A portal-based approach for user-centric legacy
application integration in collaborative environments

Oliver Gmelch
Dept. of Information Systems
University of Regensburg
Germany

oliver.gmelch@wiwi.uni-regensburg.de

ABSTRACT

“Networked enterprises” are characterized by distributed teams

of partner organizations, humans, computer applications,
autonomous robots, and devices collaborating with each other
in order to achieve higher productivity and to collaborate
in joint projects or produce joint products that would have
been impossible to develop without the contributions of mul-
tiple collaborators. In networked enterprises, special consid-
eration must be paid to the IT systems which are in the
position to integrate different applications across company
boundaries as known from enterprise application integra-
tion. At the same time, high requirements are imposed
on the employees within such alliances. The contribution
of this paper is an architecture for legacy application inte-
gration in web-based portal systems, specifically tailored to
the requirements of networked enterprises and focusing on
a user-centric approach, allowing the user to customize his
workspace to his own needs. Following its presentation, the
proposed architecture is validated by a prototypical imple-
mentation.

1. INTRODUCTION

Globalization, shorter innovation cycles or increased compe-
tition are just a few of the challenges today’s organizations
are confronted with. The aggregation into virtual partner-
ships in order to create flexible and agile business networks
between a number of partner organizations having comple-
mentary competencies appears as possible remedy to over-
come this situation. As diagnosed by recent surveys per-
formed for instance by AT&T [4] or the Gartner group [25],
a significant increase in the number of business alliances can
be expected in the near future.

Of major importance in virtual enterprises is the support by
dedicated information and communication technology (ICT).
Identified as a crucial characeristic of virtual partnerships by
several authors (for instance, Katzy [21]), ICT systems are

10" International Conference on Wirtschaftsinformatik,
16t" — 18" February 2011, Zurich, Switzerland

693

Ginther Pernul
Dept. of Information Systems
University of Regensburg
Germany
guenther.pernul@wiwi.uni-

regensburg.de

expected to provide support for different success factors such
as integration on process level across company boundaries
or information integration, implying provisioning the right
information to the responsible user at the right time. As
proposed by Shilakes et al. [28], one way of achieving this in-
formation integration is via the introduction of specifically-
tailored enterprise portals, supporting the integration of dif-
ferent individual applications (even from different alliance
partners or from dedicated application providers) in one
common user interface consisting of a number of specifically-
crafted portlets. It is the intention of these specific portlets
to bridge the gap between application boundaries, which cre-
ate the relations between individual applications, respective
process steps and the users in a statical assignment.

Networked enterprises impose high demands on the parties
involved in such collaborations, especially riquiring highly
skilled personnel with special focus on their flexibility. This
leads to the situation that companies are confronted with
a “war for talent” as introduced by McKinsey employees
Chambers et al. in 1998 [9]. The “war for talent” describes
three qualitative challenges companies are confronted with,
beginning with the statement that “[a] complex economy de-
mands more sophisticated talent with global acumen, multi-
cultural fluency, technological literacy, [and] entrepreneurial
skills”. Furthermore, according to Chambers et al., the
emergence of small- to medium-sized companies has lead to
a shortage of skilled personnel, as well as an increase in job
mobility and thus an increase in job fluctuation.

As a consequence of the war for talent, we consider the em-
ployee in form of an IT user to be the origin of all value
creation within an enterprise. Hence, this paper proposes
a software architecture for a user-centric workplace specifi-
cally in the area of application integration with web-based
portal systems. This architecture poses the chance to flexi-
bly integrate distinct applications from both in- and outside
a company’s boundaries into a common web-based user in-
terface and thus overcome the formerly static assignments
between applications, tasks, and users.

The introduction of a user-centric workplace also bears the
advantage that the user can adjust his workspace to his spe-
cial needs himself. This is of special concern when talking
about different application portfolios in use by different com-
panies, which can make a difference in employees’ produc-
tivity and the amount of training necessary to bring recently

employed people up to par. Likewise, the creation of a user-
centric working environment can make a significant point to
distinguish an employer from the competition merely by its
IT systems and the resulting attitude towards their employ-
ees. Furthermore, flexibility with regard to the application
portfolio in use can help to avoid the phenomenon of ven-
dor lock-in, which is characterized by strong dependency of
a company to a software vendor. Not limited to applica-
tions within a specific company, the proposed approach can
also be applied across company boundaries as long as the
goals for all individual tasks dealt with in a networked en-
terprise are well defined, especially in terms of data formats
expected. This bears the advantage that individual com-
petencies can be brought into networked enterprises even
better.

One way of bringing this user-centric attitude to life in an
enterprise environment could be via the introduction of an
application store, where a user could select from a set of
preconfigured applications per category. Even though this
may not be appropriate nor desirable for all types of ap-
plications, it may make a big difference when used care-
fully in situations where interoperability across various ap-
plication boundaries can be assured due to reliable import /-
export filters or standards-compliant software components.
For these settings, the user’s preferences in the application
store may be remembered and taken into account for his
everyday working environment.

This paper is intended to present a software architecture
for a user-centric application integration approach alongside
a brief overview of a prototypical implementation as car-
ried out within the SPIKE projectﬂ which is funded under
the FP7 programme of the European Union and targets the
creation of a secure collaboration platform for process inte-
gration of external application systems, specifically tailored
for the usage in networked enterprise settings by small- to
medium-sized enterprises. As such, it follows two main or-
ganizational objectives: (1) Outsourcing parts of the value
chain to business partners (and vice versa, offering such
parts in form of services) and (2) enabling collaboration be-
tween members of participating organizations through ad-
hoc created as well as predefined business processes.

The remainder of this paper is structured as follows: follow-
ing this introduction, section 2 gives an overview on related
work. Section 3 then provides an introduction on different
means of application integration in order to distinguish this
approach from other pre-existing work. Section 4 describes
the user-centric approach by providing an architecture for
user-centric application integration in portal systems, which
is then further explained regarding its prototypical imple-
mentation as part of the SPIKE project in section 5; section
6 finally concludes this paper and gives an outlook on future
work.

2. RELATED WORK

Collaborative software as introduced in section 1 in most
cases is built around a portal system. A rather technical
definition of the term portal is given in the Java Portlet
Specification JSR 168 [1]. According to this specification,

"http:/ /www.spike-project.eu

694

“a portal is a web-based application that — commonly —
provides personalization, single-sign-on, content aggregation
from different sources and hosts on the presentation layer
of information systems. Aggregation is the action of inte-
grating content from different sources within a webpage. A
portal may have sophisticated personalization features to
provide customized content to users. Portal pages may have
different sets of portlets creating content for different users.”

From an application developer’s perspective, portals con-
sist of several independent web applications, called portlets,
which are combined together into one uniform user interface,
running under a Java application server. The Java port-
let specification JSR 168 defines a standard for individual
portlets, thus enabling platform independence of portlets,
aiding usage across different application servers and thereby
guaranteeing a high degree of interoperability. The nature of
portals consisting of independent web applications has paved
the way for integrating external applications into web-based
portal systems. Its successor, JSR 286 [19|, has extended
the portlet standard amongst others with the ability to es-
tablish communication between individual portlets, which
had been requested many times before.

Related to the portlet standards is the concept of web ser-
vices for remote portlets (WSRP), which has been estab-
lished by OASIS and initially released in 2003, with a sec-
ond revision in 2008. WSRP defines ways for portlets to in-
tegrate external applications adhering to this standard into
a compliant portal [30]. The WSRP standard follows the
paradigm of service orientation, defining a SOAP-based in-
terface for data exchange between an external application
and the portal system. By returning the intended user inter-
face in HTML format to the portal server where the request
originated, a WSRP-capable application can itself define the
expected user interface without the need for major transfor-
mations and hence be included easily into IT systems of
external parties associated within a networked enterprise.
Furthermore, the external application can employ the por-
tal’s event distribution mechanism to exchange information
with other applications in the portal.

Of special interest in this area of portal-based application
integration is the PADEM portal reference architecture as
originally published by Gurzki and Hinderer [18]. Like-
wise, issues related to application integration via portals
have been identified by Diaz et al. |13] |12], fostering the
idea of a switch from traditional content syndication to-
wards portal syndication and proposing an integrated frame-
work for transformation of existing web applications into
portal-aware applications. In their proposal, they introduce
a model-driven approach to achieving this switch towards
portal-aware applications. Bellas et al. |6} 5] have proposed
approaches to displaying web applications as portlets, intro-
ducing a chain of user-configurable “transformers” in order to
perform customized adaption regarding individual applica-
tions. They propose an annotation-based approach to allow
for automatic transformations. In the same subject, Paz
et al. [24] have extended the idea of portlet integration by
the introduction of semantic integration based on annota-
tions. In order to achieve this, an approach using annotator
portlets, wrapping remote portlets, has been presented by
the authors. With regard to security aspects introduced

by inter-portlet communication, recent work has been pub-
lished on integration of the XACML architecture into portal
systems [17].

The idea of user-centric approaches has been examined in a
variety of ways including but not limited to software engi-
neering, grid computing or identity management, of which
the subject of user-centric privacy considerations is one of
the most noteworthy in recent years. User-centric privacy
follows the idea to gain the users’ trust by enabling the user
to control which personal information to pass to which party.
Even though the idea of user-centric approaches has been
examined in a variety of subjects, little research has been
carried out so far on the area of user-centric approaches in
the area of enterprise application integration mechanisms,
where a broad range of user capabilities can be employed by
empowering the user to tailor his workspace to his special
needs so that he feels most comfortable and hence produc-
tive with.

3. MEANS OF APPLICATION INTEGRATION

Ever since the introduction of data processing in the 1960s,
an integrated view on the processed data has been requested.
In the decades since, the number of applications holding and
processing their single share of the data has increased mas-
sively, and so has the need for integration between these in-
dividual application silos. The introduction and widespread
adoption of the personal computer in the 1980s and 1990s
has put additional pressure on an integrated and consistent
view on data and the applications processing this data, re-
spectively. Due to this situation, a magnitude of different
approaches to cope with this challenge has arisen.

On the level of enterprise IT architecture design, Winter [32]
has proposed an application architecture with recommenda-
tions for the design and implementation of applications (i.e.
by bundling of functionality or by introduction of responsi-
bilities and data usage), ultimately resulting in a reduction
of complexity and the introduction of well-defined interfaces
and thus an improved ratio of costs for application systems
and the respective interfaces. Also on the level of appli-
cation infrastructure, a pattern-based integration approach
has been initiated [2], which is, however, limited to IBM
products and hence only applicable to limited extent.

Also on the level of IT architectures, the idea of enterprise
application integration (EAI) has been examined for a long
time since the 1990s, resulting in a plethora of different defi-
nitions and differentiations between various types of integra-
tion identified [22]. In a nutshell, the idea of EAI is to intro-
duce a central middleware component, governing all commu-
nication between individual applications and hence further
reducing the number of interfaces required for all applica-
tions to communicate with each other properly. Linthicum
[23] and Ruh [27] argue that EAI should allow for unre-
stricted usage of information and application functionality
between all applications within an enterprise. Linthicum,
for instance, has identified the following types of EAI ap-
proaches [23]:

e Data-Level EAI resulting in integration on the level of
different databases,

695

e Application-Level FAI containing integration on the
level of individual application programming interfaces,

e Method-Level EAI, meaning the sharing of business
logic or methods, and

o User Interface-Level FEAI resulting in the integration
of various applications on the level of their correspond-
ing user interfaces.

As can be seen, the level of abstraction varies greatly be-
tween individual approaches in the context of EAI; a major-
ity of methods, however, is focused on the technical side of
EAI Another method to enable enterprise integration on the
technical level is the pattern-based approach as presented by
Hohpe and Woolf [20], which provides a system of integra-
tion relations in the context of EAI Including different de-
sign patterns and the respective areas of applicability, their
approach shows potential solutions to individual challenges
on a rather technical yet not product-oriented level. Dealing
with the subject on a technical level and limited to individ-
ual patterns, however, it remains rather vague when it comes
to an overall architecture, supporting networked enterprises
and the introduction of a user-centric approach.

Also coming from a technical perspective with special focus
on the area of portal systems, Daniel et al. have performed
extensive work on the aspects of application integration |10}
11|, resulting in the discovery and definition of problems
associated with certain technologies and opportunities to
overcome their respective weaknesses. Of major interest for
Daniel et al. were desktop UI components, components re-
alized via browser plug-ins, web mashups as well as web
portals and portlets. One of the major findings in their re-
search is the awareness about the diversity of different Ul
presentation techniques. For this reason, the authors sug-
gest a standardization of service interfaces for user interface
integration to succeed. Furthermore, the authors mention
a lack of abstraction in order to establish composition in
the context of user interface integration. Even though their
works have shown the need for unification on the level of
user interface representation, it does not provide new strong
points on an architectural integration.

As stated by Lee et al., “enterprise integration means both
technical and behavioral integration” [22]. In the field of
behavioral integration, we consider the user as one crucial
part. None of these approaches, however, have evaluated the
user as the center of their respective application integration
approaches. With their focus on the technical perspective of
application integration, all these concepts fall short in con-
sidering the user-implied aspects of EAI, which may enable
the user to customize his workplace up to his own needs.
For this reason, this paper presents a user-centric approach
towards portal-based application integration on user inter-
face level, which is demonstrated in a software architecture
overview in the next section. As such, the presented software
architecture can be seen in line with the ideas as introduced
by EAI most notably the introduction of a middleware com-
ponent for inclusion of and brokerage between external ap-
plications. Even though the concepts and techniques as fol-
lowed by EAT are considered by some as a hyped topic which
has exceeded its climax [3], the results and general require-

ments presented in this paper can also be adopted to other
integrative techniques such as service-oriented architectures.

4. ANARCHITECTURE FOR APPLICATION
INTEGRATION IN PORTAL SYSTEMS

Based on the requirements of networked enterprises as eval-
uated by the SPIKE project in [7], this paper presents the
approach of user-centric application integration. This sec-
tion focuses on the description of the related architecture.
The presentation is split up into two parts: section [A.1] gives
an overview on the overall architecture and its elements,
whereas section presents the followed approach with re-
gard to individual protocol types in more detail. The pro-
posed architecture and its support for a broad range of pro-
tocols is considered fundamental for the introduction of a
user-centric integration approach in collaborative environ-
ments, which allows users to customize application usage to
their own needs. Due to the sheer amount of different appli-
cations and involved protocols available in the market, the
proposed architecture offers support for a multitude of differ-
ent protocols typically found in enterprise use as outlined in
the next sections without, however, making any application-
specific adjustments with regard to integration. The pre-
sentation of the architecture is implementation-agnostic; for
implementation details, please see section

4.1 Opverall architecture

As the architecture is intended as collaborative platform for
networked enterprises, it is embedded into a surrounding
system architecture providing supporting components for
networked enterprises, especially in the field of process ori-
entation and user management (which are not presented in
detail within this paper due to space limitations). In the
following paragraph, however, a brief overview is given on
the respective components and their interaction with outside
components of the architecture. This architecture can serve
as a blueprint for application integration in a collaboration
platform such as the SPIKE platform as presented in |15].

The core of the portal architecture as depicted in figure
is represented by three components, namely Intra Port-
let Communication Management, Session Management, and
Portal Display Management. Inter Portlet Communication
Management is responsible for collecting events from avail-
able portlet sources and delivering them to other portlet
destinations, including Notification Management for exter-
nal delivery in other user sessions. Within the portal ses-
sion, this is performed using the established method of In-
ter Portlet Communication. Session Management, on the
other hand, is in charge of user session context handling as
well as storage and retrieval of user sessions. To do so, it
makes use of the central storage repository as maintained by
Content Management. The third component in the portal
architecture in figure [1| is Portal Display Management. It
is the task of this component to provide users with a visual
representation of applications, thus carrying out the actual
work of user interface integration of external applications.
All three components inside the Portal Instance are in con-
tact with Interface Management, which forms the interface
to the external applications as connected via the integrative
platform.

696

Content Security and
Storage Identity
Management Management

Workflow Notification
Management Management

System Core

T
b

Inter Portlet
Communi- Portal Display Session
cation Management Management
Management

Portal Instance

Interface Management

Ext. Ext. Ext.
App 1 App 2 App n

External Applications

Figure 1: Portal Architecture

Surrounding this portal architecture, a number of other com-
ponents can be found, which are aggregated in the System
Core. First of all, the aforementioned Content Management
provides a central storage repository, allowing for retrieval,
update, and storage of all data present and brokered via the
platform.

It is the duty of the Security and Identity Management com-
ponent to provide access decisions based on the user’s iden-
tity, containing information about the user’s home company
as well as personal information (i.e., department, email ad-
dress, etc.) about a specific user. This information is re-
trieved from the external identity management system as-
sociated with a specific user, i.e. provided by his employer
and selected and queried during login. Likewise, it has to
be assured that only trustworthy users may enter the plat-
form who have been granted the necessary privileges by their
employer beforehand. Even more important, it also has to
be guaranteed that only associated members of a networked
enterprise may enter the system and perform actions with
it as this platform is working on potentially highly sensitive
information.

Notification Management, as briefly introduced before, is
necessary for sending event notifications to the rest of the
architecture and to receive events from other parts of the
architecture, which are then further processed within the
portal. These events can consist of various types, ranging
from inter portlet communication between different applica-
tion instances in the portal to exchange of status messages,
containing i.e. information about a new user session or a
logout event.

Finally, Workflow Management keeps track of all workflows,
their respective instances and all associated tasks deployed
within an alliance and hence has to maintain communication
with the individual user sessions, represented via Session

Management.

Likewise, the correlation between Workflow Management
and Session Management allows for inclusion of a user-centric
application integration approach, where a user for certain
tasks can customize the set of applications being used for
task execution up to his own preferences. This can be per-
formed following the widespread idea of an application store,
where users can select from a range of applications, differen-
tiated by categories. This way, the user can stick to the type
of application he is used to and feels most comfortable with,
thus reducing the need for his employer to provide further
training in one specific application. On the level of process
definition, this requires a concise definition of the goals to
achieve for the individual tasks associated in a workflow as
well as definition of the applications or data formats that
these results can be produced with.

Even though this approach may not be desirable or feasible
in all circumstances, enterprises can gain a broader range of
options to provide their users with. Likewise, it can be ex-
pected that training costs can be reduced when users have to
make little or no changes at all to their accustomed working
environment whilst ensuring user satisfaction and creating
a feeling of affiliation of the employees with their respective
employer. This in turn can help to keep personnel fluctua-
tion low and thus ensure customer satisfaction, which suc-
cessively can help to strengthen the company’s position in
the market.

4.2 Detailed UI architecture

The major component for Ul integration of external appli-
cations — as was already described in the previous section
— is the Portal Display Management component, which is
intended to provide support for a broad range of different
application types. As different applications usually are pro-
vided by different protocols, the Portal Display Management
component is designed to offer a flexible plugin mechanism
to allow for integration of different protocol handlers. For
an overview on the different types of applications currently
supported by the architecture, see table|l} Differentiated by
their nature as request- or communication-oriented proto-
cols, the support ranges from HTTP and the SOAP-based
WSRP protocol for the case of requested-oriented proto-
cols to support for connection-oriented protocols, whereas
further differentiation between text-based (currently, Tel-
net and SSH are considered here) and GUI-based protocols
(where the current state considers RDP and VNC proto-
cols) is made. At this point, it is important to note that
this listing is neither complete nor exhaustive, meaning that
protocol support is not limited to these protocols on an ar-
chitectural level, but these protocols have been introduced
by the SPIKE project based on the user requirements anal-
ysis performed by the project. Moreover, the architecture
strives to provide a general, application-independent view
at the supported protocols. For the case of HTML content
presented later on, due to the large amount of different us-
age scenarios, three approaches were introduced to support
these different scenarios appropriately.

The architecture regarding those individual protocol han-
dlers was designed to follow the paradigm of service-oriented
architectures. The services are generally stateless and atomic

697

Table 1: Currently Considered Protocol Types

Connection-Oriented Protocols | Request-
Oriented
Text-based | GUI-based Protocols
Protocols SSH, RDP, HTTP,
Telnet VNC WSRP

and grouped by functionality. Common to all protocol han-
dlers is the idea of a proxy mechanism, which allows the pro-
tocol handlers to act as an intermediary between the target
application and the targeted end user. This proxy mech-
anism can be implemented in two distinct manners: One
approach is that the portal merely is responsible for applica-
tion connection intialization and hands over a session token
representing this connection to the service consumer, which
then performs all interaction with the application indepen-
dently from the portal instance.

Secondly, the portal can be acting as a proxy for the whole
user session, meaning that all communication between ser-
vice provider and -consumer will be routed through the por-
tal. This bears a number of advantages: First of all, firewall
policies will have to be adapted by the service provider only
once. As all requests from the service provider’s point of
view will stem from the portal system, access on IP level
will have to be granted to a target application only once
for an unlimited number of users for this application type.
Secondly, acting as a proxy bears the capability to perform
transformations on the presentation layer, for instance on
CSS/JavaScript level in case of HTML content. Moreover,
based on the type of application, the proxy approach can al-
low for flexible and dynamic extraction of content elements
adhering to previously defined rules as implemented dur-
ing workflow specification phase. This can for instance be
performed for the case of Telnet- or HTML-based user inter-
faces. Furthermore, as the platform provider is aware about
all parties associated with its platform, it can make more ed-
ucated access decisions about whether or not certain kinds
of access attempts adhere to the access policy for the specific
user or the user’s employee.

The major drawback of this approach, however, is that the
platform provider acting as the intermediary between ser-
vice requester and service provider can potentially carry
out man-in-the-middle attacks, thus putting all contents ex-
changed via said platform at risk. This risk therefore re-
quires the platform provider to be a trustworthy third party,
relied upon by all participants and entrenched respectively,
i.e. by legal means. Furthermore, the aspect of runtime
performance must be paid attention to. For the case of full-
featured application proxying, a significant increase in the
workload of the IT infrastructure is to expected, potentially
leading to an increase in costs for the platform provisioning.
Likewise, since all accesses are carried out via the portal
platform, this imposes higher requirements on the availabil-
ity of said platform.

As can be seen from figure [2] both types of communication
are supported by the architecture. In the case of connection-

Proxy Server
Portal
SOCKS
Legacy Proxy Applet
Application Protocol- "
aware ﬁ
Protocol
Handler

Application Provider Platform Provider

Figure 2: Asynchronous Applications: Architecture
Overview

oriented protocols, communication is performed via a tai-
lored applet running inside the portlet of this specific appli-
cation instance, which can either communicate directly with
the connected external application or create the connection
via a dedicated proxy server. The latter case can — for fu-
ture developments — be used to allow for session reliability
as the proxy server could be used to maintain connectiv-
ity to the respective application even in the case that the
browser session crashes or the applet is reloaded unintention-
ally by the user’s browser, allowing the user to seamlessly
continue his session at the point it was interrupted. With
protocol-agnostic support being propagated by a SOCKS-
compliant proxy module, further functionality can be gained
by protocol-aware proxy modules. Some details about possi-
ble enhancements by such protocol-aware proxy modules are
given in section Also, figure [2] shows that the situa-
tion for request-oriented protocols is similar to the approach
taken for connection-oriented protocols except for one differ-
ence: as markup-based content currently is the only content
type supported here, the dedicated applet can be omitted
since all web browsers can render markup natively.

The design of the architecture follows a number of software
design patterns as originally presented by [16]. First and
foremost, the model-2 pattern has widely influenced the de-
sign as it presents itself as the foundation for merely all
web-based UI interaction, especially in the context of Java
applications as is the case for SPIKE. Adopted from the
well-known MVC pattern which is considered to be a set of
strongly related patterns itself [14], model-2 is specifically
tailored for web applications. The MVC pattern separates
an application into three distinct parts: (1) the controller,
connecting the latter two parts of the application with each
other, (2) the model, responsible for the actual application
logic, and (3) the view, which is in charge of rendering a
visual representation of the application, the so-called user
interface which can therefore be considered a visual repre-
sentation of the model.

Moreover, the facade pattern has found major considera-
tion in the design as it enables the support for a pluggable
modules system as the architecture defines an interface on
an abstract level, the facade, which is then implemented by
every protocol plugin. All protocol-specific functionality is
hidden by this service facade afterwards, thus making all
accesses transparent to the portal system as the portal sys-

698

External Application Providers

m App 2

.

T = A K
HTTP Handler

Portal System
Transformation

Caching
N1

Compression

Extraction

)

Portal Platform Provider

Web Browser

User

Figure 3: HTTP Handler: Architecture

tem merely hands over control to the corresponding plugin,
which helps to keep the portal code clean and flexible.

4.2.1 Support for request-oriented protocols

Based on user requirements analysis, the highest ranked type
of protocol to support in the presented architecture is the
hypertext transfer protocol (HTTP), which forms the basis
for the world wide web in its current form. HTTP Communi-
cation generally follows the request-/response paradigm and
is not connection-oriented and stateless. Another important
protocol taken into account by the software architecture is
the WSRP protocol, enabling the integration of markup-
based remote applications into a portal system. Due to the
flexible nature of the architecture, however, support could
be extended for other protocol types appropriately.

HTTP support in the presented software architecture fo-
cuses on integration of content provided in the hypertext
markup language (HTML) and considers three distinct ways
of integration in order to establish flexible yet efficient ways
for application integration which are briefly outlined below.
In this enumeration, the level of complexity and hence the
possibilities of the respective methods increase significantly
from top to bottom. Due to the wide nature of predomi-
nant HTML-based applications, the best-fitting integration
mechanism must be determined on a case-by-case basis.

First of all, integration of HTML content can be carried out
in a straight-forward manner using the HTML tag <iframe>,

Client request
received

Request deserialized

Request metadata
processed and...
Request cache
lookup performed

[Data in cache]

Output to client
[yes]

Loaded external
resource

Pre-transformations
performed

[no]

URL-specific
transformations...
Post-transformations
performed
Output to client Resource stored in

cache

Figure 4: HTTP Handler: State Diagram

which is the most non-intrusive way of integrating an appli-
cation as it merely passes all content through to the web
browser, which renders the application as part of the por-
tal website. Since HTML frames exhibit some limitations in
terms of user experience (for instance, the risk of losing the
portal session due to external links), this is also the least
powerful integration mechanism and should be considered
ultima ratio.

Secondly, integration can be carried out by a dedicated ap-
plet, which renders content described by markup in a sepa-
rate applet independent from the end user’s web browser and
thus can achieve a significantly higher level of unity in appli-
cation appearance and platform independence. This, how-
ever, comes at the price of increased system requirements for
the associated client systems due to the separate rendering
process and should preferably be considered for applications
under direct influence of the application provider.

The third option is to perform integration via a dedicated
HTTP handler acting as a reverse proxy and as such per-
forming content rewriting, which allows for direct integra-
tion of HTML contents into the portal whilst posing higher
browser compatibility requirements on the target applica-
tion to serve all end users reliably. Due to the heterogeneous
nature of HTML documents, this approach presents itself
the most complex. Figure [3|shows the underlying architec-
ture: Content from external applications is integrated into
the platform using the HTTP handler, altering the content

699

in such way that it properly fits into the portal, where all
contents from individual applications are merged and pre-
sented to the user in a unified user interface. The HTTP
handler acting as a reverse proxy, all content is modified
as part of the transformation phase so that all requests in
return to content delivered by the HTTP handler module
will again invoke the HTTP handler, avoiding unintended
side channel data flows. The execution of content rewriting
also aids to avoid situations where users of the portal could
be leaving the platform unintentionally due to popup win-
dows or other external links. Moreover, the HT'TP handler
is to provide caching mechanisms in order to speed up con-
nections by storing temporary copies of frequently accessed
files as well as image compression capabilities in order to re-
duce the footprint of images and other large resources, which
may be desirable for mobile devices with low-bandwidth net-
work connectivity. Finally, the extraction stage serves to
extract information retrieved from an external application
based on predefined goals. Figure [shows a state diagram
of HTTP handler, giving an overview on its individual states
when processing a HTTP request. Beginning with a client
request, the resource is first looked up in the cache, main-
tained by the HTTP handler for performance reasons. In
case a resource is found, it is directly sent to the client;
otherwise, the external resource is retrieved and applied a
number of transformations in order to perform the tasks of
information extraction and compression as outlined above
and finally stored in the cache and sent to the client.

Another type of request-based application integration is gai-
ned by supporting the service-oriented paradigm, and more
specifically the WSRP standard, allowing portals to include
external applications into portal systems both on the data
level as well as on the level of the user interface representa-
tion. This is achieved by providing WSRP consumer sup-
port in the architecture, which allows external application
providers to integrate with the proposed solution without
any changes to their existing WSRP-aware application.

Figure [5] shows the general flow of information for the case
of WSRP application integration. An external application
provider makes available an arbitrary number of WSRP-
capable applications, each running in a portlet container.
The WSRP producer is responsible for embedding the in-
dividual markup generated by every application into corre-
sponding SOAP messages, which is then extracted by the
respective consumer on the portal side, where the overall
portal is rendered, consisting of the combined markup from
the external applications plus any portal-specific markup,
i.e. for user management, status message display, etc.

4.2.2 Support for connection-oriented protocols

As is the case for request-oriented protocols, the support for
connection-oriented protocols in the presented architecture
is currently limited to four protocols to demonstrate the fea-
sibility of the approach. These protocols can be grouped
into protocols supporting graphical user interfaces (GUI)
such as RDP or VNC and text-oriented protocols such as
SSH or Telnet. However, the extensibility gained by group-
ing functionality into separate plugins allows to fulfill later
requirements in case of need.

Generally, in the application integration architecture, two

Portlet WSRP WSRP
Container Producer Consumer
Ap? 1 B Proxy
App 2 B Proxy

Web Browser

-
[

Portal System

]
-

Application Provider

Portal Platform Provider

User

Figure 5: WSRP Support

modes of operation are supported as previously shown in fig-
ure |2} with and without intermediary proxy server, whereas
operation with a proxy server between application and user
can again be differentiated into usage of a SOCKS-compliant
proxy server and an application- or protocol-specific proxy
server, which can be thought to provide protocol-specific
functionality for later requirements. Whilst additional func-
tionality such as information extraction from the user in-
terface can be implemented easily for the cluster of text-
based protocols, the situation becomes more difficult when it
comes to graphical user interfaces as is the case for instance
with RDP and VNC. Depending on the protocol specifica-
tion, however, additional features of the protocol can be
employed. For instance, the RDP protocol foresees capa-
bilities to not only transfer information about the GUI but
also offers features such as file system redirection, enabling
the integration platform to provide a file system which the
external application can store task results on. The level
of integration which can be achieved by the architecture is
therefore limited by the specifics of the protocol in use.

5. IMPLEMENTATION AND EVALUATION

The software architecture as presented in the previous sec-
tion has been implemented in order to prove its feasibility.
The implementation has demonstrated the general applica-
bility of the proposed solution in the environment of user-
centric legacy application integration. While a number of
issues has shown up during the implementation, these issues
are not related to the overall architecture and hence do not
diminish its value.

One major pillar during the implementation was the route of
embracing and extending existing open source components
to achieve the goals. The rationale behind using the source
code of publicly available open source projects for the im-
plementation is manifold: First of all, open source projects
have — at least for major players on the market — reached a
satisfactory degree of maturity. For instance, analysis of dif-
ferent operating system kernels from both open and closed
source products has shown that despite greatly verying pro-
cesses by which the respective products were developed, the
metrics applied to the corresponding source code showed a
comparable performance [29]. Likewise, commercial support
is available for most major open source projects, meaning
that no special knowledge has to be created inside an en-

700

terprise prior to using and potentially extending a specific
open source project. Beyond that, a number of soft facts
have been identified, ranging from customer relationship en-
hancement to earlier feedback from the community and vol-
untary actions by the community like localization activities
[8]. Finally, available code provided by various open source
projects presents a huge wealth of knowledge which has been
tested in numerous installations around the world and which
has been of great use for the prototypical implementation.
For instance, the Liferay portal server, which forms the ba-
sis for all portal-related software development within the
implementation, has been evaluated to consist of more than
1.7 million lines of code, which has been estimated to result
in 502 person years on effortﬂ With the open source move-
ment existing for a few years only, little expertise is available
on the long-term performance and development of the open
source paradigm. However, recent research seems to indi-
cate that a commercial open source business model, where
commercial open source firms build their business around an
open source project that they fully control, can prove suc-
cessful [26]. Even though this approach seems to constrain
customers to the vendor of a specific product, there is still
the availability of the product’s source code that can allow
them to continue usage of that product even after the case
that the original vendor should no longer exist.

Although implementation of the proposed software archi-
tecture has been performed employing open source compo-
nents, this does not limit the applicability of the underlying
software architecture to open source components. Instead,
the general architecture is implementation-agnostic, whereas
the implementation only serves to prove its validity and has
been carried out employing as many existing components as
possible for complexity reasons.

For the reasons given above, for all portal developments
during the prototypical implementation, the Liferay portal
serve% in its community edition has been chosen to form the
basis. Liferay Portal is freely available under an open source
license and has been selected mainly for its widespread ac-
ceptance, its user community and its extensibility. It is es-
pecially the extensibility provided by a so-called extension
environment which allowed to create extensions to the por-

Zhttp://www.ohloh.net/p/liferay
Shttp://www.liferay.org

http://www.ohloh.net/p/liferay
http://www.liferay.org

tal’s core while not touching the portal server’s source code
directly and which has therefore proven very useful for fu-
ture version updates of the portal server underneath.

During the implementation, special emphasis was put on
support for existing HTML-based web applications. For the
integration of web applications, the three approaches as laid
out in section [4.2| were implemented, of which the reverse
proxy method has received the most attention due to its
complexity and its possibilities. Evaluation has shown after-
wards that while it works well for basic standards-compliant
websites, the situation changes when non-conforming HTML
documents come into play. As the reformatting and infor-
mation extraction methods require the HTML code to be
transformed into XHTML, standards conformance plays a
crucial role. Despite not limiting the proposed architecture’s
value as a prototype, work is ongoing with regard to a more
robust parsing of HTML pages.

During the implementation of WSRP support, the separa-
tion of duties in producer and consumer has shown to pro-
vide valuable support for application developers. Implemen-
tation itself has been carried out using the WSRP extension
for Liferay portal and has shown that existing portlets can
be easily provided as external applications, thus enabling the
introduction of external application providers. This also un-
dermindes the idea of networked enterprises where all part-
ners can focus on their key competencies and hence improve
the overall competitiveness and outcome of such alliances.

Besides the aforementioned adversities, the implementation
has proven the proposed architecture’s general applicability
in the context of user interface integration, especially follow-
ing the presented user-centric approach, which allows a user
to employ functionalities commonly known from the nowa-
days prevalent application stores, where the user can choose
from a set of available applications to adopt his workspace
to his special needs.

6. CONCLUSION AND FUTURE WORK

This paper has presented reasons to perform application in-
tegration on a user interface level and has demonstrated an
architecture for the inclusion of applications into portal sys-
tems. The architecture is designed to allow for a high level
of flexibility in order to support future enhancements and
to achieve a high degree of maintainability. At the same
time, this paper has briefly introduced the prototypical im-
plementation of this architecture, which has demonstrated
the feasibility of the approach in an application prototype.

The combination of this architecture with the special re-
quirements of networked enterprises can pose a significant
advantage over traditional companies. Networked enter-
prises generally are characterized by a high degree of flexi-
bility, and so are the requirements on their employees. The
introduction of the user-centric attitude into the context of
application integration can provide a way for companies to
get advantage over their competition in the war for talent
by providing their users with the ability to specifically tai-
lor their work environment to their own needs whilst also
providing ways to ensure or improve their competitiveness.

The implementation has proved the general applicability of

701

the proposed architecture for the problem setting of inter-
operability in networked enterprises. At the same time, a
number of weak points could be identified by the implemen-
tation, first and foremost the lack of standards compliance
of many existing web applications. Even though a signifi-
cant increase in the percentage of standards compliant web-
sites has been detected recently [31], their share still remains
at mere 4.1%. Therefore, implementations will have to be
made more robust to also support non-standards compli-
ant websites as well. Adding to that the sheer number of
different techniques for web content presentation currently
prevalent on the market besides HT'ML-based content like
Adobe Flash, Microsoft Silverlight, or Oracle JavaFX-based
content, the situation gets even more difficult. This also
supports the point of Daniel et al. [11] who pledge for stan-
dardization on the UI level. A first step towards a more
homogeneous presentation layer may occur due to an in-
creasing acceptance of the HTML standard in its fifth re-
lease, which is expected to introduce — amongst others —
capabilities for video playback and drag-and-drop facilities
but has not been officially released by W3C and WHATWG
yet. Also, the HTML 5 standard is likely to include rec-
ommendations regarding a user agent’s behaviour in case of
erroneous documents, which may help to increase the num-
ber of standards compliant websites. At the same time, the
advent of HTML 5 will further ease the introduction of spe-
cific so-called widgets, small applications targeting at a lim-
ited set of functionality. In combination with the presented
user-centric approach, this is expected to provide valuable
extensions whilst reducing complexity by breaking up for-
merly strict application boundaries at the same time.

Besides improving their implementation to cope with the
identified lack of standards compliance, future work of the
authors is going to focus primarily on carrying out detailed
analysis of the proposed architecture. The architecture will
be evaluated based on the prototypical implementation along-
side a number of axes. These axes will first of all comprise
reliability aspects of individual types of applications in order
to assess the degree of maturity of the proposed solution.
Furthermore, implementation evaluation will also include
detailed analysis of the runtime performance of the proposed
solution as well as assessment of further protocol candidates
for future implementation. Another field for future work is
measuring the appropriateness of the proposed architecture
in terms of the currently prevalent topic of cloud comput-
ing. With this architecture and networked enterprises as
potential users of said applications, company boundaries are
converging. As a result, provided that legal issues are con-
sidered, the location of an application provider no longer is
of importance and hence opens the door for the proposed ar-
chitecture which allows to include distinct applications into
a uniform user interface for the networked enterprise. Con-
sequently, aspects like availability, access times and provi-
sioning times for individual applications become more and
more important. Also, this paper primarily focuses on the
technical implications, whilst business dimension considera-
tions are subject to future research.

Acknowledgements

The research leading to these results is receiving funding
from the European Community’s Seventh Framework Pro-
gramme under grant agreement no. 217098 and from the

European Regional Development Funds (ERDF). The con-
tent of this publication is the sole responsibility of the au-
thors and in no way represents the view of the European
Commission or its services.

7. REFERENCES

[1] A. Abramski and T. Schaeck. Java Portlet
Specification Version 1.0. Java Community Process,
2004.

[2] J. Adams and S. Koushik. Patterns for E-Business —
A Strategy for Reuse. IBM Press, 2001.

[3] S. Aier and J. Schelp. EAT und SOA-Was bleibt nach
dem Hype? In Proceedings der Multikonferenz
Wirtschaftsinformatik, pages 1469-1480, 2008.

[4] AT&T Corp. Collaboration across borders.
http://www.corp.att.com/emea/docs/sb_
collaboration_eng.pdf, 2008.

[5] F. Bellas, I. Paz, A. Pan, and O. Diaz. Handbook of
Research on Web Information Systems Quality,
chapter New Approaches to Portletization of Web
Applications, pages 270-285. Idea Group Inc, 2008.

[6] F. Bellas, 1. Paz, A. Pan, Oscar Diaz, V. Carneiro,
and F. Cacheda. An automatic approach to displaying
web applications as portlets. In Distributed Computing
and Internet Technology, volume 4317 /2006, pages
264-277. Springer Berlin / Heidelberg, 2006.

[7] C. Broser, C. Fritsch, O. Gmelch, G. Pernul,

R. Schillinger, and S. Wiesbeck. Analysing
Requirements for Virtual Business Alliances — The
Case of SPIKE. In Digital Business, volume 21 of
Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications
Engineering, pages 35-44. Springer Berlin Heidelberg,
2010.

[8] E. Capra, C. Francalanci, and F. Merlo. An empirical
study on the relationship between software design
quality, development effort and governance in open
source projects. IEEE Transactions on Software
Engineering, 34:765—-782, 2008.

[9] E. Chambers, M. Foulon, H. Handfield-Jones,

S. Hankin, and E. Michaels III. The war for talent.
The McKinsey Quarterly, 1(3), 1998.

[10] E. Daniel and J. Ward. Enterprise portals: Adressing
the organisational and individual perspectives of
information systems. In Proceedings of the Thirteenth
European Conference on Information Systems, 2005.

[11] F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera,
and R. Saint-Paul. Understanding UT Integration: A
Survey of Problems, Technologies, and Opportunities.
IEEE Internet Computing, 11:59—66, 2007.

[12] O. Diaz, A. Irastorza, J. S. Cuadrado, and L. M.
Alonso. From page-centric to portlet-centric Web
development: Easing the transition using MDD.
Information and Software Technology, 50(12):1210 —
1231, 2008.

[13] O. Diaz and I. Paz. Turning web applications into
portlets: Raising the issues. Symposium on
Applications and the Internet (SAINT’05), pages
31-37, 2005.

[14] E. Freeman, E. Freeman, B. Bates, K. Sierra, and
M. Loukides. Head First Design Patterns. O’Reilly
Media, Inc., 2004.

702

(15]

(16]

(17]

(18]

(19]
20]

(21]

22]

23]

(24]

(25]

(26]

27]

(28]

29]

(30]

(31]

K. Furdik. Secure Process-oriented Infrastructure for
Networked Enterprises. In Workshop on Data Analysis
WDA’2009, volume 2, pages 98-105. 2009.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series, 1995.

O. Gmelch and G. Pernul. Preventing malicious
Portlets from Communicating and Intercepting in
Collaboration Portals. In Proceedings of the
International Conference on Security and
Cryptography (SECRYPT), 2010.

T. Gurzki and H. Hinderer. Eine Referenzarchitektur
fiir Software zur Realisierung von
Unternehmensportalen. In U. Reimer, A. Abecker,

S. Staab, and G. Stumme, editors, Professionelles
Wissensmanagement - Erfahrungen und Visionen,
GI-Edition - Lecture Notes in Informations (LNI).
Bonner Koéllen Verlag, 2003.

S. Hepper. JSR 286: Java Portlet Specification
Version 2.0. Java Community Process, 2008.

G. Hohpe and B. Woolf. Enterprise Integration
Patterns. Pearson Education, 2004.

B. R. Katzy. Design and implementation of virtual
organizations. In Proceedings of the Thirty-First
Hawaii International Conference on System Sciences
(HICSS), volume 4, pages 142-151, Los Alamitos, CA,
USA, 1998. IEEE Computer Society.

J. Lee, K. Siau, and S. Hong. Enterprise Integration
with ERP and EAIL. Communications of the ACM,
46(2):54-60, 2003.

D. S. Linthicum. Enterprise Application Integration.
Addison-Wesley Information Technology Series.
Addison-Wesley, 2000.

I. Paz, O. Diaz, R. Baumgartner, and S. F. Anzuola.
Semantically integrating portlets in portals through
annotation. In Web Information Systems - WISE
2006, pages 436—447. Springer Berlin / Heidelberg,
2006.

C. Pettey. Gartner Says Worldwide Web Conference
and Team Collaboration Software Markets Will Reach
$2.8 Billion in 2010.
https://www.gartner.com/it/page.jsp?id=507717,
June 2007.

D. Riehle. The commercial open source business
model. In AMCIS 2009 Proceedings, 2009.

W. A. Ruh, F. X. Maginnis, and W. J. Brown.
Enterprise Application Integration. John Wiley &
Sons, Inc. New York, 2001.

C. C. Shilakes and J. Tylman. Enterprise information
portals. Merril Lynch, November 1998.

D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas,
P. J. Adams, I. Samoladas, and I. Stamelos.
Evaluating the quality of open source software.
Electronic Notes in Theoretical Computer Science,
233:5 — 28, 2009.

R. Thompson. Web Services for Remote Portlets
Specification v2.0. OASIS, 2008.

B. Wilson. MAMA: What is the Web made of? online
publication at
http://dev.opera.com/articles/view/mama/,

http://www.corp.att.com/emea/docs/s5_collaboration_eng.pdf
http://www.corp.att.com/emea/docs/s5_collaboration_eng.pdf
https://www.gartner.com/it/page.jsp?id=507717
http://dev.opera.com/articles/view/mama/

October 2008.

[32] R. Winter. Ein Modell zur Visualisierung der
Anwendungslandschaft als Grundlage der
Informationssystem-Architekturplanung. In J. Schelp
and R. Winter, editors, Integrationsmanagement,
pages 1-29. Springer Berlin / Heidelberg, 2006.

703

	Introduction
	Related Work
	Means of Application Integration
	An Architecture for Application Integration in Portal Systems
	Overall architecture
	Detailed UI architecture
	Support for request-oriented protocols
	Support for connection-oriented protocols

	Implementation and Evaluation
	Conclusion and Future Work
	References

