
Analysis of Two Theoretical Perspectives on Information

Systems Development: Towards an Integrated Perspective
Frank Zickert

Chair of Business Administration, esp. E-Finance and Services Science
Goethe University Frankfurt, Grüneburgplatz 1,

60323 Frankfurt, Germany
+49 179 4885644

mail@frankzickert.de

ABSTRACT

In this paper, we analyze two theoretical perspectives and

investigate their explanatory power on information systems

development (ISD) projects. Building upon a case study, we

illustrate that the perspectives of ISD as an economic

transformation process and ISD as complex problem solving

address different but complementary ISD phenomena. By

integrating both theoretical perspectives, we are able to analyze

and predict more ISD phenomena than each of the theories

individually. Therefore, the contribution of this paper is twofold.

Firstly, it supports researchers in their selection of a theory when

addressing ISD phenomena. Secondly, it serves as an example of

how researchers can develop a new theoretical perspective to

address a phenomenon of interest not covered appropriately by

existing theories.

Categories and Subject Descriptors

D.2 [Software Engineering]: Requirements/Specifications.

General Terms

Design, Theory.

Keywords

Theoretical Perspectives, Information Systems Development,

Economic Transformation Process, Complex Problem Solving.

1. INTRODUCTION
Research in information systems development (ISD) provides us

with numerous theories that explain how ISD works. These

theories frame our understanding of phenomena in and around

ISD. Two of the most commonly used theories are, for example,

ISD as an economic transformation process [33], in which

resources are used to transform the requirements of a system into

a working code [20], and ISD as complex problem solving [9], in

which the solution is sought by generating and evaluating

alternatives of the system under construction [41].

Although diversity in theory can be useful to ISD research [44], it

confronts the researcher with the problem of deciding on which

theory to use for the investigation of a phenomenon of interest

[57]. This decision is crucial, since the phenomena that command

our attention are linked inextricably to the theories and

paradigms we use to understand the world [34]. Consequently, an

inappropriate selection of a theory may result in the inability to

investigate the phenomenon of interest.

The purpose of this paper is to provide support for researchers in

their selection of a theory when addressing ISD phenomena.

Therefore, this paper aims at answering the research question of

which ISD phenomena can be addressed appropriately by using

the theories of ISD as an economic transformation process and

ISD as complex problem solving. Moreover, by integrating both

theories with each other, this paper aims to extend the scope of

ISD phenomena beyond what can be addressed by either theory

alone. The empirical basis for the evaluation of the theories is a

software development project that we were able to investigate in

a large financial institution.

The remainder of this paper is organized as follows. We depict

the theories of ISD as an economic transformation process and

ISD as complex problem solving in section two. After that, in

section three, our case study illustrates the different insights that

these theories disclose. Subsequently, in section four, we

integrate both theories and return to our case applying the

integrated theory. Subsequent to a brief discussion in section

five, we conclude by noting benefits and limitations associated

with this analysis in section six.

2. TWO THEORIES
In this paper, theories are regarded as lenses through which we

see problems and observe phenomena [8]. Following this notion,

theories provide explanations of how phenomena are related to

the problem and from which predictions can be derived or the

problem can be solved [25]. Theories are thus tools that

researchers use in order to investigate phenomena of interest.

Since they are tools, there is not one single correct theory that

implies all others are wrong, but rather any theory can at best be

appropriate or inappropriate for the investigation of a specific

phenomenon. Table 1 depicts a collection of ISD theories.

This paper focuses on two theories, ISD as an economic

transformation process and ISD as complex problem solving.

Both theories belong to the functionalist paradigm, in which ―the

10
th
 International Conference on Wirtschaftsinformatik,

16
th

- 18
th
 February 2011, Zurich, Switzerland

828

economic reality (translated into quantitative financial goals, and

systems performance characteristics) allows system objectives to

be derived in an objective, verifiable, and rational way [and

where] systems design becomes primarily a technical process‖

[28]. Thus, both theories share fundamental assumptions about

the nature of ISD, such as that in ISD, social order is used to find

consensus on a solution that is the rational choice because it

satisfies goals [14].

Table 1. Theories on ISD

Theory Short Description

Economic

Transformation

Process

The system is transformed from objective

goals into subsequent forms, such as

requirements and code. [2][5][7]

Complex

Problem

Solving

The system is a set of parameters for

which a configuration must be found that

results in the desired system behavior.

[9][40]

Knowledge-

based

Systems are created using the aggregated

knowledge of stakeholders. The team

process needs to be coordinated. [23]

Negotiation

The system serves as means to the

individual objectives of the stakeholders.

The system characteristics are determined

by negotiation. [10][42]

Complex

Adaptive

Systems

The system emerges as a result of the

individual behavior of agents and their

local optimization processes. [9][29]

The theories of ISD as an economic process and ISD as complex

problem solving have been selected in this paper since both are

widely used and acknowledged (e.g. [6][7][9] [21][37]).

2.1 Economic Transformation Process
The theory of ISD as an economic transformation process builds

upon the economic theory of the firm that provides a formal

description of the relationship between the quantity of outputs

produced and the input resources employed. In the ISD process,

input factors including labor (the programming team) and capital

(tools and techniques) are transformed into outcomes such as

new or modified software [7] as depicted in Figure 1.

Figure 1. Software development project as a collection of transformation

activities.

The central assumption underlying this perspective is a direct

relationship between the input factors and the outcomes. For

example, Banker et al. [7] apply the transformation process

perspective in order to assess the effect of code generators or

packaged software on productivity of the ISD maintenance

process. Although not explicitly mentioned, Agrawal and Chari

[2] build upon the notion of ISD as an economic transformation

process when investigating the effects of high process maturity

on outcomes, such as effort, quality, and cycle time. Anda et al.

[5] quantify the impact that variations and reproducibility in the

ISD process have on the quality of software projects in terms of

delivery within budget and on the quality of the product in terms

of functionality, reliability, usability, efficiency, maintainability,

and portability.

The main phenomenon of interest of ISD as an economic

transformation process is the productivity of the ISD process and

related attributes, such as effort or cycle time [6]. Insights about

ISD productivity are crucial since the technical ISD process is an

engineering task of creating cost effective solutions to practical

problems [52]. The purpose of this perspective is thus to support

the creation of cost effective solutions.

In order to measure productivity, both inputs and outputs need to

be measured. The most important output is represented by the

system size, which can be measured by the number of function

points [3], [16], a metric of business systems functionality [4],

[42] or by the number of source lines of code [58], [46], [12].

Labor, as the most important input factor, is represented by the

project effort, which results from the time and number of staff

that are needed to build the system [1]. Moreover, both input and

output factors are homogenous.

Another important input factor that is missing in this notion are

the requirements of the system under construction. Although

labor is also required for the elaboration of requirements, there

are conceptual differences between the requirements of the

system and the labor required for building the system [23].

Requirements correspond to the system under construction [56].

Just as source code, requirements are a representation of the

system. Each representation of the system serves a specific

purpose, has an intended audience, and has its own language.

While the purpose of source code is to run on a computer and

developers write it in programming languages, the purpose of

requirements is to describe what the system does in its

environment [29]. Requirements are socially constructed and

negotiated by stakeholders as means to satisfaction of their goals

[47], [10] and requirements are written in natural language [32]

or specific notation languages, such as KAOS [55] or Problem

Frames [50].

In a refined notion of a transformation process, the purpose of

ISD is the transformation of an early representation of the

system, such as requirements, into a working instance that is

represented by compiled and tested source code. Since all

representations correspond to the same system, correctness of the

transformation can be evaluated by a direct comparison of

whether the representations are congruent [19], for instance, do

the requirements that describe what the system is supposed to do

match with what the source code of the system actually does

when it is executed.

On the contrary, other input factors, such as labor, are not

actually transformed but rather consumed by transforming one

representation of the system into another [13]. Labor and other

consumables are thus not added to the system, but these factors

refer to the ISD project in which they are consumed.

Another class of input factors comprises tools and techniques,

which are neither transformed nor consumed. Tools and

techniques are used within the transformation process through

which system representations are transformed by using labor.

Both the amount of required consumables for a transformation

and the quality of a transformed system representation depend on

System
Labor and

Capital

829

the employed tools and techniques [59]. For instance, using a

complex technique for the formal elaboration of requirements

may require more labor than an easy and informal technique

does. When using formal techniques however, the quality of the

resulting requirements may be improved.

Figure 2 depicts the refined notion of ISD as an economic

transformation process, which distinguishes between these three

classes of input factors. In fact, this is still an abstract notion of

ISD. The ISD process determines which specific activities are

accomplished at all, whether they are done sequentially or

concurrently, which representations of the system are produced,

and at which points consumables are required. The waterfall

model [48] serves as a blueprint of an ISD process from the

perspective of ISD as an economic transformation process.

The theoretical perspective of ISD as an economic transformation

process treats ISD as a black box, which means that there is no

further analysis of how the transformation specifically works. On

the contrary, since the input factors are homogenous, it is

assumed that the transformation is repeatable and therefore

predictable. That means that the ISD can be repeated with the

same productivity each time it is executed. Consequently, if the

ISD productivity has already been assessed, it is possible to

forecast required labor for the transformation of specific systems.

Cost and effort estimation methods, for example, build upon this

assumption when they estimate the labor that is required for the

system development based on the system size [11].

The following Table 2 summarizes the major characteristics of

the theoretical perspective of ISD as an economic transformation

process.

Table 2. ISD as an Economic Transformation Process

Purpose
- Creation of cost effective solutions

- Effort estimations

Treats ISD as - Black Box

Assumptions

- Direct relationship between input factors

and outcomes

- Input factors are homogenous

- The result of transformation is

predictable

- Transformations are repeatable

Input factors

- Resources/Labor

- Process model

- System content

Phenomenon

of interest
- Productivity of the ISD process

2.2 Complex Problem Solving
Another theoretical perspective on ISD is ISD as complex

problem solving [9]. This perspective mainly aims at disclosing

what needs to be done in order to find a satisfactory solution for

the problem [41].

Marengoa and Dosi [37], for example, find in their investigation

of the degree of decentralization in problem solving that

decentralized structures are unlikely to generate optimal

solutions if the problem is complex. Duimering et al. [21]

examine the influence of product requirement ambiguity on the

task structures of the development project. Their results highlight

the role of communication, coordination, and knowledge as

distributed development project teams struggle to resolve

ambiguity. Espinosa et al. [22] investigate the effect of

familiarity on how long the development team requires in order

to find an error free solution to the problem.

The theoretical perspective of ISD as complex problem solving

builds upon the notion of a parametric representation, in which

the system is regarded as a collection of parameters. The

behavior of the system, once it is completed, depends on the set

of values that are assigned to the parameters. The objective in

ISD is to define values for all parameters of a system in a way

that results in the desired behavior of the system [31]. The

complexity of finding appropriate values for all parameters

originates from interrelations among the parameters [51]. Due to

interrelations, whether a specific value for a parameter is valid

depends on the value itself and also on values that have been

assigned to related parameters.

In ISD, the problem to be solved is represented by requirements

that describe what the system has to accomplish [29]. The

problem is solved if all requirements are met. Requirements

engineering (RE) methods, such as KAOS, support the

elaboration and verification of requirements in a way that assures

the requirements appropriately address the superordinate

problem [18]. Therefore, requirements can be regarded as the

parameters of the problem.

Subsequently, in ISD, specifications that describe how the

system works are designed in order to accomplish the

requirements. The specifications therefore serve as values for the

parameters. Other RE methods, such as problem frames, support

the correct derivation of specifications from requirements and

therefore aim at assuring that only valid values are assigned to

the parameters [50].

Solving a problem requires assigning valid values to all

parameters. The assignment is not carried out randomly but

follows a search procedure that aims at favorable configurations

for the values of the parameters. These search procedures are

called heuristics [41] and are well covered by literature on

artificial intelligence [36], [49]. Heuristics usually converge

towards a solution, which means that they do not instantly find

the right configuration but start with a configuration and alter it

in a way that approaches the final solution. For example, the hill

climbing heuristic starts with a random configuration of

parameter values and then iteratively changes parameter values.

Changes that improve the resulting solution performance are

kept, whereas changes that decrease resulting performance are

withdrawn. As depicted in Figure 3, the performance is increased

Goals Requirements

Design

Specifications
CodeRefinement Derivation Implementation

Consumption Resources Consumption Resources Consumption Resources

Figure 2. Software development project as a collection of transformation activities.

830

until an optimum is found, from which each parameter change

results in a lower performance. However, depending on the

starting point, the hill climbing heuristic may become stuck in

local optima that may not achieve the desired performance

output. In such cases, in order to find a satisfactory solution, the

current path must be left and a completely different must be

taken. This is done by backtracking, in which new values are

assigned to parameters that have already been set in another way.

Performance

Configurationstarting point

local optimum

se
ar

ch

di
re

ct
io

n

global optimum

desired performance

Figure 3. Hill climbing heuristic.

An underlying assumption of the perspective of ISD as complex

problem solving is the decomposability of the problem. In order

to be able to search for parameter values that solve the problem,

the problem first has to be decomposed into a set of parameters.

Based on Simon [51], problems often exhibit ‗near

decomposability‘, which refers to the idea that there are groups

of problem components that have a high degree of

interdependence to each other, whereas they are only loosely

coupled with other groups of components. These groups

appropriately serve as parameters, since they are relatively

independent and thus it is easier to find valid values for them

[21].

However, since the parameters remain interrelated with each

other to a certain extent, the performance of a configuration

results from the combination of parameter values, where even

small changes in one parameter value can result in significant

changes in the overall performance [54], [38]. As a result, in

order to achieve satisfactory performance, assigning a value to a

parameter may also require other parameters to take specific

values. However, if the other parameters already have values that

do not correspond to the required ones, some already set values

must be changed respectively and reassigned. This

reassignment—or backtracking—can also require other

parameter values to change. Thus, it may result in cascade effects

that require the complete configuration to change [10].

An assumption underlying the theoretical perspective of ISD as

complex problem solving is the specificity of problems, where

each problem is decomposed into a specific set of parameters

[51]. Since each set of parameters exhibits a specific structure

with regard to how the parameters are interrelated with each

other, there is no general best way of how to solve a problem, but

the performance of the applied heuristic depends on its fit to the

problem structure [40]. For example, due to its property of

getting stuck in local optima, hill climbing is an inappropriate

heuristic for solving a problem with many local optima that do

not achieve satisfactory performance. Other heuristics that do not

get stuck in local optima, such as genetic algorithms, would find

better solutions for such problems.

The underlying assumption is that activities are not generally

repeatable but that it depends on the specific parameters whether

valid values exist. In order to account for the specificity of

problems and how they are solved, this perspective treats ISD as

a white box. Moreover, since specific values are assigned to

specific parameters, how such assignments affect the solution

performance is not predictable unless they are given a try.

Table 3 summarizes the major characteristics of the theoretical

perspective of ISD as complex problem solving.

Table 3. ISD as Complex Problem Solving

Purpose - Find a satisfactory solution

Treats ISD as - White Box

Assumptions

- Each problem is specific

- Decomposability of the problem

- The effect of an activity on solution

performance is unknown unless it is

tried

- Direct manipulation of parameters and

values possible

Input factors

- Problem

- Heuristic/the way of how the problem is

solved

Phenomenon

of interest

- Performance of the system under

construction

3. ISD CASE

3.1 Case Study Design
In order to get first hand information about the phenomena that

the theoretical perspectives on ISD investigate, we applied a case

study on a software development project in a large financial

institution.

The observed project involved various stakeholders and affected

different systems. Moreover, the project comprised reengineering

of an existing system and its integration with another recently

built system. The project was selected since the variety of both

participating stakeholders and involved systems promised to be

fruitful for making a distinction between two different theoretical

perspectives in use.

The most important source of data was observations that we

made by accompanying the business and technical analysts when

requirements and design specifications were elaborated. We

spent 103 hours over 40 days with the analysts on the project.

During this period, we frequently had discussions with the

analysts. Moreover, we were able to also interrogate other

stakeholders in the project, such as the retail customer division

whose representative acted as internal customer, the project

manager, developers, representatives of the vendors, and

members of the testing team. Moreover, sources of data also

included access to documents, including working versions und

reviews to the documents, such as concepts, meeting minutes,

and e-mails. In total, this documentation comprised 323 pages.

831

Following Yin [60], we matched our data to the elements and

characteristics of both theories in order to identify patterns in the

data that disclose whether the project took place in the way the

theories suggest. Based on this, we analyze how the theoretical

perspectives explain the observations and which kind of insights

each theoretical perspective supports.

As proposed by Miles and Huberman [39] we conducted data

gathering and analysis concurrently so that we were able to

capture all information that we found necessary for matching

patterns to the theories.

3.2 Description of the Case
The project started in January 2009 and was completed in August

2009. In the project, a front-end system had to be integrated with

a recently built payment processing system and therefore

required reengineering. Previously, payment orders once entered

at the front-end were transferred to a legacy processing system.

Since the legacy processing system was planned to be

deactivated, orders needed to be transferred to the new

processing system instead. Moreover, since the new processing

system required different data and a different payment order

format than the old processing system, the order entry at the

front-end had to be changed completely, wherefore it was

decided to reengineer the whole system.

The applied ISD process generally adhered to the waterfall

model [48]. At the beginning of the project, the business analyst

collected the objectives of the retail customer division

representative, which served as a basis for the elaboration and

formulation of the requirements that had to be met to satisfy the

objectives. All requirements were collected in a requirements

document.

Since the retail customer division representative had many issues

concerning the functionality of the front-end, the analyst

elaborated various requirements. In order to achieve these

requirements, significant changes in the front-end design were

made. For example, it was requested that payment orders had to

be already checked for correctness at the front-end. Since this

involved verification, whether entered bank codes are valid,

access to a complete list of all allowed bank codes was required.

The business analyst evaluated different alternatives for the

requirement of integrating the front-end with the processing

system. Using reasoning of lower maintenance effort for the

future front-end system, he selected a direct interface between

the front-end system and the processing system

Based on the requirements document, two technical analysts

derived the software design specifications and prepared the

software design specification document. While the business

analyst is part of an IT department that is aligned with the retail

customer division, the technical analysts are assigned to specific

IT systems. Thus, in this project, there was a separate technical

analyst involved for each affected system, one for the front-end

system and one for the processing system.

Reengineering the front-end system not only aimed at providing

the new functionality but also was intended to straighten its

design. Since the front-end system already had run for several

years and had undergone frequent changes, its design was quite

tangled. Consequently, in order to obtain a system that is not

bound to legacy structures, reengineering the front-end system

started from scratch [26], only adhering to the given

requirements but ignoring any constraints given by the existing

systems. This however, also included leaving unconsidered the

constraints given by the processing system.

Starting from scratch, the technical analyst responsible for the

front-end system addressed the requirement of a direct

connection between the front-end and the processing system by

specifying a web-service interface. The integration of the front-

end and the processing system proceeded after the front-end

design was completed. Subsequent to reviewing the specified

front-end design, the technical analyst, who was responsible for

the processing system, rejected the implementation of a web-

service interface at the processing system side, since it would not

be implementable within the given constraints in time and

budget. Instead, he suggested a file transfer. However, the

architecture of the front-end system did not support file transfers

in the suggested way. The inability to provide a web-service on

the one hand and the inability to transfer requested files on the

other hand not only required rework of the already specified

front-end system design, but it also rendered unworkable the

requirement of the direct connection between both systems.

Therefore, the requirement of an indirect connection replaced the

direct connection requirement, although it implied higher

maintenance costs.

Subsequent to the resolution of this issue and rework of the

front-end design, the on-site developers and the external vendor

developed the software code based on the software requirements

specifications document. Subsequently, the testing team

performed the software tests. Despite some minor bug-fixings,

neither code development nor testing disclosed any problems that

required considerable rework.

3.3 From an Economic Transformation

Process Perspective
The most significant observation regarding the project at hand

from the theoretical perspective of ISD as an economic

transformation process is provided by the organizational policy

that specifies all activities and their outcomes in the project.

According to this policy, each activity has to have a described

output that is the input for the next activity. For example, in the

requirements analysis phase, requirements had to be elaborated

by the business analyst and had to be written down in natural

language. A template for the requirements document had to be

used, which provides a document structure and the required

contents. This requirements document served as input for the

design specification phase, in which the technical analysts

derived design specifications from the requirements. A software

design specifications document had to be produced, whose

content was also pre-structured by a template that had to be used.

The design specifications were handed over to the developers

and the external vendor, who prepared the source code, which

was finally handed over to the testing team.

Each of these produced outputs referred to the system under

construction and is thus a representation of this system. The

process model described which activities the employees had to

accomplish and which tools (e. g. templates) they had to use. The

required labor for accomplishing the activities was gathered

832

using the organizational accounting tool, which every employee

used to charge the spent working time to a project.

Altogether, these factors do not only support the assessment of

the ISD productivity in this project, they also allow identification

of productivity drivers. For example, the required formalism in

the activities consumed a significant amount of labor and thus

negatively affected productivity. Although the analysts had

delineated requirements and design specifications using self-

made models or descriptions, they had to spend about the same

amount of work filling out the required template documents.

Other factors that affected the productivity were the number of

requirements that needed to be transformed into the working

system and the number of required attempts for the correct

transformation. The business analyst, for instance, elaborated

different alternative integration requirements of the connection

between the front-end and the processing system. Each of these

alternatives needed to be elaborated and described and thus

required labor that reduced productivity. Reworking the

integration requirement after the web-service had been rejected

is another example of a factor that negatively affected

productivity.

However, although this perspective allows the identification of

factors that affect productivity, such as required rework, it does

not explain why rework occurred. Building upon the assumption

that both input and output of an activity are homogenous, the

investigation of any specific input or output is unsupported from

this theoretical perspective.

3.4 From a Complex Problem Solving

Perspective
Despite general adherence to the given organizational policy, the

project at hand was not accomplished in a unidirectional and

straightforward manner, but could be characterized as a

continuous search, in which different alternatives were evaluated

in order to find a solution that exhibited the requested

performance characteristics.

At the beginning of the project, for example, the business analyst

considered different alternative requirements before he was able

to determine that a direct interface between the front-end system

and the processing system is the requirement with the best

performance attributes since it resulted in low maintenance cost.

In fact, however, this of all requirements turned out to be

inappropriate for a satisfactory solution, because it was not

accomplishable. The designed web-service could not be

integrated with the processing system within the given

constraints in time and budget and the file transfer that would

have worked with the processing system did not work with the

front-end system.

In this situation, the integration requirement of a direct

connection served as a parameter that comprised a dependency

between the interfaces at the front-end and the processing

system. Because of this dependency, a design specification that

represents a value of this parameter had to work with both

systems. However, although assigning a value that worked with

both systems to this parameter was impossible in this situation,

the selection of this parameter was not per se false. In fact, two

design specifications could have achieved the requirement and

thus depicted valid values for this parameter. What made this

requirement unworkable was the dependency, due to which both

the front-end and the processing system had to share the same

value. While the web-service specification did not work with the

processing system, the file transfer specification did not work

with the front-end system. Thus, the inappropriateness of the

requirement of a direct connection was not disclosed until design

specifications were derived from it.

In order to solve the problem, despite the inconsistency among

the required values for the direct connection requirement, the

dependency between the values had to be resolved. Backtracking

the direct connection requirement and replacing it with the

requirement of an indirect connection decoupled both systems

from each other and therefore enabled solving the problem.

Without having had the chance to withdraw the requirement of

the direct connection, the problem would not have been solvable.

It would have resulted in failure of the project. Although the

requirement of the indirect connection created other

dependencies, such as the interfaces to a routing system, these

new dependencies did not result in any problems with regard to

finding appropriate design specifications as values.

This perspective offers insights about which specific activities

and decisions in ISD were required in order to find a satisfactory

solution. It provides an explanation of why specific requirements

and design specifications had to be reworked in our case. For

example, it discloses that the inconsistency between required

values for the requirement of the direct connection inhibited

solving the problem.

However, this perspective does not put the decisions made for

solving the problem into an ISD context that explains why

inconsistencies occurred at all, for example, whether the reason

for the inconsistency was the ISD process, insufficient resources,

or the problem of building a system.

4. TOWARDS AN INTEGRATED

PERSPECTIVE

4.1 Theoretical Perspective
While both the theoretical perspectives of ISD as an economic

transformation process and ISD as complex problem solving

support the addressing of different phenomena of interest, both

perspectives also have limitations with regard to which aspects

they are able to explain. While the transformation process

perspective sets input factors, such as attributes to the ISD

process, into relation with the produced output and therefore

discloses factors affecting productivity, it does not give

underlying reasons of why the factors matter. The complex

problem solving perspective, on the contrary, allows

investigating the structures underlying ISD and therefore

provides insights into why specific problems occur in a project.

However, it does not put these problems into relation to

attributes of the ISD process, and therefore, it fails to provide

measures on how to improve ISD.

Since the phenomena of interest that the theoretical perspectives

address are complementary, an integrated perspective that

combines both theories may address phenomena of interest

beyond the phenomena addressed by either theory alone.

Moreover, both theories share the same fundamental assumptions

833

about the world, because they both build upon the functionalist

paradigm.

The integrated perspective regards ISD as a collection of solution

space transformation activities. The solution space contains all

potential solutions to the problem, regardless of whether their

performances are satisfactory or not [10]. Like the complex

problem solving perspective, the integrated perspective builds

upon the notion of a parametric representation of the system

under construction, in which the configuration of the parameter

values results in the behavior of the system once it is built.

Therefore, the solution space contains all configurations of

parameter values.

However, in contrast to the complex problem solving

perspective, in which ISD takes place as a conscious search for

the parameters and their values, in the integrated perspective,

accomplished activities unconsciously determine the parameters

and their values, as is explained in the following.

Seen from the perspective of ISD as complex problem solving,

parameters and their values are directly manipulated and

therefore the configurations whose performance is sought to be

evaluated are known. Although the performance of a

configuration is unknown unless it is evaluated, heuristics

calculate configurations worth consideration based on the

performance of already evaluated configurations. For example,

the genetic algorithm heuristic generates promising

configurations by recombining parts of configurations with good

performance [36].

On the contrary, seen from the integrated perspective of ISD as a

collection of solution space transformation activities, only

activities are consciously selected, whereas the configuration of

parameters and their values results from the activities in an

unpredictable way. That means, not only the performance of a

configuration but also the specific configuration is unknown

unless the activity that results in the respective configuration is

accomplished. As a result, it is impossible to employ a heuristic

because it is impossible to generate specific configurations

selectively. Therefore, it is not a heuristic but the current

situation in the ISD project that supports decisions on which

activities to execute and which resources to employ in order to

solve the given problem.

In this regard, the integrated perspective is similar to the

perspective of ISD as an economic transformation process. There

are specific activities in ISD that are executed in order to build

the system and each activity requires resources—most

importantly labor. However, while in the notion of the economic

transformation perspective, activities directly transform the

content of the final solution in a predictable way, in the notion of

the integrated perspective, activities transform the current

configuration in an unpredictable way.

Since the current configuration determines which other

configurations can be achieved by performing further activities,

one needs to distinguish between the actual solution space that

only contains solutions that are achievable from the current

configuration and the overall solution space that contains all

configurations.

The actual solution space evolves over time. With each activity,

it approaches a solution which, however, is unknown both in

terms of its configuration and its performance. Therefore,

whether the solution exhibits satisfactory performance is

unknown, too. Since neither the configuration nor its

performance are predictable, although both depend on the

activities, the employed resources, and the specific problem, ISD

is not directed in any way, neither in terms of conscious problem

solving, nor in terms of simply transforming the content of the

system under construction. The phenomenon of interest of the

integrated perspective therefore is to investigate why ISD is

successful or fails at all.

Table 4. ISD as a Collection of Solution Space

Transformation Activities

Purpose

- Investigations of the structures

underlying ISD and putting them into

relation with general input factors

Treats ISD as - White Box

Assumptions

- Each problem is specific

- Decomposability of the problem

- Activities are repeatable, but their

outcome is not predictable because it

depends on the content and the

employed resources

Input factors

- Resources/Labor

- Composition of activities

- System content

Phenomenon

of interest
- Reasons for ISD success or failure

By investigating how the actual solution space evolves in a

project, this perspective allows tracing back problems, such as

inconsistencies, to their origins. This perspective discloses

whether the origin of success or failure in a specific case is the

process model, the employed resources, or an unsolvable

problem. Table 4 summarizes the major characteristics of the

theoretical perspective of ISD as a collection of solution space

transformation activities.

4.2 THE CASE REVISITED
The most significant characteristic of the observed case, which

supports the notion of ISD as a collection of solution space

transformation activities, is that the solution space was unknown.

At no time, did decision makers consciously take into account

how many or which solutions the actual solution space

comprised. However, we will particularly consider the actual

solution space in the following, when applying the integrated

perspective on the case.

The major problem in the project at hand became evident when

the front-end system was integrated with the processing system.

In this situation, the actual solution space contained no valid

solution. Although there were two considered solutions, the web-

service interface as suggested by the technical analyst who was

responsible for the front-end system design and the file transfer

suggested by the technical analyst responsible for the processing

system design, no solution worked with both systems. Therefore,

both solutions were invalid, leaving no valid solution in the

actual solution space.

In order to look into the cause for this ―emptiness‖ of the actual

solution space that resulted in backtracking and thus rework,

related activities are analyzed. The design of the web-service was

834

the proximate activity, in which the technical analyst‘s task

comprised addressing the requirement of a direct connection

when reengineering the front-end system from scratch. The

analyst successfully accomplished the task since the designed

web-service appropriately addressed the direct connection

requirement. It represented a valid solution for the given sub-

problem.

Since the analyst successfully accomplished the design task, the

reason that caused the empty actual solution space is not the

analyst‘s fault but rather the activity itself. Particularly, the

conscious neglect of the dependency to the interface of the

existing processing system is questionable, because it delayed

discovery of the empty actual solution space until the integration

of both systems. However, since the front-end system turned out

not to be able to support the file transfer as required from the

processing system, even an early consideration of the dependency

would not have resulted in anything but an empty actual solution

space. Since neither insufficient nor incapable resources nor the

neglect of the dependency caused the empty actual solution

space, it must have been already empty prior to the derivation of

design specifications.

Nevertheless, the division of labor affected the amount of

accrued rework. Early consideration of the interdependency

between the front-end and processing system interfaces would

have disclosed earlier that the actual solution space was empty. It

would have been recognized before a significant amount of work

was spent on the complete front-end design specification. Thus,

although the activity setting in this situation did not cause

rework, it determined its extent. The recommendation therefore

is to take into account all dependencies early.

In order to further investigate the cause of rework in this project,

the activity, in which the parameters were set, needs to be

analyzed. The business analyst set the parameters when

elaborating the requirements at the beginning of the project. This

activity aimed at requirements that can be met and, if met, satisfy

the stakeholders‘ objectives. Although the first elaborated

requirement of a direct connection could not be met, the activity

was generally accomplishable as the second elaboration of the

indirect connection requirement discloses. Therefore, the actual

solution space at this time contained at least one valid and

satisfactory solution that, however, was not selected right away.

Nevertheless, the selected requirement of a direct connection was

a rational decision, because it was the best choice reflecting the

information available to the business analyst at the time [17].

Firstly, the requirement of a direct connection best satisfied the

objectives, because it also resulted in lower maintenance cost

than the indirect connection requirement. And secondly, the

information about the requirement of a direct connection to be

unworkable did not emerge until the design was specified. When

the business analyst first elaborated the direct connection

requirement, the resulting actual solution space contained two

seemingly valid solutions: the web-service and the file transfer.

The decision would have been irrational only if some feasible

arrangement for recognizing and achieving a preferred outcome

existed, but that outcome was not obtained [35].

Since the problem of selecting an appropriate requirement was

solvable and the decisions were rational in the given context, the

activity that set the context for the decision needs to be critically

analyzed. The given process model arranged for the final

elaboration of requirements before their viability was checked

further. As a result, information required in order to not only

make rational but also beneficial decisions was unavailable when

decisions had to be made. Therefore, the insights of this

theoretical perspective recommend an ISD process that assures

all relevant information be available when decisions need to be

made. Concurrent requirement elaboration and design

specification would make available information about

requirement viability early and therefore could improve the

quality of decision making [45]. However, since design

specifications are built upon not yet finalized requirements,

rework would occur if requirements turned out to not completely

address the stakeholder objectives [53].

Altogether, the integrated perspective of ISD as a collection of

solution space transformation activities suggests that good

decisions are not necessarily those that best satisfy goals, but

those that also allow further problem solving. In two situations

within the observed project, the decisions that aimed at achieving

the best solution resulted in severe consequences. Firstly,

although the selected direct connection requirement would have

implied lower maintenance cost, it resulted in an empty actual

solution space and therefore in an unworkable situation that

caused rework of the requirement and all design specifications

building upon it. Secondly, although the chosen web-service

interface would have implied a straightened design, it resulted in

a large extent of rework.

However, this does not imply that goal satisfaction should not be

a major factor for decision-making. It rather implies that the

effect that decisions have on the actual solution space also needs

to be included in the decision-making. For example, the

requirement of the direct connection had the disadvantageous

effect of coupling the interfaces between front-end and

processing system and therefore increased complexity of

accomplishing the activity [15]. However, much work is needed

in order to assess the effect that decisions have on the actual

solution space.

5. DISCUSSION
Theories allow knowledge to be accumulated in a systematic

manner and this accumulated body of knowledge enlightens

professional practice [25]. Therefore, the primary interest of

scientific research is to add to the body of knowledge by the

creation, refinement, and validity assessment of theories.

However, since theories in the body of knowledge also serve as

utilities from and through which IS research is accomplished

[27], the researcher must be aware of the nature of the applied

theories. Theories are only valid in a context that is determined

by basic assumptions about the world and specific assumptions

about the phenomenon of interest [28]. These assumptions must

be considered when applying theories. Otherwise, findings may

be misinterpreted or even void. Therefore, a critical eye on

theories in the body of knowledge is required in order to not rely

on serendipity when selecting a theory. Researchers need to be

aware of the assumptions and beliefs that they employ in their

day-to-day activities [28]. Therefore, further analyses are

required in order to structure the body of knowledge in a way

that makes it comprehensible and usable for subsequent research.

835

6. CONCLUDING REMARKS
In this paper, we investigated which phenomena of interest two

widely used theoretical perspectives address in the area of ISD

support. By building upon an analysis of the perspectives and a

case study of a software development project conducted in a large

financial institution, this paper has three findings.

Firstly, ISD productivity is the main phenomenon of interest of

the theoretical perspective of ISD as an economic transformation

process. While this perspective allows identifying factors

affecting ISD productivity, such as rework, it does not explain

the rationale underlying these factors, since it treats ISD as a

black box. Therefore, it does not disclose measures positively

influencing the factors, for example, measures reducing rework.

Secondly, the performance of the system under construction is

the main phenomenon of interest of the perspective of ISD as

complex problem solving. Since this perspective treats ISD as a

white box, it supports investigations of how decisions in the ISD

process affect performance. For example, it discloses that

backtracking is vital for finding satisfactory solutions. However,

this perspective does not put the decisions made for solving the

problem into the specific ISD context. Therefore, it does not

support conclusions on whether decisions, such as to backtrack,

are reasoned with the ISD process, insufficient resources, or the

problem of building a system.

Thirdly, an integrated perspective that combines both ISD as an

economic transformation process and ISD as a complex problem

solving, supports addressing the underlying reasons for ISD

success or failure. In our case, the integrated perspective

discloses that the applied process caused rework and determined

its extent. Based on the insights that the integrated perspective

provides, measures positively influencing ISD success can be

identified, for example, making information about the

consequences of decisions available as early as possible.

Our findings about which ISD problems can be addressed by

using which theoretical perspectives provide support for

researchers in their selection of a theoretical perspective when

investigating ISD problems. Moreover, by integrating two

theories, the paper serves as an example of how researchers can

prepare a theoretical lens that is suited for the investigation of a

phenomenon of interest that is not appropriately addressed by

one single perspective.

However, this analysis has some limitations that future work

needs to address. Firstly, the scope of this analysis is limited to

the evaluation of two theoretical perspectives on ISD within the

functionalist paradigm. There are in fact other theoretical

perspectives within this or within other paradigms, which still

have to be critically analyzed. Future work needs to evaluate

these theories in order to create a framework that researchers can

use when selecting a theory.

Secondly, although this analysis of the theoretical perspectives

also provides some insights on ISD, it has to be noticed that

these insights build upon a single case. In fact, we do not claim

to have gathered any statistically generalized insights but rather

analytical ones. In this paper, the insights on ISD illustrate which

kind of insights the theoretical perspectives can provide.

Nevertheless, the insights on ISD seem interesting and therefore

deserve further scientific investigation.

7. Acknowledgements
This work was developed as part of a research project of the E-

Finance Lab at Goethe University Frankfurt. Any opinions,

findings, conclusions, or recommendations expressed in this

paper are those of the authors and do not necessarily reflect the

views of the E-Finance Lab or its supporting partners. The

authors are indebted to the participating universities and

gratefully acknowledge all support of their industry partners.

8. REFERENCES
[1] Abdel-Hamid, T. and Madnick, S. 1991. Software Project

Dynamics: An Integrated Approach. Prentice-Hall,

Englewood Cliffs, NJ.

[2] Agrawal, M. and Chari, K. 2007. Software Effort, Quality,

and Cycle Time: A Study of CMM Level 5 Projects. IEEE

Transactions on Software Engineering 33, 3, 145-156.

[3] Albrecht, A. 1979. Measuring Application Development

Productivity. Proceedings of IBM Applications Development

Symposium, 83-92.

[4] Albrecht, A. and Gaffney, J. 1983. Software Function,

Source Lines of Code, and Development Effort Prediction: A

Software Science Validation. IEEE Transactions on

Software Engineering 9, 6, 639-648.

[5] Anda, B., Sjøberg, D., and Mockus, A. 2009. Variability

and Reproducibility in Software Engineering: A Study of

Four Companies that Developed the Same System. IEEE

Transactions on Software Engineering 35, 3, 407-429.

[6] Banker, R., Datar, S., and Kemerer, C. 1991. A Model to

Evaluate Variables Impacting the Productivity of Software

Maintenance Projects. Management Science 37, 1, 1-18.

[7] Banker, R., Davis, G., and Slaughter, S. 1998. Software

Development Practices, Software Complexity, and Software

Maintenance Performance: A Field Study. Management

Science 44, 4, 433-450.

[8] Benbasat, I. and Weber, R. 1996. Research Commentary:

Rethinking ‗Diversity‘ in Information Systems Research.

Information Systems Research 7, 4, 389-399.

[9] Benbya, H. and McKelvey, B. 2006. Toward a Complexity

Theory of Information Systems Development. Information

Technology & People 19, 1, 12-34.

[10] Bergman, M., King, J., and Lyytinen, K. 2002. Large-Scale

Requirements Analysis Revisited: The need for

Understanding the Political Ecology of Requirements

Engineering. Requirements Engineering 7, 3, 152-171.

[11] Boehm, B., Abts, C., and Chulani, S. 2000. Software

Development Cost Estimation Approaches – A Survey.

Annals of Software Engineering 10, 177-205.

[12] Boehm, B. 1981. Software Engineering Economics.

Prentice-Hall, Englewood Cliffs, NJ.

[13] Boehm, B. 2007. Improving software productivity. In:

Software Engineering, R. Selby, Ed. John Wiley and Sons,

Hoboken, NJ, 151-178.

[14] Burrell, G. and Morgan, G. 1979. Sociological Paradigms

and Organizational Analysis. Heinemann, London.

836

[15] Campbell, D. 1988. Task Complexity: A Review and

Analysis. The Academy of Management Review 13, 1, 40-52.

[16] Cheung, Y., Willis, R., and Milne, B. 1999. Software

Benchmarks Using Function Point Analysis. Benchmarking:

An International Journal 6, 269-279.

[17] Cyert, R. and March, J. 1963. A Behavioral Theory of the

Firm. Blackwell, Cambridge.

[18] Dardenne, A., Fickas, S., and van Lamsweerde, A. 1991.

Goal-directed concept acquisition in requirements

elicitation. Proceedings of the 6th international workshop

on Software specification and design, Como, Italy, 14-21.

[19] Darimont, R. and van Lamsweerde, A. 1996. Formal

refinement patterns for goal-driven requirements

elaboration. Fourth ACM SIGSOFT Symposium on the

Foundations of Software Engineering, San Francisco, 179-

190.

[20] Davis, A. 1993. Software Requirements: Objects, Functions,

and States. Prenctice-Hall, Englewood Cliffs, NJ.

[21] Duimering, P., Ran, B., Derbentseva, N., and Poile, C.

2006. The Effects of Ambiguity on Project Task Structure in

New Product Development. Knowledge and Process

Management 13, 4, 239-251.

[22] Espinosa, J., Slaughter, S., Kraut, R., and Herbsleb, J. 2007.

Familiarity, Complexity, and Team Performance in

Geographically Distributed Software Development.

Organization Science 18, 4, 613-630.

[23] Faraj, S. and Sproull, L. 2000. Coordinating Expertise in

Software Development Teams. Management Science 46, 12,

1554-1568.

[24] Glinz, M. 2007. On Non-functional Requirements.

Proceedings of the IEEE Joint International Conference on

Requirements Engineering (RE’07), 21-26.

[25] Gregor, S. 2006. The nature of theory in IS. MIS Quarterly

30, 611-642.

[26] Hammer, M. and Champy, J. 1993. Reengineering the

Corporation. Harper Collins, New York, NY.

[27] Hevner, A., March, S., Park, J., and Ram, S. 2004. Design

Science in Information Systems Research. MIS Quarterly

28, 75-105.

[28] Hirschheim, R. and Klein, H. 1989. Four Paradigms of

Information Systems Development. Communications of the

ACM 32, 10, 1199-1216.

[29] Holland, J. 1996. Hidden Order, How Adaption Builds

Complexity. Basic Books, New York, NY.

[30] Jackson, M. 1995. Software Rrequirements and

Specifications. Adison-Wesley, New York, NY.

[31] Kauffman, S. 1995. At Home in the Universe. Oxford

University Press, New York, NY.

[32] Kotonya, G. and Sommerville, I. 1998. Requirements

Engineering: Processes and Techniques. John Wiley and

Sons, New York , NY.

[33] Kriebel, C. and Raviv, A. 1980. An Economics Approach to

Modeling the Productivity of Computer Systems.

Management Science 26, 3, 297-311.

[34] Kuhn, T. 1970. The Structure of Scientific Revolutions.

University of Chicago Press, Chicago, IL.

[35] Liebowitz, S. and Margolis, S. 1995. Path Dependence,

Lock-in, and History. Journal of Law, Economics, and

Organization 11, 1, 205-226.

[36] Luger, G. 2002. Artificial Intelligence: Structures and

Strategies for Complex Problem Solving. Addison Wesley,

Reading, MA.

[37] Marengoa, L. and Dosi, G. 2005. Division of Labor,

Organizational Coordination and Market Mechanisms in

Collective Problem-solving. Journal of Economic Behavior

& Organization 58, 303-326.

[38] McCann, J. and Ferry, D. 1979. An Approach for Assessing

and Managing Inter-Unit Interdependence. The Academy of

Management Review 4, 1, 113–119.

[39] Miles, M. and Huberman, 1994. A Qualitative Data

Analysis. Sage Publications, Thousand Oaks, CA.

[40] Newell, A. and Simon, H. 1972. Human Problem Solving.

Prentice Hall, Englewood Cliffs, NJ.

[41] Newell, A. and Simon, H. 1976. Computer Science as

Empirical Enquiry: Symbols and Search. Communications

of the ACM 19, 113–126.

[42] Ovaska, P, Rossi, M., and Smolander, K. 2005. Filtering,

Negotiating and Shifting in the Understanding of

Information System Requirements. Scandinavian Journal of

Information Systems 17, 1, 31-66.

[43] Perry, W. 1986. The Best Data Processing Measures.

System Development 6,6, 4-6.

[44] Pfeffer, J. 1993. Barriers to the Advance of Organizational

Science: Paradigm Development as a Dependent Variable.

Academy of Management Review 18, 4, 599-620.

[45] Pich, M., Loch, C., and de Meyer, A. 2002. On Uncertainty,

Ambiguity, and Complexity in Project Management.

Management Science 48, 8, 1008-1023.

[46] Putnam, L. 1978. General Empirical Solution to the Macro

Software Sizing and Estimating Problem. IEEE

Transactions on Software Engineering 4, 345-361.

[47] Robinson, W. 1990. Negotiation Behavior During

Requirements Specification. Proceedings of the 12th

international conference on Software engineering, Nice,

268-276.

[48] Royce, W. 1970. Managing The Development of Large

Software Systems. Proceedings of IEEE WESCON 26, 1-9.

[49] Russel, S. and Norvig, P. 2003. Artificial Intelligence, A

Modern Approach. Prentice Hall, Upper Saddle River, NJ.

[50] Seater, R., Jackson, D., and Gheyi, R. 2007. Requirement

Progression in Problem Frames: Deriving Specifications

from Requirements. Requirements Engineering 12, 2, 77-

102.

837

[51] Simon, H. 1996. The Sciences of the Artificial. MIT Press,

Cambridge, MA.

[52] Shaw, M. 1990. Prospect for an Engineering Discipline of

Software. IEEE Software 7, 15-24.

[53] Terwiesch, C. and Loch, C. 1999. Measuring the

Effectiveness of Overlapping Development Activities.

Management Science 45, 4, 455-465.

[54] Thompson, J. 1967. Organizations in Action. McGraw-Hill,

New York, NY.

[55] van Lamsweerde, A., Darimont, R., and Massonet, P. 1995.

Goal-directed Elaboration of Requirements for a Meeting

Scheduler: Problems and Lessons Learnt. Proceedings of the

2nd IEEE International Symposium on Requirements

Engineering, 194-203.

[56] van Lamsweerde, A. 2001. Goal-oriented Requirements

Engineering: A Guided Tour. Invited Paper for RE'01 - 5th

IEEE International Symposium on Requirements

Engineering, Toronto, 249-263.

[57] Walsham, G. 2006. Doing Interpretive Research. European

Journal of Information Systems 15, 320-330.

[58] Waltson, C. and Felix, C. 1977. A Method of Programming

Measurement and Estimation. IBM Systems Journal 16, 1,

54-73.

[59] Wirth, N. 1995. A Plea for Lean Software. IEEE Computer

28, 2, 64-68.

[60] Yin, R. 1994. Case Study Research: Design and Methods.

Sage Publications, Thousand Oaks, CA.

838

