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‘ Graphs — Definition

An undirected graph (ungerichteter Graph), or simply a graph G = (V, E) consists of:
o asetV of nodes / vertices (Knoten),
and
o aset E of edges (Kanten), connecting two distinct nodes: E ={{u,v} | u,v e V}.

Note: Unlike trees, graphs have no restrictions on edges connecting nodes!

A tree can be viewed as a special kind of graph.

Example of a graph:
(it is NOT atree!)

V ={a,b,c,d,e,f,g}
E ={{ab}, {ac}, {b,c}, {c.d}, {d.,e}, {d,f}, {eq} {f.0}}

No difference between edge {a,b} or {b,a} in the undirected graph!

{a, b} indicates that nodes a and b are connected by edge {a,b}.



‘ Graphs — Adjacent and Incident Nodes

Consider a graph G = (V, E).

If {u,v} € E (uv}is an edge in G), then:
nodes u and v are said to be adjacent / neighbors (adjazent).

A node u € V is called incident (inzident) to an edge that contains u.

Example:

-aand b are adjacent
-a and f are not adjacent
- aisincident to {a,b}, and {a,c}

-ais not incident to {d,f}




‘ Gr aphs — Representing Graphs via Adjacency Matrix

Consider a graph G = (V, E), where V has n nodes.

The adjacency matrix (adjacency list, Adjazenzmatrix) of G IS an
N XN matrix A (thatis, A has n rows and n columns) Such that

A, =1lif{uv}eE and A,,=0if {uyv} OE

Example: abcde f g

alo 1 1.0 0 00

bl1 01 0 0 0O

cl1 101000 ‘

d{o o1 01 10

el[0 OO 1 00 1

f{loO 001 00 1

glo 0001 10

Adjacency matrix (list)
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‘ Graphs — Degree of a Node
Consider a graph G = (V, E).

The degree (grad) of a node u € V is the number of edges to which u incident is.

Example:

- degree of ais 2




‘ Graphs and Binary Relations

A graph G = (V, E) consists of a set of nodes V and a binary relation E C V xV.

o If{u,v}eE, thatisu E v, then there is an edge {u,v} in the graph.




‘ Graphs and Binary Relations

A graph G = (V, E) consists of a set of nodes V and a binary relation E c V xV.

o If{u,v}eE, thatisu E v, then there is an edge {u,v} in the graph.

For a (undirected) graph G = (V, E), the binary relation E ¢ V xV is symmetric.

o If{u,v}is an edgein G, so is {v,u} an edge in G.

Example:

Binary relation E c V xV, where:

V={a,b,c,d,e f,g} l

E={{a,b}, {a,c}, {b,c}, {c.d}, {d.e}, {d.i}, {e.g}. {f.g},
{b.a}, {c.a}, {c,b}, {d,c}, {e,d}, {f.d}, {9.€}, {9.f} }




‘ Graphs — Directed Graphs

A graph G = (V, E) is called directed (gerichtet) if its edges give directions (Orientierung)
from one node to another.

For an edge {u,v} € E in a directed graph, we say that:

- {u,v} is directed (orientiert) from u to v; W— W)
- u is the head (Kopf) of edge {u,v}.

- v is the tail (Ende) of the edge {u,v}.

A directed graph is shortly called Digraph.

Example:
Undirected graph Directed graph
{a,b} is the same as {b,a} {a,b} is NOT the same as {b,a}

{a,b} is an edge, and so is {b,a} {a,b} is an edge, but {b,a} is NOT.



Directed Graphs and Binary Relations

A directed graph G = (V, E) is the binary relation E ¢ V xV over the set of nodes V.

Example:

Binary relation E c V xV, where:

m) \=(abcdefg)

E={{a,b}, {a,c}, {b,c}, {c.d}, {d.e}, {d.i}, {e.,g}, {f.g} }

Directed graph
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Directed Graphs and Binary Relations

A directed graph G = (V, E) is the binary relation E ¢ V xV over the set of nodes V.

A binary relation E ¢ V xV over the set of objects V defines a directed graph G=(V,E).

Note: If E €V XV is a symmetric relation,

then the undirected graph G’=(V,E) and directed graph G=(V,E) are the same.

Only directed graphs can model antisymmetric /asymmetric/non-symmetric/ partial order relations!

Example:

Binary relation E c V xV, where:

&) \V-iabcdefg)

E={{a,b}, {a,c}, {b,c}, {c.d}, {d.e}, {d.i}, {e.,g}, {f.0} }

Directed graph




‘ Graphs — Weighted Graphs

A graph G = (V, E) is called weighted (gewichtet) when
a weight/label (Gewicht/Attribut) is associated with every edge in the graph.

Example:




‘ Graphs — Complete Graphs

A graph G = (V, E) is called complete (vollstandig) when
every two distinct nodes is connected by an edge

Note: G is complete when every two distinct nodes are adjacent.

Example:
Not complete graph! Complete graph! Not complete graph!

ex: {b,f} is missing ex: {d.g} is missing




‘ Graphs — Complete Graphs

A graph G = (V, E) is called complete (vollstandig) when
every two distinct nodes is connected by an edge

Note: G is complete when every two distinct nodes are adjacent.

Example:
Not complete graph! Complete graph! Not complete graph!
ex: {b,f} is missing ex: {d.g} is missing

In a complete graph with n nodes, the degree of every node is n-1.

Note: A graph refers to an undirected graph. When a graph is directed, then we explicitly say directed graph.



‘ Graphs — Complete Graphs

A graph G = (V, E) is called complete (vollstandig) when
every two distinct nodes is connected by an edge

Note: G is complete when every two distinct nodes are adjacent.

Example:

> P

Complete graph! Not a complete directed graph! Complete directed graph!




‘ Graphs — Bipartite Graphs

A graph G = (V, E) is called bipartite (bipartit) if:
- its nodes can be divided into two disjoint sets U and W (v=uoOw, unw=@);
- its edges only connect a node from U with a node from W.

Example:

Bipartite graph Not a bipartite graph




‘ Graphs — Paths and Cycles

Consider a graph G = (V, E).

= A path/way (Pfad/Weg) in a graph is a sequence of nodes k nodes
(Ug, Uy, ..oy Uy) Ug,.. U€V
such that each node and the next node are connected by an edge.

= The Length (Lange) of the path (u,, u,, ..., u,) is k-1.

Example:
-(a, b, c, d, f)is a path of length 4.
-(a, b, c,d, g)is NOT a path.




‘ Graphs — Paths and Cycles

Consider a graph G = (V, E).

= A path/way (Pfad/Weg) in a graph is a sequence of nodes k nodes
(Ug, Uy, ..oy Uy) Ug,.. U€V
such that each node and the next node are connected by an edge.

= The Length (Lange) of the path (u,, u,, ..., u,) is k-1.

= The path (uy, u,, ..., u,) is a cycle (zyklus, Kreis) if:
o Uy = U and the length of the path is = 3 (thatis k = 4)

Example:

-(a, b, c, d, f)is a path of length 4.

-(a, b, c,d, g)is NOT a path.

- (a, b, c) is a path of length 2, and is not a cycle!

- (a, b, c, a)is a path of length 3, and is a cycle!




‘ Graphs — Paths and Cycles

Consider a graph G = (V, E).

= A path/way (Pfad/Weg) in a graph is a sequence of nodes k nodes
(Ug, Uy, ..oy Uy) Ug,.. U€V
such that each node and the next node are connected by an edge.

= The Length (Lange) of the path (u,, u,, ..., u,) is k-1.

= The path (uy, u,, ..., u,) is a cycle (zyklus, Kreis) if:
o Uy = U and the length of the path is = 3 (thatis k = 4)

= If the graph G has one or more cycles, then it is called a cyclic (zyklisch) graph.

= A graph with no cycles is called an acyclic (azyklish) graph.  Ex: Trees are acyclic graphs.
Example:

-(a, b, c, d, f)is a path of length 4.

-(a, b, c,d, g)is NOT a path.

- (a, b, c) is a path of length 2, and is not a cycle!

- (a, b, c, a)is a path of length 3, and is a cycle!

An acyclic binary relation can be modelled with an acyclic graph.




‘ Graphs — Loops
Consider a graph G = (V, E).

= An edge connecting a node u with the node u itself is called a loop (Schlaufe).

Example:

Loop-free graph Graph with a loop

(that is, a graph with no loop)

(a) is a path of length O (@) is a path of length O
(a,a) is not a path (a,a) is a path of length 1

{a,a} is a loop




‘ Graphs — Loops
Consider a graph G = (V, E).

= An edge connecting a node u with the node u itself is called a loop (Schlaufe).

Example:

Loop-free graph Graph with a loop

(that is, a graph with no loop)

(a) is a path of length O (@) is a path of length O
(a,a) is not a path (a,a) is a path of length 1

{a,a} is a loop

* A reflexive binary relation can be modelled with a graph with loops on each node.

» An irreflexive binary relation can be modelled with a loop-free graph.

« For a complete and loop-free graph G=(V,E): V¥ u,v: u,veV:u #v = {u,v} € E.




‘ Gr aphs — Hamiltonian and Eulerian Paths and Cycles

Consider a graph G = (V, E).

= A path is called a hamiltonian path (Hamilton-Pfad) if:
o it contains all nodes of the graph;
o each node is contained only once.

= A cycle is a hamiltonian cycle (Hamilton-Kreis) if:

o it contains all nodes of the graph;
o each node is contained only once, except the start and end node u,; which is contained

exactly twice.

Example:
(a, b, c, d, f, g, e) is a hamiltonian path

Graph has no hamiltonian cycles




‘ Gr aphs — Hamiltonian and Eulerian Paths and Cycles

Consider a graph G = (V, E).
. o . +
= A path is called a hamiltonian path (Hamilton-Pfad) if: 2s
a it contains all nodes of the graph; i
o each node is contained only once. j
= A cycle is a hamiltonian cycle (Hamilton-Kreis) if: Old Swiss 10 Franc banknote honoring

. . Leonard Euler (1707-1783
o it contains all nodes of the graph; ( )

o each node is contained only once, except the start and end node u,; which is contained
exactly twice.

= A path is called an eulerian path (Euler-Pfad) if:
o it contains all edges of the graph;
o each edge is contained only once.

= An eulerian path that is a cycle is called an eulerian cycle (Euler-Kreis).

Example:
(a, b, c,d, f, g, e)is ahamiltonian path, not an eulerian path!

Graph has no hamiltonian cycles




‘ Gr aphs — Hamiltonian and Eulerian Paths and Cycles

Consider a graph G = (V, E). i .
. o | +
= A path is called a hamiltonian path (Hamilton-Pfad) if: 2s
a it contains all nodes of the graph; iz |
o each node is contained only once. =8 i
= A cycle is a hamiltonian cycle (Hamilton-Kreis) if: Old Swiss 10 Franc banknote honoring

. . Leonard Euler (1707-1783
o it contains all nodes of the graph; ( )

o each node is contained only once, except the start and end node u,; which is contained
exactly twice.

= A path is called an eulerian path (Euler-Pfad) if:
o it contains all edges of the graph;
o each edge is contained only once.

= An eulerian path that is a cycle is called an eulerian cycle (Euler-Kreis).

Example:
(a, b, c, d, f, g, e) is a hamiltonian path, not an eulerian path!

Graph has no hamiltonian cycles, nor eulerian cycles.

(c,a, b,c d e g, f d)isan eulerian path, but not a hamiltonian path.



‘ Graphs — Spanning Trees and Components
Consider a graph G = (V, E).

The subset T ¢ E is a spanning tree (spannender Baum) of G if:
= every node in V belongs to an edge of T;

= between every two distinct nodes of G there is a path in T,
= edges of T form no cycles.

Example:
T={ {a,b}, {b,c}, {c,d}, {d,e}, {e,q}, {0,f}} is a spanning tree.




‘ Graphs — Spanning Trees and Components
Consider a graph G = (V, E).

The subset T ¢ E is a spanning tree (spannender Baum) of G if:
= every node in V belongs to an edge of T;

= between every two distinct nodes of G there is a path in T,
= edges of T form no cycles.

The subset T ¢ E is a component (Komponent) of G if:
= between every two distinct nodes belonging to some edges Of T there is a path in T.

Example:

T={{a,b}, {b,c}, {c,d}, {d,e}, {e,q}, {9.f}} is a spanning tree.

Some components:




‘ Graphs — Critical and Isolated Nodes

Consider a graph G = (V, E).

= A node ueV in the graph G is critical (kritisch) if
by deleting u from G the graph G is divided into not connected components.

= An edge {u,v}eE in the graph G is critical (kritisch) if
by deleting {u,v} from G the graph G is divided into not connected components.

= Critical nodes and edges of the graph G form the articulation points (Artikulationspunkte) of G.

Example:
- Critical nodes: c, d;

- Critical edge: {c,d};




‘ Graphs — Critical and Isolated Nodes

Consider a graph G = (V, E).

= A node ueV in the graph G is critical (kritisch) if
by deleting u from G the graph G is divided into not connected components.

= An edge {u,v}eE in the graph G is critical (kritisch) if
by deleting {u,v} from G the graph G is divided into not connected components.

= Critical nodes and edges of the graph G form the articulation points (Artikulationspunkte) of G.

= A node ueV in the graph G is isolated (isoliert) if it is the only node of a component of G.

Example: Example:
- Critical nodes: c, d; - Isolated node: g

- Critical edge: {c,d};




‘ Graphs — Biconnected Components

Consider a (undirected) graph G = (V, E).

= A component Tc E of G is a biconnected component (zweifach zusammenhangend), if
- by deleting an arbitrary node from T,
- the remaining nodes and edges in T still form a component of G.

Example:

- Some Biconnected components:
T, ={{a,b}, {a,c}, {b,c} } T, ={{d.e}, {d,f}, {e.q}, {f.0} }

- Not biconnected component:

T;={{ab}, {b,c}} T,={{d.e}, {d.f} }




‘ Graphs — Subgraphs and Clique

Consider a graph G = (V, E).

= The graph G,=(V,E,) is a subgraph (Subgraph) of G, if
V,cV and E,={{u,v}eE|u,veV,;}CE.

Example:
- G, ={V,,E } is a subgraph, where:
V,={ab,c} T, ={{a,b}, {a,c}, {b,c}}

- G, ={V,,E,} is NOT a subgraph, where:
V, ={d.e.f.g} T,={{d.e}, {e.a}, {0.}}




‘ Graphs — Subgraphs and Clique

Consider a graph G = (V, E).

= The graph G,=(V,E,) is a subgraph (Subgraph) of G, if
V,cV and E,={{u,v}eE|u,veV,;}CE.

= A k-clique (k-Clique, Clique der Grosse k) of G is a subgraph of G which is
complete and contains k nodes.

Example:
- G, ={V,,E } is a subgraph, where:
V, ={ab,c} T, ={{a,b}, {a,c}, {b,c}}

G, is a 3-Clique! Since it is complete, one can also write that {a,b,c} forms a 3-clique!

No other 3-cliques, nor 4-cliques! Note: {d,e,qg,f} is not a 4-clique! (Aithough these nodes with their edges form a subgragh!)

- G, ={V,,E,} is NOT a subgraph, where:
V2 :{d,e,f,g} T2 = { {d,e}, {e’g}’ {g’f}}




‘ Directed Graphs — Connected Components

Consider a digraph graph G = (V, E).

= A node v is weakly reachable (schwach erreichbar) from a node u,
if there is an undirected path from u to v.

= A component Tc E is weakly connected (schwach zusammenhangend)
if every node in T is weakly reachable from any other node in T.

Example:
- Node a is weakly reachable from node d;

- {{a,b}, {b,c}, {a,c}, {c,d}} is weakly connected,




‘ Directed Graphs — Connected Components

Consider a digraph graph G = (V, E).

= A node v is weakly reachable (schwach erreichbar) from a node u,
if there is an undirected path from u to v.

= A component Tc E is weakly connected (schwach zusammenhangend)
if every node in T is weakly reachable from any other node in T.

= A node v is strongly reachable (stark erreichbar) from a node u,
if there is an (directed) path from u to v.

= A component Tc E is strongly connected (stark zusammenhéngend)
if every node in T is strongly reachable from any other node in T.

Example:

- Node a is weakly reachable from node d;

- {{a,b}, {b,c}, {a,c}, {c,d}} is weakly connected,

- Node a is NOT strongly reachable from node d;

- {{a,b}, {b,c}, {a,c}, {c,d}} is weakly connected,;

- The only strongly connected components are given by @,

that is only one node and no edge in a strongly connected component.



‘ Example: Seven Bridges ot Konigsberg

LLeonhard Euler, 1736

Problem:

Two large islands connected
to each other and the mainland
by seven bridges.

Decide whether it is possible
to follow a path that crosses
each bridge exactly once and
returns to the starting point.
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‘ Example: Seven Bridges ot Konigsberg

LLeonhard Euler, 1736

Problem:

Two large islands connected
to each other and the mainland
by seven bridges.

Decide whether it is possible
to follow a path that crosses
each bridge exactly once and
returns to the starting point.

!

Is there an Eulerian Cycle?

Euler proved: no eulerian cycle.




