
The Tree Data Model

Laura Kovács

Trees (Baumstrukturen) – Definition

Trees are sets of
� points, called nodes (Knoten)

and
� lines, called edges (Kanten), connecting two distinct nodes,

such that:

� there is one special node, called the root (Wurzel); Ex: n1

� every node c other than the root is connected by an edge to some other
node p.
� Node p is called the parent (Vorgänger) of node c; Ex: n2 is parent of n5, n6

� Node c is called the child (Nachfolger) of node p; Ex: n5, n6 are children of n2

� the tree is connected, that is:
if we start at any node n different than the root → move to the parent of n → move to the
parent of parent of n → ... → reach the root of the tree. Ex: n7 →n4 → n1

n1

n2 n4n3

n5 n6 n7

Trees (Baumstrukturen) – Definition

Trees are sets of
� points, called nodes (Knoten)

and
� lines, called edges (Kanten), connecting two distinct nodes,

such that:

� there is one special node, called the root (Wurzel); Ex: n1

� every node c other than the root is connected by an edge to some other
node p.
� Node p is called the parent (Vorgänger) of node c; Ex: n2 is parent of n5, n6

� Node c is called the child (Nachfolger) of node p; Ex: n5, n6 are children of n2

� the tree is connected, that is:
if we start at any node n different than the root → move to the parent of n → move to the
parent of parent of n → ... → reach the root of the tree. Ex: n7 →n4 → n1

n1

n2 n4n3

n5 n6 n7

Trees (Baumstrukturen) – Definition

Trees are sets of
� points, called nodes (Knoten)

and
� lines, called edges (Kanten), connecting two distinct nodes,

such that:

� there is one special node, called the root (Wurzel); Ex: n1

� every node c other than the root is connected by an edge to some other
node p.

� Node p is called the parent (Vater) of node c; Ex: n2 is parent of n5, n6

� Node c is called the child (Sohn) of node p; Ex: n5, n6 are children of n2

� the tree is connected, that is:
if we start at any node n different than the root → move to the parent of n → move to the
parent of parent of n → ... → reach the root of the tree. Ex: n7 →n4 → n1

n1

n2 n4n3

n5 n6 n7

Trees (Baumstrukturen) – Definition

Trees are sets of
� points, called nodes (Knoten)

and
� lines, called edges (Kanten), connecting two distinct nodes,

such that:

� there is one special node, called the root (Wurzel); Ex: n1

� every node c other than the root is connected by an edge to some other
node p.

� Node p is called the parent (Vater) of node c; Ex: n2 is parent of n5, n6

� Node c is called the child (Sohn) of node p; Ex: n5, n6 are children of n2

� the tree is connected, that is:
if we start at any node n different than the root → move to the parent of n → move to the
parent of parent of n → ... → reach the root of the tree. Ex: n7 →n4 → n1

n1

n2 n4n3

n5 n6 n7

Trees (Baumstrukturen) – Definition

Trees are sets of
� points, called nodes (Knoten)

and
� lines, called edges (Kanten), connecting two distinct nodes,

such that:

� there is one special node, called the root (Wurzel); Ex: n1

� every node c other than the root is connected by an edge to some other
node p.

� Node p is called the parent (Vater) of node c; Ex: n2 is parent of n5, n6

� Node c is called the child (Sohn) of node p; Ex: n5, n6 are children of n2

� the tree is connected, that is:
if we start at any node n different than the root → move to the parent of n → move to the
parent of parent of n → ... → reach the root of the tree. Ex: n7 →n4 → n1

n1

n2 n4n3

n5 n6 n7

A node with no children is called a leaf (Blatt). Ex: n5, n6, n7 are leaves.

Trees (Baumstrukturen) – Alternative Definition

� A single node n is a tree.
n is said to be the root of this tree.

Trees (Baumstrukturen) – Alternative Definition

� A single node n is a tree.
n is said to be the root of this tree.

� Let r be a new node, and T1, …, Tk trees with roots c1,…,ck.
Then a new tree T can be formed by

- make r the root of T;
- add an edge from r to each c1, …, ck.

r

c1 ckc2

T1 T2 Tk

Trees (Baumstrukturen) – Alternative Definition

� A single node n is a tree.
n is said to be the root of this tree.

� Let r be a new node, and T1, …, Tk trees with roots c1,…,ck.
Then a new tree T can be formed by

- make r the root of T;

- add an edge from r to each c1, …, ck.
r

c1 ckc2

T1 T2 Tk

Trees T1, …, Tk are subtrees (Teilbäume) of r.
Note: Ti contains ci ; the root of Ti is ci .

Note: A subtree with root c contains all the children of c, the children of children of c, etc.

Trees (Baumstrukturen) – Alternative Definition

� A single node n is a tree.
n is said to be the root of this tree.

� Let r be a new node, and T1, …, Tk trees with roots c1,…,ck.
Then a new tree T can be formed by

- make r the root of T;

- add an edge from r to each c1, …, ck.
r

c1 ckc2

T1 T2 Tk

Trees T1, …, Tk are subtrees (Teilbäume) of r.

Ex: is a subtree. is not a subtree.

n1

n2 n4n3

n5 n6 n7

n2

n5 n6

n2

n5

Note: A subtree with root c contains all the children of c, the children of children of c, etc.

Trees – Path

A path (Pfad) in a tree is a sequence of nodes
m1,m2,m3,…,mk

such that:
- m2 is the parent of m1,

- m3 is the parent of m2,

∂

- mk-1 is the parent of mk.

Ex: n1, n2, n6 is a path of length 2.
Ex: n1 is a path of length 0.

Note: (m1,m2), (m2,m3),…,(mk-1,mk) are edges of the tree.

Between arbitrary two nodes there is exactly one path.

The length (Länge) of the path is k-1.

n1

n2 n4n3

n5 n6 n7

Trees – Path

A path (Pfad) in a tree is a sequence of nodes
m1,m2,m3,…,mk

such that:
- m2 is the parent of m1,

- m3 is the parent of m2,

∂

- mk-1 is the parent of mk.

Ex: n1, n2, n6 is a path of length 2.
Ex: n1 is a path of length 0.

Note: (m1,m2), (m2,m3),…,(mk-1,mk) are edges of the tree.

Between arbitrary two nodes there is exactly one path.

The length (Länge) of the path is k-1.

n1

n2 n4n3

n5 n6 n7

Trees – Path

A path (Pfad) in a tree is a sequence of nodes
m1,m2,m3,…,mk

such that:
- m2 is the parent of m1,
- m3 is the parent of m2,

∂

- mk-1 is the parent of mk.

Ex: n1, n2, n6 is a path of length 2.
Ex: n1 is a path of length 0.

Note: (m1,m2), (m2,m3),…,(mk-1,mk) are edges of the tree.
Between arbitrary two nodes there is exactly one path.

The length (Länge) of the path is k-1.

m1 is called an ancestor (Vorgänger) of mk; mk is a descendant (Nachfolger) of m1.

Ex: n1 is an ancestor of n2, n6; n6, n2 are descendants of n1.

n1

n2 n4n3

n5 n6 n7

Trees – Height, Depth, Degree

� The height (Höhe) of node m is the length of the longest path from m to a leaf.
Ex: Height of n1 is 2, height of n2 is 1, leaf n5 has height 0.

� The height of a tree is the height of the root.
Ex: Height of the tree is 2.

� The depth/level (level) of node m is the length of the path from the root to m.
Ex: Depth of n1 is 0, depth of n2 is 1, leaf n5 has depth 2.

� The degree (Ordnung) of a tree is the maximum of the number of subtrees of nodes.
Ex: Degree of the tree is 3.

n1

n2 n4n3

n5 n6 n7

Trees – Height, Depth, Degree

n1

n2 n4n3

n5 n6 n7

Level 0

Level 1

Level 2

Height of the tree is 2.

Degree of the tree is 3.

Trees – Ordered Trees (geordnete Baum)

An ordered tree (geordneten Baum) is a tree where an order is assigned to the
children of any node.

Example: Assign a left-to-right order to the children of any node. Then, among the children
of n1:

n2 is the leftmost child of n1, then n3, then n4.

-n4 is the rightmost child of n1.
-n3 is to the left of n4.

n1

n2 n4n3

n5 n6 n7

In an ordered tree (geordneten Baum) the order of the subtrees is relevant.

Trees – Isomorphic Trees

Trees who differ only by the order of their subtrees are isomorphic.

Example of isomorphic trees:

n1

n2 n4n3

n5 n6 n7

n1

n3 n2

n5 n6

n4

n7

n1

n4n3 n2

n5 n6 n7

Trees – Binary Trees (binärer Baum)

� A binary tree is a tree such that each node has maximum two subtrees.

Note: The degree of a binary tree is maximum 2.

Ex:

is not a binary tree is a binary tree

n1

n2 n4n3

n5 n6 n7

Binary trees have left (linken) and right (rechten) subtrees.

n1

n2 n4

n5 n6 n7

Special binary tree: empty tree (no nodes, no edges).

Difference between a Tree and a Binary Trees

BINARY TREE

� A binary tree may be empty.

� No node in a binary tree may
have more than 2 subtrees.

� Degree of a binary tree is
maximum 2.

� Subtrees of a binary tree are
ordered.

TREE

� A tree cannot be empty.

� No limit on the number of
subtrees of a node in a tree.

� No limit on the degree of a
tree.

� Subtrees of a tree are not
ordered.

Difference between a Tree and a Binary Trees

BINARY TREE

� A binary tree may be empty.

� No node in a binary tree may
have more than 2 subtrees.

� Degree of a binary trees is
maximum 2.

� The subtrees of a binary tree
are ordered.

TREE

� A tree cannot be empty.

� No limit on the number of
subtrees of a node in a tree.

� No limit on the degree of a
tree.

� Subtrees of a tree are not
ordered.

a

b c

a

c b

- different when viewed as a binary tree

- same when viewed as a tree

Ex:

Full (Perfect/Complete) Binary Trees (perfekter/voll binärer Baum)

� A binary tree is full / complete / perfect when
� the left subtree

and

� the right subtree
of each node contains the same number of nodes.

Ex:

is not a full binary tree is a full binary tree

n1

n2 n4

n5 n6 n7

n1

n2 n4

n5 n6 n7n3

� A binary tree is full / complete / perfect when
� the left subtree

and

� the right subtree
of each node contains the same number of nodes.

Ex:

is not a full binary tree is a full binary tree

n1

n2 n4

n5 n6 n7

n1

n2 n4

n5 n6 n7n3

In a full binary tree each node

- is either a leaf;

- or has exactly two non-empty subtrees.

Full (Perfect/Complete) Binary Trees (perfekter/voll binärer Baum)

Full Binary Trees

� In a full binary tree with N nodes and height h:

and

� A full binary tree with height h has exactly 2h leaves.

N = 2h+1 -1

h = ld(N+1)-1

Binary Trees - Syntax Trees (Syntaxbaum)

Syntax tree (expression tree) is a binary tree of an arithmetic expression.
� Nodes: arithmetic operators (+,-,*,…) and numbers/variables

� Leafs: numbers/variables
� Edges:

� parent-child relation between nodes is defined by the precedence of
operators (indicated by parentheses).

*

+

a b

c

Example: (a+b)*c

Binary Trees - Syntax Trees (Syntaxbaum)

1. The syntax tree of operand a is a single-node tree with root labeled by a.

2. If T1 is the syntax tree of arithmetic expression A1, and T2 is the syntax tree of
the arithmetic expression A2, then:

2.1. the expression tree of A1 op2 A2, where op2 is a binary operator (+,*,-, …), is:

2.2. the expression tree of op1 A1, where op1 is a unary operator (!, ld, …), is:

a

A1 A2

op2

A1

op1

Binary operator = operator with 2 arguments

Unary operator = operator with 1 arguments

Binary Trees - Syntax Trees (Syntaxbaum)

*

+

a b

c

Example: (a+b)*c Example: (a+b)*ld(c)

*

+

a b

ld

c

Binary Trees – Traversal of Binary Trees

� Prefix traversal

� Infix traversal

� Postfix

Binary Trees – Prefix Traversal

*

+

a b

c

Example: (a+b)*c

PREFIX / PREORDER Traversal → Prefix / Preorder notation (polish notation):

Recursively perform the following operations:

• Visit the node;

• Traverse left subtree;

• Traverse right subtree.

(Also called: depth-first traversal.)

Prefix/Preorder notation: *+abc

preorder(root)

{

print root.value;

if NotEmpty(root.left) then preorder(root.left);

if NotEmpty(root.right) then preorder(root.right)

}

For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.

Binary Trees – Infix Traversal

*

+

a b

c

Example: (a+b)*c

INFIX / INORDER Traversal → Infix / Inorder notation:

Recursively perform the following operations:

• Traverse the left subtree;

• Visit the node;

• Traverse the right subtree.

Infix/Inorder notation: a+b*c

inorder(root)

{

if NotEmpty(root.left) then inorder(root.left);

print root.value;

if NotEmpty(root.right) then inorder(root.right)

}

For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.

Binary Trees – Postfix Traversal

*

+

a b

c

Example: (a+b)*c

POSTFIX / POSTORDER Traversal → Postfix / Postorder notation (reverse polish notation):

Recursively perform the following operations:

• Traverse the left subtree;

• Traverse the right subtree;

• Visit the node.

(Also called breadth-first traversal.)

Postfix/Postorder notation: ab+c*

postorder(root)

{

if NotEmpty(root.left) then postorder(root.left);

if NotEmpty(root.right) then postorder(root.right);

print root.value

}

For a node n, let n.value denote its value, n.left its left subtree, n.right its right subtree.

Binary Trees – Binary Search (Sort) Tree (Sortierbaum)

d

b

a c

e

A binary search tree is a binary tree with:

� The left subtree of a node n contains only nodes with values (keys) less than the value of n;

� The right subtree of a node n contains only nodes with values (keys) greater than the value of n;

� Both the left and right subtrees of n must be also binary search trees.

Note: Each node has a distinct value.
Inorder traversal of a binary search tress yields a sorted list of nodes.

Example:

• Inorder: abcde ¨ SORTED LIST of NODES

• Preorder: dbace

• Postorder: acbed

• Levelorder: d be ac

(listing nodes from left-to-right, level-by-level starting from root)

A binary search tree is a binary tree with:

� The left subtree of a node n contains only nodes with values (keys) less than the value of n;

� The right subtree of a node n contains only nodes with values (keys) greater than the value of n;

� Both the left and right subtrees of n must be also binary search trees.

Note: Each node has a distinct value.
Inorder traversal of a binary search tress yields a sorted list of nodes.

Let T be a binary search tree. Let Nodes(T) denote the set of nodes of T. For a node n of T, let:

• n.left denote its left subtree;
• n.right denote its right subtree;
• n.value denote the value of n.

Then:

"n: nŒNodes(T):
(" nl: nlœNodes(n.left): nl.value<n.value) ∧ (" nr: nr œNodes(n.right): nr.value>n.value)

An alternative:
"n: nŒNodes(T): (" nl: nlœNodes(n.left): nl.valuebn.value) ∧ (" nr: nr œNodes(n.right): nr.value>n.key)

Binary Trees – Binary Search (Sort) Tree (Sortierbaum)

Binary Trees - Exercises

� Consider the expression a b + c d - * e f + / in postfix form.

� What is its infix form?
� What is its prefix form?

� Consider the binary tree:

� Is it a binary search tree?

� Is it a full binary tree?
� What is the degree of the tree?

� What is the height of the tree?

� What is its prefix form?

8

3

1 6

10

14

4 7 13

