The Tree Data Model

Laura Kovacs



. ()
‘ Tfees (Baumstrukturen) — Deﬁnltlon

(n) (ny (n,)
Trees are sets of

o points, called nodes (Knoten)
and 05 0
o lines, called edges (kanten), connecting two distinct nodes,

()




. ()
Tfees (Baumstrukturen) — Deﬁnltlon

(n) (ny (n,)
Trees are sets of

o points, called nodes (Knoten)
and 0 0
o lines, called edges (kanten), connecting two distinct nodes,

such that:;

o there is one special node, called the root (wurzel);



. ()
Tfees (Baumstrukturen) — Deﬁnltlon

(n) (ny (n,)
Trees are sets of

o points, called nodes (Knoten)
and 0 0
o lines, called edges (kanten), connecting two distinct nodes,

such that:;

o there is one special node, called the root (wurzel);
o every node c other than the root is connected by an edge to some other
node p.
Node p is called the parent (vater) of node c;
Node c is called the child (sohn) of node p;



. ()
Trees (Baumstrukturen) — D@ﬁﬂltlon

() () (ny)
Trees are sets of
o points, called nodes (Knoten)
and 0 o @

o lines, called edges (kanten), connecting two distinct nodes,

such that:;

o there is one special node, called the root (wurzel);

o every node c other than the root is connected by an edge to some other
node p.
Node p is called the parent (vater) of node c;
Node c is called the child (sohn) of node p;
o the tree is connected, that is:

if we start at any node n different than the root -~ move to the parent of n . move to the
parent of parent of n - ... - reach the root of the tree.



. ()
Trees (Baumstrukturen) — D@ﬁﬂltlon

(n) (ny (n,)
Trees are sets of

o points, called nodes (knoten) Q ()

and @

o lines, called edges (kanten), connecting two distinct nodes,

such that:;

o there is one special node, called the root (wurzel);

o every node c other than the root is connected by an edge to some other
node p.

Node p is called the parent (vater) of node c;
Node c is called the child (sohn) of node p;

o the tree is connected, that is:

if we start at any node n different than the root -~ move to the parent of n . move to the
parent of parent of n - ... - reach the root of the tree.

A node with no children is called a leaf (Blatt).



‘ Tfees (Baumstrukturen) — Alternative Deﬁnltl()n

o Asingle node nis a tree.
n is said to be the root of this tree.




Trees (Baumstrukturen) — Alternatlve DCﬁﬁlthﬁ

o A single node n is a tree.
n is said to be the root of this tree.

o Letrbe anewnode, and T, ..., T, trees with roots c,,...,C,.
Then a new tree T can be formed by
- make r the root of T;
- add an edge fromr to each c,, ..., c,.

________




Trees (Baumstrukturen) — Alterﬁatlve Deﬁnltlon

o Asingle node nis a tree.
n is said to be the root of this tree.

o Letrbeanewnode, and Ty, ..., T, trees with roots c,,...,c,.
Then a new tree T can be formed by
- make r the root of T;

- add an edge from r to each c,, ..., c,.

Trees T, ..., T, are subtrees (Teilbaume) Of r.
Note: T, contains c;; the root of T; is c;. T 1 T2 --------

Note: A subtree with root ¢ contains all the children of c, the children of children of c, etc.



Trees (Baumstrukturen) — Alterﬁatlve Deﬁnltlon

o Asingle node nis a tree.
n is said to be the root of this tree.

o Letrbeanewnode, and Ty, ..., T, trees with roots c,,...,c,.
Then a new tree T can be formed by
- make r the root of T;

- add an edge from r to each c,, ..., c,.

Trees Ty, ..., T, are subtrees (Teilbdume) of r.

Note: A subtree with root ¢ contains all the children of c, the children of children of c, etc.



Trees — Path

A path (pfad) in a tree is a sequence of nodes
m;,m,,ms,...,m,
such that:

- m, is the parent of m,,
- M, is the parent of m,

- m,_, is the parent of m,

Note: (m;,m,), (M,,my),...,(m,_;,m,) are edges of the tree.
Between arbitrary two nodes there is exactly one path.




Trees — Path

A path (pfad) in a tree is a sequence of nodes
m;,m,,ms,...,m,
such that:

- m, is the parent of m,,
- M, is the parent of m,

- m,_, is the parent of m,

Between arbitrary two nodes there is exactly one path.

The length (Lange) of the path is k-1.



Trees — Path

A path (pfad) INn @ tree is a sequence of nodes
m;,m,,ms,...,m,

such that: @ @

- m, is the parent of m,,
- M, is the parent of m,

- m,, is the parent of m,

Note: (m;,m,), (M,,mj),...,(m,_;,m,) are edges of the tree.
Between arbitrary two nodes there is exactly one path.

The length (Lange) of the path is k-1.

m, is called an ancestor (vorganger) of m,; m, is a descendant (Nachfoiger) Of m;.



‘ Trees — Height, Depth, Degree 0

) @ @
g (g ()

= The height (Hshe) of node m is the length of the longest path from m to a leaf.
Ex: Height of n, is 2, height of n, is 1, leaf ng has height O.

= The height of a tree is the height of the root.
Ex: Height of the tree is 2.

= The depth/level (level) of node m is the length of the path from the root to m.
Ex: Depth of n; is 0, depth of n, is 1, leaf ng has depth 2.

= The degree (ordnung) of a tree is the maximum of the number of subtrees of nodes.
Ex: Degree of the tree is 3.




‘ Trees — Height, Depth, Degree

Height of the tree is 2.

Degree of the tree is 3.




‘ Trees — Otdered TIGGS (geordnete Baum) @

) @ @
g (g ()

An ordered tree (geordneten Baum) IS @ tree where an order is assigned to the
children of any node.

Example: Assign a left-to-right order to the children of any node. Then, among the children
of ny:
n, is the leftmost child of n;, then n,, then n,.

-n, is the rightmost child of n,.
-n,is to the left of n,.

In an ordered tree (geordneten Baum) the order of the subtrees is relevant.




‘ Trees — Isomorphic Trees

Trees who differ only by the order of their subtrees are isomorphic.

Example of isomorphic trees:

®) ®) ny

w @ @ @ @ @ no g
W @ @ 0 by M g




‘ Trees — Binary Trees winirer Baum)

= A binary tree is a tree such that each node has maximum two subtrees.

Special binary tree: empty tree (no nodes, no edges).

Note: The degree of a binary tree is maximum 2.

EXx:

o) ()

IS a binary tree

IS not a binary tree

Binary trees have left (linken) and right (rechten) subtrees.




Ditterence between a Tree and a Binary Trees

BINARY TREE
A binary tree may be empty.

No node in a binary tree may
have more than 2 subtrees.

Degree of a binary tree is
maximum 2.

Subtrees of a binary tree are
ordered.

TREE
A tree cannot be empty.

No limit on the number of
subtrees of a node in a tree.

No limit on the degree of a
tree.

Subtrees of a tree are not
ordered.




Ditterence between a Tree and a Binary Trees

BINARY TREE TREE

o A binary tree may be empty. o A tree cannot be empty.

2 No node in a binary tree may 2 No limit on the number of
have more than 2 subtrees. subtrees of a node in a tree.
o Degree of a binary trees is 2 No limit on the degree of a
maximum 2. tree.

o The subtrees of a binary tree o Subtrees of a tree are not
are ordered. ordered.

EX:
- different when viewed as a binary tree

- same when viewed as a tree




‘ Full (Perfect / Complete) Binary Tr ee S (petfekter/voll bindrer Baum)

= A binary tree is full / complete / perfect when
o the left subtree
and

o the right subtree
of each node contains the same number of nodes.

EXx:

0 g

is not a full binary tree

0 g

is a full binary tree ‘




‘ FU.II (Per fect / Complete) Biﬂar Y Tf e e S (petfekter/voll bindrer Baum)

= A binary tree is full / complete / perfect when
o the left subtree
and

o the right subtree
of each node contains the same number of nodes.

EXx:

0 g

is not a full binary tree

0 g

is a full binary tree ‘

In a full binary tree each node

- I1s either a leaf;

- or has exactly two non-empty subtrees.




‘ Full Binary Trees

= In a full binary tree with N nodes and height h:

N = 2n+1.1

and

h = Id(N+1)-1

= A full binary tree with height h has exactly 2" leaves.




‘ Binary Trees - SyntaX TI‘GGS (Syntaxbaum)

Syntax tree (expression tree) is a binary tree of an arithmetic expression.
o Nodes: arithmetic operators (+,-,*,...) and numbers/variables
= Leafs: numbers/variables

o Edges:

= parent-child relation between nodes is defined by the precedence of
operators (indicated by parentheses).

Example: (a+b)*c




Biﬂary Trees - SyntaX TIGGS (Syntaxbaum)

1. The syntax tree of operand a is a single-node tree with root labeled by a.

@

2. If T, is the syntax tree of arithmetic expression A, and T, is the syntax tree of
the arithmetic expression A, then:

2.1. the expression tree of A, op, A,, where op, is a binary operator (+,*,-, ...), Is:
@ Binary operator = operator with 2 arguments

2.2. the expression tree of op, A;, where op, is a unary operator (!, Id, ...), is:

Unary operator = operator with 1 arguments




‘ Biﬂary Trees - SyntaX TIGCS (Syntaxbaum)

Example: (a+b)*c Example: (a+b)*ld(c)

L




‘ Binary Trees — Traversal of Binary Trees

= Prefix traversal
= Infix traversal

= Postfix




‘ Binary Trees — Prefix Traversal

PREFIX / PREORDER Traversal - Prefix / Preorder notation (polish notation):

Recursively perform the following operations:

N Example: (a+b)*c
« Visit the node;

 Traverse left subtree;

« Traverse right subtree.

(Also called: depth-first traversal.)

: preorder(root)

|

| print root.value;

if NotEmpty(root.left) then preorder(root.left);

if NotEmpty(root.right) then preorder(root.right)

- I

Prefix/Preorder notation: *+abc

For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.



‘ Binary Trees — Infix Traversal

INFIX / INORDER Traversal — Infix / Inorder notation:

Recursively perform the following operations:
Example: (a+b)*c
« Traverse the left subtree;

* Visit the node;

e Traverse the right subtree.

inorder(root)
{
if NotEmpty(root.left) then inorder(root.left);
print root.value;

if NotEmpty(root.right) then inorder(root.right)

- I

Infix/Inorder notation: a+b*c

For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.



‘ Binary Trees — Postfix Traversal

POSTFIX / POSTORDER Traversal — Postfix / Postorder notation (everse polish notation):

Recursively perform the following operations:

Example: (a+b)*c
 Traverse the left subtree;

« Traverse the right subtree;

* Visit the node.

(Also called breadth-first traversal.)

| postorder(ooy
|
i if NotEmpty(root.left) then postorder(root.left);

: if NotEmpty(root.right) then postorder(root.right);
i print root.value

|
|

Postfix/Postorder notation: ab+c*

For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.



‘ Biﬂary Trees — Biﬂary SearCh (SOI"[) Tree (Sortierbaum)

A binary search tree is a binary tree with:

o The left subtree of a node n contains only nodes with values (keys) less than the value of n;
o The right subtree of a node n contains only nodes with values (keys) greater than the value of n;
o Both the left and right subtrees of n must be also binary search trees.

Note: Each node has a distinct value.
Inorder traversal of a binary search tress yields a sorted list of nodes.

Example:

° Inorder: abcde « SORTED LIST of NODES
* Preorder: dbace
» Postorder: ached

* Levelorder: d be ac

(listing nodes from left-to-right, level-by-level starting from root)




‘ Biﬂary Trees — Biﬂary SearCh (SOIT) Tree (Sortierbaum)

A binary search tree is a binary tree with:

o The left subtree of a node n contains only nodes with values (keys) less than the value of n;

o The right subtree of a node n contains only nodes with values (keys) greater than the value of n;
o Both the left and right subtrees of n must be also binary search trees.

Note: Each node has a distinct value.
Inorder traversal of a binary search tress yields a sorted list of nodes.

Let T be a binary search tree. Let Nodes(T) denote the set of nodes of T. For a node n of T, let:

 n.left denote its left subtree;
* n.right denote its right subtree;
* n.value denote the value of n.

Then:

v¥n: neNodes(T):
(Y n;: nieNodes(n.left): n,.value<n.value) O(V n,: n, eNodes(n.right): n,.value>n.value)

VA




‘ Binary Trees - Exercises

0 Consider the expression a b +cd-*ef+/ in postfix form.
2 What is its infix form?
2 What is its prefix form?

0 Consider the binary tree:

o Is it a binary search tree?

o Is it a full binary tree?

o What is the degree of the tree?
2 What is the height of the tree?
o What is its prefix form?




