-candidate is indeed a solution.

An algorithm in NP is called an NP-problem, NP-algorithm, nondeterministic polynomial-time problem.

Open Questions: P = NP? P #NP ?

‘ Big O Notation — NP-Complete Problems

Intuitively, A problem is in NP-complete iff
-itisin NP
-one cannot do better than NP when solving it.

From one NP-complete problem another NP-complete problem can be obtained in polynomial time.

If one NP-complete problem could be solved in polynomial time, then P=NP.

‘ Blg O Notation - Examples of NP-Complete Problems

o Satisfiability Satisfiability Problem:

Given a propositional formula with n boolean variables.

- Question: Is the formula satisfiable?

. Answer: Yes, if the formula is satisfiable;
No, otherwise.

Q

Q

Q

‘ Blg O Notation - Examples of NP-Complete Problems

0 Cligue Problem:
Given a graph G and ke N
- Clique Question: Does G have a k-Clique?
. Answer: Yes, if the G has a k-Clique;
No, otherwise.
0
Q
Q

‘ Blg O Notation - Examples of NP-Complete Problems

0 Hamiltonian Path Problem:

Given a graph G and two nodes u, v of the graph G
Question: Does G have a Hamiltonian Path from u to v?
Answer: Yes, if G has a Hamiltonian Path from u to v;

o Hamiltonian Path
No, otherwise.

Big O Notation

Graph Coloring Problem:

Given a graph G and three distinct colors (Red-Green-Blue)
Question: Can the nodes of G be 3-colored, that is
no two adjacent nodes have the same color?
Answer: Yes, if G can be 3-colored;
Graph Coloring No, otherwise.

Example of a 3-colored Graph:

‘ Blg O Notation - Examples of NP-Complete Problems

0 Subset Sum Problem:

Given a set S={x,,...,x,} of natural numbers

- and a natural numbert e N

- Question: Does S have a subset {y,,...,y,} such that 2y,=t?
Answer: Yes, if S has such subset;

Q No, otherwise.

o Subset-sum

Example:

0 If S={8, 11, 16, 29, 37} and t=37,
then

a - {8, 29} is a solution of Subset Sum.

- {11, 16} is a solution of Subset Sum.

- {37} is a solution of Subset Sum.

Big O Notation

Travelling Salesman Problem:

Given a salesman
and n cities with pairwise distances between cities

Question: What is the shortest path the salesman can make
such that each city is visited exactly once?

B2—®

Travelling Salesman 42 34
35

O—=®

Example of 4 cities

|

Minimal hamiltonian path in the weighted graph. (A,B,C,D)

Big O Notation

Scheduling Problem:

Given - a list of exams F4, ..., F,
- a list of students S,,...,S
-anumberh eN

Each student is taking some specified subset of exams.

Question: Make an exam-schedule such that:

- it uses only h slots

- no student is required to take 2 exams in the same slot

Scheduling

‘ COmputaﬂOﬂal leltS — Undecidable Problems

There are infinitely many problems that cannot be a Igorithmically solved.

There are infinitely many problems that cannot be s olved by computers.

Example (HALTING-PROBLEM).
There is NO ALGORITHM that decides whether a program terminates or not.

