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1 Introduction

This document describes the concept and implementation of BAM [Ruosch et al.,
2022], a benchmark for Argument Mining (AM). It is aimed at interested parties and
prospective users. We hope to provide a concise overview of what is presented in the
original paper! with a more practical use in mind.

In Section 2, we first give a definition of AM to foster a common understanding.
Then, we follow along the AM pipeline to illustrate how it works with an example.
Section 3 describes the concept of our benchmark and the theory behind it. The mea-
sures used in the evaluation of different argument miners is discussed in Section 4.
Section 5 discusses the aligning of different argumentation models in order to produce
comparable results. In Section 6, we detail the implementation of BAM and provide
a guide on how to get started putting it to use. Finally, Section 7 provides the con-
cluding remarks.

If you have any questions, please feel free to ask.

2 Argument Mining

Argument Mining (AM) can entail different tasks and purposes. For our intent, we
adopt the well-established information extraction approach. It was popularized by
several experts in the field [Saint Dizier, 2020, Budzynska and Villata, 2015, Lippi
and Torroni, 2016]: a multistage pipeline that extracts the arguments present in a
text by first separating non-argumentative from argumentative units, then classifying
the argument components and, finally, identifying their structure with relations [Stab
et al., 2014|. Figure 1 illustrates the pipeline.

We will now go through its stages with a working example to explain the individual
steps. The raw text used as input is the following:

Everybody should study abroad. I really enjoyed my time in Asia. It is
an irreplaceable experience because you learn living without depending
on anyone else. However, there were also certain struggles. You will
experience loneliness, living away from family and friends.

For consistency and simplicity, we also adopt the claim/premise model [Walton, 2009]
for the example annotation and employ two types of relations: attacks and supports.
In this representation, arguments consist of two kinds of components. A claim is
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Figure 1: The AM pipeline adapted from [Lippi and Torroni, 2016].

the central statement of an argument. An example from the text above for a claim
would be the proposition that "everybody should study abroad". Premises (also
known as data, evidences, grounds, or preconditions [Lauscher et al., 2018]) are about
the plausibility of the claim, e.g., the assertion that "[the studying abroad] is an
irreplaceable experience". These components may be linked by a relation which can
be an attack (component a undermines component b) or support (component a backs
component b). Explicitly, we do not restrict neither the domain nor the range of the
relations to certain types of components. This means that, in practice, a claim may
support or attack another claim.

Argumentative Sentence Detection

The first stage of the pipeline aims to identify the argumentative sentences. A sen-
tence is classified as argumentative, if it contains any argument component [Lippi
and Torroni, 2016]. Thus, the subsequent steps only consider those sentences. In our
example, we indicate non-argumentative sentences with strike through (e.g., "This is
argumentative. Thisdsnet:"), leaving the others to be argumentative.

Everybody should study abroad. I-really—enjoyed—mytimein--Asia- It

is an irreplaceable experience because you learn living without depend-

ing on anyone else. However—there-were-also-ecertainstruggles: You will

experience loneliness, living away from family and friends.

The argumentative nature of propositions may depend on their context. One of the
simplest clues for the presence of an argument (component) is the presence of discourse
indicators [Lawrence and Reed, 2015]. Key words such as because or despite may not
only indicate components but also determine relations between them.

Argument Component Boundary Detection

After identifying the sentences containing argument components, we now need to iden-
tify their explicit boundaries since a component may not necessarily coincide exactly
with the entire length of a sentence. The specifics of what belongs (and what does
not belong) to an argument component depends on the annotation guidelines, such
as the in- or exclusion of punctuation marks. Instead of indicating the boundaries,
we highlight argument components (e.g., "[INERERGONgONEN], while this is not").

Everybody should study abroad sy e e ey B et 12 e Vo S, =

is an irreplaceable experiencefiddentlByou learn living without depend—

TR ZNRIEE.  However—there-were-also-certainstruggles: PO

B REINEES, living away from family and friends.

For our example, we opt to exclude punctuation marks as well as discourse indicators.
This changes the explicitly annotated component boundaries.
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Figure 2: Output of the AM pipeline.

Argument Component Detection

The third step assigns the previously identified argumentative text spans a type from
a defined set (i.e., claim or premise in our case). We visualize the classification with
different types of highlighting: Elaims like this and [JeStORes like that.
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It is sometimes difficult to assign a proposition to either claim or premise [Lauscher
et al., 2018]. This decision also heavily depends on the context as well as the specifics
of the chosen argument representation.

Argument Structure Prediction

To form an argument, we now predict the structure (i.e., relations) of the components.

We use two different relations to build triples, which in turn then form a graph:
attacks and supports

. Based on the previously identified components, we can connect
them with the following relations:

, attacks

e "You will experience loneliness" ———— "Everybody should study abroad"
e "It is an irreplaceable experience" Supports, "Everybody should study abroad"

.. . . supports . .
e "you learn living without depending on anyone else" ———— "It is an irre-

placeable experience"

Figure 2 shows the output of the AM pipeline explicitly modeled as a graph. The
thick border signifies the sole claim in the graph with the other nodes representing
premises. The edges are the relations. This demonstrates the process of mining
arguments from raw text as input.

3 BAM: Benchmark for Argument Mining

We designed BAM, the benchmark for Argument Mining, with the goal of not only
providing an easy to access system but also considering all aspects of AM and to
obtain performance results in a unified and homogeneous way. Figure 3 outlines the
end-to-end pipeline and illustrates how BAM is built on four pillars, from left to right:
(1) pre-processing, (2) training, (3) execution, and (4) evaluation. The implementa-
tion was done in Python and is available publicly.?

%https://gitlab.ifi.uzh.ch/DDIS-Public/bam
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Figure 3: System vision of the different parts of the benchmark framework and their
interactions.

With pre- and post-processing being taken care of by our framework, the system
can then address the training, where applicable, and execution step, which are both
integrated into the end-to-end pipeline. We explain each of these functionalities sep-
arately below.

(1) Pre-processing This step creates a data set suitable to be processed by a given
system from a common ground truth corpus, according to specified configurations and
the alignment of argument representations. It is tailored to the requirements of the
system to be benchmarked such that it can be used as input at any stage, be it for
training or evaluation. This ensures that every system tested in the benchmark will
use the same data as basis, thus allowing for comparable results. The split of the
data into development, training, and test set is specified not per system but rather
per corpus ensuring comparability between systems.

(2) Training Given the prevalence of neural network approaches for AM, we in-
cluded an optional training step. Here, the training API of the system to be integrated
can be invoked using the specifically created data set.

(3) Execution The resulting trained model is then employed to annotate the test
data set using the system’s execution API. We enabled the functionality to either
reuse the intermediate results as input for the subsequent steps or to test aspects
independently and inject ground truth annotations into the pipeline (e.g., relation
prediction with the components as annotated in the ground truth).

(4) Evaluation This stage aligns the computed results and the ground truth an-
notations to ensure the data conforms to the requirements set by the evaluation
functions, which expect sequences of labeled tokens. This is achieved by applying
NLTK’s [Loper and Bird, 2002] tokenizer, where necessary. Since the system’s output
may already be tokenized using an unknown technique, we have to expect differ-
ences in the labeled tokens. To address them, we match the two sequences with
spaCy’s [Honnibal et al., 2020] implementation of the token aligner® and, thus, all
of the evaluation happens uniformly on token-level. Subsequently, several aspects
are evaluated. Based on the AM pipeline described in [Lippi and Torroni, 2016] (see
Figure 1), our benchmarking framework assesses performance for four different tasks:
argumentative sentence classification (S), boundary identification (B), argumenta-
tive component detection (C), as well as argumentative relation prediction (R). A
sentence is classified as argumentative, if it contains any argument component [Lippi
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and Torroni, 2016]. Next, the similarity of the boundaries for the (non-)argumentative
segments is compared. Before the final stage, the detection and classification of the
components themselves is assessed. Lastly, the predicted relations are compared to
the ones annotated in the ground truth, i.e. which components are connected and
how. It is important to note that we do not require every system to perform all the
tasks, but rather the implementation specifies which are covered in the configuration
and which are not. The details for each evaluated aspect are presented below.

By relying on a modular structure, we give enough room for customizations to account
for any peculiarities that systems might exhibit. Furthermore, each system needs to
specify a mapping (represented by the graph icon on the bottom of Figure 3) to create
a uniform view of the argument representation and to make the results comparable. It
is employed for pre-processing, to create a specific data set, and for the evaluation, to
map all systems to the same argumentation scheme. By specifying the mapping with
Semantic Web technologies (OWL?), we not only ensure that it is machine-readable
and interoperable, but we also facilitate its extension and reuse.

4 Evaluation Measures

Every task is treated as a (multinomial) classification. However, we use several eval-
uation methods because they differ slightly in the granularity and format of the data
as well as their goal. We explain the measures and their reasoning for every step of
the pipeline.

In the first task, the aim is to classify sentences as (non-)argumentative. If a sen-
tence contains at least one argument component, it is defined as argumentative [Lippi
and Torroni, 2016]. After extracting these annotations from the mined results as well
as from the ground truth, we compare two lists of the same length with binary values
using micro-F1, to ensure that a possible label imbalance does not affect the result
and weigh both classes equally. In our benchmarking framework, we apply sklearn’s
implementation of the micro-F1 measure® to obtain a score between 0 and 1, where
bigger signifies better.

For the comparison of the component boundaries, we follow the proposition of [Duthie
et al., 2016] and use the implementation® of the segmentation evaluation [Fournier,
2013]. The edit distance-based boundary similarity function assesses how well the
results of segmentation tasks agree on a scale from 0 to 1. It compares pairs of
boundaries, calculates the edit-distance, and normalizes based on the segmentation
length. As input, we can simply pass two sequences of (multiclass) labels assigned to
the tokens and the library will identify the boundaries automatically.

Given that the previous measure does not take the categories of the segments
into account (i.e., the component types), we have to address the classification in a
separate step. Based on the similarity of this task to Named Entity Recognition
(NER) [Al Khatib et al., 2021], we can employ the nervaluate-package’ originally
designed for the evaluation of NER [Segura-Bedmar et al., 2013]. By treating the
argumentative components as named entities, we apply the same functions and obtain
the F1 through this well-established library.

The final evaluation step assesses the correctness of the predicted relations between
the identified components. As pointed out in [Duthie et al., 2016], it is important to
consider the possible double penalization since the previously detected argumentative
units play a critical role. Not having identified certain components also takes away
the opportunity to relate them and, thus, is not only penalized in the previous step
but also has an impact on the relation prediction score. Consequently, we give the
possibility to either use the argumentative units as identified by the system (i.e., the

dhttps://www.w3.org/0WL
Shttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score
Shttps://github.com/cfournie/segmentation.evaluation
"https://pypi.org/project/nervaluate
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Task Measure Reference

Sentence classification micro-F1 [van Rijsbergen, 1979]
Boundary detection boundary similarity —[Fournier, 2013]
Component identification NER F1 Segura-Bedmar et al., 2013|
Relation prediction F1 [van Rijsbergen, 1979]

Table 1: Overview of the different AM tasks and the respective measures.

intermediate results) or to recourse to the ground truth as the input for this step.
When using the computed intermediate results, we match the components to the
ground truth to ensure fairness so that the boundaries do not need to coincide exactly.
Instead, we assign each identified unit to one in the ground truth, if they overlap in at
least one token. For components covering multiple ones in the ground truth, we select
the one with the largest intersection. This does not only allow for differing boundaries,
it also ensures that localization information of the units is factored in. By constructing
triples out of the two components and the relation (subject, predicate, object), we
obtain lists of predicted and gold data. This turns the problem into identifying
retrieved /missed, relevant /irrelevant triples. Therefore, we can again employ the F1-
score. One caveat is that we also need to consider the symmetric nature of some
relation types. By converting the data into triples, we risk not awarding a correct
prediction if it is reversed (object and subject transposed) for a symmetric relation.
To amend this issue, we always arrange them in such a way that the subject has the
smaller identifier number than the object. Since no relation is reflexive, this results
in unique triples.

Table 1 provides an overview of the four AM tasks and their respective evaluation
measures.

5 Aligning Argumentation Models

To produce comparable results, a common view of how an argument is represented
in data is necessary. This is achieved by aligning different argumentation schemes
through mappings. Given the widespread adoption [Lippi and Torroni, 2016] of the
claim/premise model [Walton, 2009] and its simplicity, we chose it for our benchmark
and use the attacks- and supports-relations to connect components with the import
notion that we do not restrict neither range (source) nor the domain (target) for both.

To align representations, we need two types of mappings: one for the components
(claim and premise) and one for the relations (supports and attacks). There are
two different scenarios: either one scheme is more complex than the other (i.e., it
has more components and/or relations or has other levels of specificity) or they are
the same but use a different naming convention (e.g., synonyms or similar but not
identical terms such as attacks versus attack). There is also the special situation for
the components that a model is as simple as to only segmenting text into non- and
argumentative parts. In this case, we do not assess the system’s ability to classify
argumentative components due to the lack of information and, thus, no mapping is
necessary.

More complex schemes can be reduced to a simpler model with the concepts of
equivalent- and/or subclass-of-relations. Every component and relation from the
original representation is assigned to exactly zero or one corresponding element of the
benchmark model, depending on whether their complement exists and according to
their definition in the original model descriptions. Elements without a counterpart
are mapped to no type since they can not be considered in the evaluation. It is
important to note that no annotations are discarded since the ground truth data is
recomputed for every run and, if the mapping changes, the alterations are incorporated
automatically.
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Figure 4: Mapping between different argumentation schemes for the components.

In the case of using different naming, we only need to employ the equivalent-
relation. The same concept may be called differently but still carry the identical
semantics. Claims are labeled as conclusions, while premises have a plethora of names
in literature such as data, evidence, or reason |Lippi and Torroni, 2016|. Similarly, the
attacks-relation is also known as contradicts. Based on the definitions, we can create
a one-to-one-mapping between model elements and, subsequently, a uniform view of
the argument model.

To illustrate the alignment with some examples, Figures 4 and 5 visualize the
mapping for the schemes of the components and relations, respectively for a number
of systems and the benchmark data set.

6 Implementation

The Python implementation of BAM is open-source and public.® It is structured in
a modular fashion, to facilitate extensions and amendments. The data for the bench-
mark is contained in the data and the systems to be evaluated in the AM folder. Fur-
thermore, the two central files in the implementation are bam. py and evaluation.py.
The former is the main driver of BAM, invokes all necessary steps of the pipeline, and
takes the system to be evaluated as the argument. The latter contains the evaluation
routines which can be used by any system, provided the data passed conforms to the
format requirements. Examples of how to convert the data are provided in the code.

To set up BAM, obtain the source code from the repository. Then, install the
dependencies as specified in the file requirements.txt. This includes all packages
necessary for the evaluation routine only, notably not for the individual systems. In
order to benchmark a system, it first needs to be incorporated into the BAM pipeline
(see Section 3 for details). Several examples are provided, which only need the code
and models from the corresponding systems, as well as a "dummy system" (noop)

Shttps://gitlab.ifi.uzh.ch/DDIS-Public/bam
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which does not require any additional dependencies. Following the instructions and
these examples, new systems can be added.

7 Conclusions

In this document, we summarized and explained several contributions of BAM, a
benchmark for Argument Mining (AM) [Ruosch et al., 2022]. First, we explained our
view of AM as an information extraction task. Then, we outlined the four stages
of the AM pipeline (argument sentence detection, argument component boundary
detection, argument component detection, and argument structure prediction) and
illustrated them with a working example. This showed how to extract arguments from
raw text and how they then form a graph using the identified structure. We model
arguments as claims and premises [Walton, 2009] and connect them with attacks and
supports relations. Then, we detailed the inner workings of BAM: built on four pillars
(pre-processing, training, execution, and evaluation), it allows for the integration
of any argument miner to be evaluated, and, more importantly, for the creation
of comparable results. This is enabled by the newly proposed method of applying
mappings to different argument models in order to unify to the claim /premise-model.
Using a common view, we allow for comparable results of AM systems. We also
explain the four measures that we apply, which correspond to the four AM pipeline
stages. Subsequently, we lay out those evaluation measures in more detail and reason
for our design choices using connections to other NLP tasks. Finally, we also point
to our implementation of BAM and show how to install and use it.
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